

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Transceiver Facility Specification
“Where software defines the radio”

SDRF-08-S-0008-V1.0.0

Approved 28 January 2009

Transceiver Facility Specification

WInnF-08-S-0008-Error! Unknown document property name.

 Page 2 of 130

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

TERMS, CONDITIONS & NOTICES

This document has been prepared by the Transceiver Interface Task Group to assist The SDR
Forum (or its successors or assigns). It may be amended or withdrawn at a later time and it is not
binding on any member of The SDR Forum or on the SDRF Transceiver Interface Task Group.

Contributors to this document who have submitted copyrighted materials (the Submission) to The
SDR Forum for use in this document retain copyright ownership of their original work, while at the
same time granting The SDR Forum a non-exclusive, irrevocable, worldwide, perpetual, royalty-
free license under the Submitter’s copyrights in the Submission to reproduce, distribute, publish,
display, perform, and create derivative works of the Submission based on that original work for the
purpose of developing this document under the Forum's own copyright.

Permission is granted to SDR Forum participants to copy any portion of this document for
legitimate purposes of the SDR Forum. Copying for monetary gain or for other non-SDR Forum
related purposes is prohibited.

THIS DOCUMENT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN
PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY
USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN
RISK, AND NEITHER THE FORUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL
HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY
DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM
THE USE OF THIS DOCUMENT.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the specification set forth in this document, and to provide
supporting documentation.

Transceiver Facility Specification

WInnF-08-S-0008-Error! Unknown document property name.

 Page 3 of 130

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Executive Summary

This specification is the V.1.0.0 (“Increment 1”) of the Transceiver Facility Specification from the

SDR Forum, referenced SDRF-08-S-0008.

For radio system integrators, waveform providers, SDR platform providers and radio head

manufacturers who seek increased efficiency when integrating waveform applications with target

platforms (including radio heads), and who seek increased portability for their waveform

applications, the Transceiver Facility Specification V.1.0.0 is an open specification for transceiver

subsystems that captures the information needed for interoperability between waveform

applications and transceiver subsystems, expressed as generic and abstract requirements for

properties and programming interfaces, including the associated real-time issues.

Unlike existing specifications such as OBSAI RP3, CPRI, Vita 49 or DigRF, which focus on

interoperability between hardware subsystems, and which do not sufficiently address control and

configuration mechanisms, this specification provides a software abstraction that decouples

waveform software from the specifics of the transceiver subsystem implementation, while not

preventing use of any of the aforementioned standards.

“Where software defines the radio”

Acknowledgment

This specification would not exist without the European Union funded project E3 (End-to-End

Efficiency), which has enabled the essential of its content and supported the associated group work

effort at SDR Forum level. The decisive contribution of the European Union and the E3 project as a

whole to this work is hereby acknowledged.

Transceiver Facility Specification

WInnF-08-S-0008-Error! Unknown document property name.

 Page 4 of 130

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Table of Contents

Transceiver Facility Specification ... 1

1 - Introduction .. 11

1.1 - Transceiver Subsystem ... 11
1.1.1 Definition .. 11
1.1.2 Positioning in Physical Layer ... 11
1.1.3 Positioning within Radio Set Implementation .. 12
1.1.4 Internal architecture ... 14
1.1.5 Standard-based implementation solutions .. 14

1.2 - Rationale for a standard specification ... 14

1.3 - The Transceiver Facility ... 15
1.3.1 Overview .. 15
1.3.2 Specification levels .. 16
1.3.3 Features and Common Concepts .. 16

2 - Specification Assumptions ... 18

2.1 - Waveform engineering .. 18
2.1.1 External interfaces ... 18
2.1.2 Internal structure .. 19
2.1.3 Deployment .. 19

2.2 - Requirements ... 20
2.2.1 Abstraction and Genericity ... 20
2.2.2 Functional requirements .. 20
2.2.3 Programming language requirements ... 21
2.2.4 Implementation architecture requirements .. 23
2.2.5 Requirements Identification and Numbering ... 23

2.3 - Detailed specification conventions .. 24
2.3.1 Classification of Transceiver Characteristics ... 24
2.3.2 Operations and Programming Interfaces ... 27
2.3.3 Types setting conventions ... 30
2.3.4 States and Transitions ... 31
2.3.5 Events Handling ... 31

3 - Features Specification .. 35

3.1 - Transceiver composition ... 35

3.2 - Core Feature “Transmit Channel” .. 36
3.2.1 Principle ... 36
3.2.2 Overview .. 37
3.2.3 Analysis Requirements .. 41
3.2.4 Modelling Requirements .. 64
3.2.5 Implementation Languages Requirements .. 66

3.3 - Core Feature “Receive Channel” ... 70
3.3.1 Principle ... 70
3.3.2 Overview .. 71
3.3.3 Analysis Requirements .. 75
3.3.4 Modelling Requirements .. 97
3.3.5 Implementation Languages Requirements .. 99

4 - Common Concepts Specification ... 103

Transceiver Facility Specification

WInnF-08-S-0008-Error! Unknown document property name.

 Page 5 of 130

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4.1 - Introduction ... 103

4.2 - Time handling Domain Types .. 105
4.2.1 Absolute Time .. 105
4.2.2 Event-based Time .. 106

4.3 - Tuning Characteristics Definition .. 108
4.3.1 Introduction .. 108
4.3.2 Domain definitions ... 108
4.3.3 Domain types ... 108
4.3.4 Baseband Signal .. 111
4.3.5 RF Signal ... 112
4.3.6 Channelization ... 113
4.3.7 Implementation Language Requirements .. 116

4.4 - Tuning Characteristics Setting ... 119
4.4.1 Introduction .. 119
4.4.2 Preset characteristics .. 120
4.4.3 Modelling Support Requirements .. 121

4.5 - Baseband Packets .. 121
4.5.1 Introduction .. 121
4.5.2 Specification ... 122
4.5.3 Implementation Language Requirements .. 122
4.5.4 List of requirements ... 124

5 - Annexes ... 126

5.1 - Using implementation standards .. 126
5.1.1 JTRS radios with MHAL RF Chain Coordinator .. 126
5.1.2 OBSAI/CPRI compliant Base-stations ... 126
5.1.3 DigRF-compliant Handsets .. 127

5.2 - Implementation Language Reference Source Code .. 127
5.2.1 C++ Implementation .. 127

Transceiver Facility Specification

WInnF-08-S-0008-Error! Unknown document property name.

 Page 6 of 130

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

List of Figures

Figure 1: Definition of Transceiver Subsystem and key associated concepts 11
Figure 2: Transceiver Subsystem within the PHY Layer of a radio chain 12
Figure 3: Transceiver Subsystem and related capabilities ... 13
Figure 4: Key expectations towards Transceiver Subsystem Facility ... 15
Figure 5: Overview of the Transceiver Subsystem Facility ... 16
Figure 6: External interfaces of a Transceiver Subsystem ... 18
Figure 7: Internal structure of a Transceiver ... 19
Figure 8: Notion of Max Invocation Duration ... 30
Figure 9: Expression of Timely Events ... 32
Figure 10: Event Sources Public Identifiers .. 33
Figure 11: Overview of a Transmit Channel ... 36
Figure 12: States and transitions of the Up-conversion Chain .. 44
Figure 13: Time profile of Transmit Cycle ... 46
Figure 14: States and Transitions of a Transmit Cycle Profile .. 50
Figure 15: Transmit Channel involved interfaces .. 64
Figure 16: Transmit Channel main composition ... 65
Figure 17: Transmit Channel and Cycle Profile .. 66
Figure 18: BBSamplePacket Transmit Timing diagram for VHDL .. 69
Figure 19: Overview of a Receive Channel .. 70
Figure 20: States and transitions of the Down-conversion Chain ... 78
Figure 21: Time Profile of a Receive Cycle ... 80
Figure 22: States and Transitions of a Receive Cycle Profile ... 84
Figure 23: Receive Channel involved interfaces ... 97
Figure 24: Receive Channel main composition .. 98
Figure 25: Receive Channel and Cycle Profile ... 99
Figure 26: BBSamplePacket Transmit Timing diagram for VHDL .. 102
Figure 27: Characteristics of Spectrum Mask ... 114
Figure 28: Characteristics of Group Delay Mask .. 115
Figure 29: Tuning Preset class diagram ... 121
Figure 30: JTRS radios with MHAL RF Chain Coordinator ... 126
Figure 31: Transceiver Subsystem in OBSAI / CPRI compliant Base stations 126
Figure 32: Transceiver Subsystem in DigRF-comploant Handsets .. 127

Transceiver Facility Specification

WInnF-08-S-0008-Error! Unknown document property name.

 Page 7 of 130

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

List of Tables

Table 1: Document History ... 8
Table 2: Reference Documents .. 9
Table 3: Acronyms .. 10
Table 4: VHDL naming conventions ... 22
Table 5: UML, IDL and VHDL constructs mapping ... 22
Table 6: Differences between Characteristics categories ... 27
Table 7: Base types .. 30
Table 8: Overview of programming interface TransmitControl ... 37
Table 9: Overview of programming interface TransmitDataPush ... 37
Table 10: Explicit Notions related to Transmit Channel .. 38
Table 11: Implicit Notions related to Transmit Channel .. 38
Table 12: Internal Notions related to Transmit Channel ... 39
Table 13: Constraints related to Transmit Channel .. 40
Table 14: Overview of Transmit Channel Analysis requirements ... 63
Table 15: VHDL Transmit Entity signals ... 68
Table 16: Overview of programming interface ReceiveControl .. 71
Table 17: Overview of programming interface ReceiveDataPush .. 71
Table 18: Explicit Notions related to Receive Channel ... 72
Table 19: Implicit Notions related to Receive Channel ... 72
Table 20: Internal Notions related to Receive Channel .. 73
Table 21: Constraints related to Receive Channel ... 74
Table 22: Overview of Receive Channel Analysis requirements .. 96
Table 23: VHDL Receive Entity signals .. 101
Table 24: Overview of Common Concepts notions ... 103
Table 25: Overview of Common Concepts constraints ... 104
Table 26: Overview of Common Concepts requirements ... 125

Transceiver Facility Specification

WInnF-08-S-0008-Error! Unknown document property name.

 Page 8 of 130

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Document History

Version Date Editor Description

V.0.1.0 15 April 2008 Eric Nicollet Post-58th GM (Rome) release.

V.0.2.0 9 Sept 2008 Eric Nicollet 60th GM (Boston) release.

V.0.2.1 7 Oct 2008 Stéphane Pothin Ctrb_TCF_01 merged on top of V.0.2.0

V.0.2.2 29 Oct 2008 Alejandro Sanchez Contributions merged on top of V.0.2.1:

Ctrb_TFS_TCF_02

Ctrb_TFS_TCF_03 (joint with Indra)

Ctrb_TFS_TCF_04

Ctrb_TFS_TCF_05

V.0.3.0 20 Nov 2008 Eric Nicollet Direct contribution from TCF on top of V.0.2.2.

Contributors: Eric NICOLLET, Stéphane POTHIN,

Alejandro SANCHEZ.

Release for Work Group ballot.

V.0.5.0 23 Dec 2008 Eric Nicollet,

Alejandro Sanchez

Update taking into account Work Group ballot comments.

Editor’s review taken into account.

Clarifications and upgrades along the whole document,

based on approval comments and a detailed Thales internal

document review.

No fund upgrade which would justify new Work Group

ballot.

Release for Technical Committee ballot.

V.0.6.0 26 Jan 2009 Eric Nicollet Update taking into account Technical Committee ballot

comments expressed by Uni of Karlsruhe.

Prepared to enter SDR Forum ballot.

V.0.6.1 27 Jan 2009 Eric Nicollet Few typos corrected.

Couple of disambiguation sentences added in § 4.3.6.

Release for SDR Forum ballot.

V1.0.0 5 Feb 2009 Allan Margulies Edit for public release.

Table 1: Document History

Transceiver Facility Specification

WInnF-08-S-0008-Error! Unknown document property name.

 Page 9 of 130

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Reference Documents

Identifier Title Author Comments

[1] Joint Digital IF Initial Submission T. Demirbilek

and E.

Nicollet

OMG document, March 2005

[2] The Transceiver Facility Platform Independent

Model : Definition, Content and Usage

E. Nicollet SDR Forum Technical Conference,

November 2006, Orlando

[3] Standardizing Transceiver APIs for Software

Defined and Cognitive Radio

E. Nicollet

and L. Pucker

Article from RF Design magazine,

February 2008

Table 2: Reference Documents

Transceiver Facility Specification

WInnF-08-S-0008-Error! Unknown document property name.

 Page 10 of 130

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Acronyms

Acronym Signification

AGC Automatic Gain Control

ALC Automatic Level Control

API Application Programming Interface

CPRI Common Public Radio Interface

CPU Central Processing Unit

dB Decibel

dBFS Decibel relative to the Full Scale

FS Full Scale

HDL Hardware Description Language

IF Intermediate Frequency

IDL Interface Description Language

JPEO Joint Program Executive Office

JTRS Joint Tactical Radio System

MAC Medium Access Control

MDA Model Driven Architecture

MDE Model Driven Engineering

MHAL Modem Hardware Abstraction Layer

OBSAI Open Base Station Architecture Iniatitive

PA Power Amplifier

PIM Platform Independent Model

PSM Platform Specific Model

RF Radio Frequency

Rx Reception / Receive

SCA Software Communication Architecture

SDR Software Defined Radio

Tx Transmission / Transmit

UML Unified Modeling Language

VHDL Very high speed integrated circuit Hardware Description Language

Table 3: Acronyms

SDRF-08-S-0008-V1.0.0 Introduction

 Page 11 of 130 Introduction

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

1 - Introduction

1.1 - Transceiver Subsystem

This chapter provides the reference definition for Transceiver Subsystem, as applicable within the

specification.

The terminology Transceiver derives from the contraction of “transmitter/receiver”.

1.1.1 Definition

The Transceiver Subsystem is the part of a radio chain that transposes, for transmission, baseband signal

into radio signal, and, for reception, radio signal into baseband signal.

The terminology Transceiver derives from the contraction of “transmitter/receiver”.

The transposition of baseband signal into radio signal is denoted as the up-conversion. The reciprocal is

denoted as the down-conversion.

Tuning is characterizing the signal processing transformations realized by up- and down-conversion.

The baseband signal is a sampled complex signal, with (I,Q) values, denoted sBB[n]. The radio signal is is a

continuous electric signal, denoted sRF(t).

The following figure illustrates the previous definitions:

Transceiver

Subsystem

Baseband Signal

sBB[n]

Radio Signal

sRF(t)

Sampled complex signal (IQ) Continuous electric signal

t

n

tuning

Up-conversion

Down-conversion

Figure 1: Definition of Transceiver Subsystem and key associated concepts

1.1.2 Positioning in Physical Layer

Inside a radio chain, the Transceiver Subsystem is comprised between the Modem and the Antenna

Subsystem. It is exchanging the baseband signal with Modem, and radio signal with the Antenna Subsystem.

Modem, Transceiver and Antenna are generally considered as parts of the Physical Layer.

Modem

Modem is defined as the part of a radio chain that generates, in transmission, the baseband signal to be

transmitted, and that exploits, in reception, the received baseband signal. Implementation of Modem relies

on the modulation and demodulation techniques, which explains the selected name.

The Modem scope can not be strictly defined, since has an evident boundary towards the above layers of the

radio chain which would be applicable in any case. Additionally, depending on the granularity to which a

SDRF-08-S-0008-V1.0.0 Introduction

 Page 12 of 130 Introduction

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

certain radio chain is decomposed, several functional modules can take part in the implementation of

Modem.

Modem is thus used as the a role taken by the functional modules of the radio chain exchanging baseband

signal with the Transceiver Subsystem.

Antenna Subsystem

Antenna Subsystem is defined as the part of a radio chain that transforms, for transmission, the radio signal

into the transmitted radio wave, and, for reception, the impinging radio wave into the radio signal.

The signal transformation operated by the Antenna Subsystem is evidently conducted thanks to antennas,

while the complete subsystem implementation may include additional hardware and control software (e.g.

for mechanically directed antennas).

The following figure illustrates previous considerations:

sBB[n] sRF(t)

Radio Wave

Modem

Radio Chain

Propagation

channel Transceiver

Subsystem

Antenna

Subsystem

PHY Layer

Radio Signal Baseband Signal

Variable

boundary

Figure 2: Transceiver Subsystem within the PHY Layer of a radio chain

1.1.3 Positioning within Radio Set Implementation

1.1.3.1 Implementation concepts

Reconfiguration Infrastructure

Reconfiguration Infrastructure is defined as the role taken by parts of the SDR Set which undertakes

reconfigurations between the waveform capabilities supported by the Radio Set. It can be compliant with an

open reference specification (e.g. SCA Core Framework solutions), or be a proprietary solution.

Waveform Application

The Waveform Application is composed of software modules which provide the essential software-defined

dimension of the radio capability implementation. The software architectures are often targeted to achieve a

high degree of portability for those software modules.

Within the Waveform Application, the Waveform Functional Application denotes the software modules

which integrally implement (i.e. without intervention of a particular hardware) functionalities of the

considered Waveform Capability. The emergence of high processing power programming capabilities is

making implementation of such functionalities in highly portable software modules a tangible reality, even

for the most constrained parts of the physical layer processing.

Within the Waveform Application, the Configuration Agent represents the role taken by a software module

that accesses the other constituents of the radio capability implementations, in order to dynamically modify

or read some configuration properties of those constituents. It typically relays orders provided by a user

SDRF-08-S-0008-V1.0.0 Introduction

 Page 13 of 130 Introduction

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

interface or commands retrieved from a remote source. In contrast to the Waveform Functional Application,

this software has a strong dependency on the way commands impacting the Transceiver Subsystem are

issued, and is not subject to be easily portable across different Radio Sets.

Platform Functional Support

The Platform Functional Support denotes the set of Radio Subsystems, such as Transceiver Subsystem,

which are provided by the SDR Platform to complement the Waveform Application in order to dispose of a

complete Waveform Capability implementation.

The Transceiver Subsystem and the Antenna Subsystem are parts of the Platform Functional Support.

1.1.3.2 Illustration

The following figure illustrates the Transceiver Subsystem positioning within a typical radio implementation

inside an SDR set:

PHY

Transceiver

Subsystem

Platform Functional Support

Modem MAC …

Waveform Application

Reconfiguration

Infrastructure

Deployment puts Transceiver Subsystem in

the required mode, initializes it and

connects it to the Waveform Application

Control interfaces enable Waveform

Application to interact in real-time

with Transceiver Subsystem

Antenna

Subsystem

Configuration enables to

dynamically modify or read

Transceiver Subsystem properties

deployment

Configuration

Agent

configuration

control

data

Data interfaces enable Waveform

Application to exchange baseband

signal with Transceiver Subsystem

Propagation

Channel

Waveform Functional Application

Figure 3: Transceiver Subsystem and related capabilities

The previous figure is an example that illustrates a typical set of modules and relationships, corresponding to

an example of wavefom capability implementation. It is recalled that the terminology “waveform” is used by

reference to radio communications, but covers a potentially wider scope of radio applications than radio

communications only (e.g. spectrum sensing, direction finding, identification friend-foe, …).

The control interaction between MAC and Transceiver Subsystem is underlining that in some cases the

control interactions from the Waveform Functional Application to the Transceiver Subsystem are not strictly

limited to Physical layer internal interactions.

For simplification purpose, some deployment and configuration interactions between Reconfiguration

Infrastructure and Waveform Application components are not represented.

The roles of Reconfiguration Infrastructure and Configuration Agent are presented in conformance with

previous definitions. The Transceiver Subsystem and Antenna Subsystem are apperarting as parts of the

Platform Function Support.

The presented Waveform Application is composed of one Modem software component, with one MAC

software component, the “…” module representing other components of higher layers which are not related

to the Transceiver Subsystem.

SDRF-08-S-0008-V1.0.0 Introduction

 Page 14 of 130 Introduction

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

1.1.4 Internal architecture

There are as many different Transceiver Subsystem implementations as there are radio equipments. The

variety in Transceiver Subsystem implementations, architectures, designs and technology is huge, and out of

the scope of the specification, which specifically abstracts the implementation choices.

There are nevertheless internal architecture invariants which enable better depictions of Transceiver

Subsystems.

A Transceiver Subsystem implementation is composed of a digital segment and an analogue segment

separated by a conversion stage. The breakdown between the digital and analogue segment is one essential

architectural choice of a transceiver design.

The conversion stage is in charge of transforming the digital signal into analogue signals and vice-versa. It

can be positioned at any level between the following extremes: (i) immediately at base-band, for each real

component of the complex baseband signal, (ii) directly at the antenna foot.

The digital segment, denoted as Digital Transceiver, is in charge to interact with the Waveform Application,

in compliance with the facility programming interfaces. It can undertake a significant part of the signal

transformation, when conversion is not happening at baseband level. This part represents the whole lot of the

digital segment in the case of antenna foot conversion, often depicted as “genuine” software radio case.

The analogue segment, denoted as Analogue Transceiver, is in charge of exchanging the RF signal with the

antenna Subsystem. It undertakes all necessary transformations between the conversion stage and the

antenna interface. In most situations the analogue stage will comprise a power amplification stage.

1.1.5 Standard-based implementation solutions

Using standard implementation solutions to provide a complete Transceiver Subsystem can be a relevant

option in many industrial cases.

Standards having been identified as typical cases are comprised of OBSAI (or CPRI) in base-stations

manufacturing, DigRF in cellular handsets manufacturing, or JTRS JPEO MHAL RF Chain Coordinator in

military radios manufacturing.

For illustrative purposes, Annexe 2 graphically presents a certain number of such situations.

1.2 - Rationale for a standard specification

The ongoing development of software-defined radio (SDR) technologies in advanced wireless systems,

allowing some or all of the radio implementation to be realized in software and/or HDL code, is creating a

need for a further level of standardization between the Waveform Application and the Transceiver Subsystem.

This standard specification shall enable interoperability between Waveform Applications and Transceiver

Subsystems.

Expected benefits of such interoperability are (i) increased integration efficiency between a compliant

Transceiver Subsystem segment and the Waveform Application parts, (ii) increased portability of a Waveform

Applications through different radio platforms with compliant Transceiver Subsystems, (iii) increased

openness of Transceiver Subsystems, capable of meeting the needs of a large panel of Waveform

Applications with reduced costs.

As a consequence, the standard specification shall specify the Transceiver Subsystem thanks to a generic and

abstract approach. Generic signifies that the specification shall be capable to fulfill the needs of the widest

possible range of waveform capability, ideally any of them. Abstract signifies that the specification shall

propose a characterization of the Transceiver Subsystem which does not make any implementation specific

assumptions.

SDRF-08-S-0008-V1.0.0 Introduction

 Page 15 of 130 Introduction

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

The following figure is summarizing those expectations:

Waveform Application

Transceiver Sub-system

expressed

from

Specific Waveform Capability

Implementation-independent

characterization, adapted to the

considered Waveform Capability

Standard

specification

Generic & Abstract

WF-specific

requirements

 Applicable to as many waveform

capabilities as possible

 Entirely abstracting Transceiver

Sub-system implementation choice

Figure 4: Key expectations towards Transceiver Subsystem Facility

Meeting the difficult compromise of the often contradictory ambitions of genericity and abstraction requires

capturing the fundamental domain concepts which govern radio engineering expertise. As such the Facility

elaboration presents similitudes with elaboration of a domain specific language.

1.3 - The Transceiver Facility

1.3.1 Overview

The Transceiver Facility is the solution proposed by the SDR Forum for definition of a generic and abstract

Transceiver Subsystem specification conformed to the expectations exposed in the previous rationale.

It is a general-purpose specification applicable to particular development cases. It aims at becoming a largely

referenced and implemented standard within the SDR industry.

Its definition is an openly available SDR Forum Specification and follows an open elaboration process

conducted by the SDR Forum.

SDRF-08-S-0008-V1.0.0 Introduction

 Page 16 of 130 Introduction

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Specification topics

The requirements expressed in the Facility are covering the following topics:

 Structural Concepts

 States & Transitions

 Properties

 Programming Interfaces (used and realized interfaces)

 Real-time requirements

 Reference scenarios

The following figure summarizes what the Transceiver Subsystem Facility is:

Transceiver Sub-system

Facility

Properties

used
realized

Reference

scenarios
Programming

Interfaces

States &

Transitions

R/W

 Generic & Abstract specification

 Publicly available

 Openly defined by SDR Forum

Figure 5: Overview of the Transceiver Subsystem Facility

1.3.2 Specification levels

The analysis requirements of the Facility (i.e the requirements issued from the analysis process) impact the

complete development chain, from the early design phase to the final integration stages. They are valid

whatever the implementation choices will be.

To support usage of model-driven engineering and developments, UML concepts are formally required in

direct derivation from the analysis requirements.

Reference source code applicable for programming of Waveform Application and Transceiver Subsystems

interactions, in a number of popular programming languages such as C, C++, VHDL, etc., are as well

specified.

Finally, requirements are expressed to characterize how Transceiver Subsystems compliant with the Facility

shall be implemented following the specific constraints of reference SDR standards. The SCA (Software

Communication Architecture) is addressed from this perspective.

1.3.3 Features and Common Concepts

The Facility is organized through Features and Common Concepts.

Features

A Feature is an elementary capability of a Transceiver Subsystem for which the Facility is providing a set

reference specification items in a dedicated chapter.

Two categories of features are identified:

SDRF-08-S-0008-V1.0.0 Introduction

 Page 17 of 130 Introduction

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

 Core features: Specifying basic and mandatory functionalities of a transceiver, typically

Transmit/Receive capability

 Optional features: Specifying functionalities which are dependent upon the transceiver type, for

example Half/Full Duplex features

This separation of capabilities in Features provides the Transceiver Facility with modularity, extensibility

and scalability.

Core and Optional Features include a set of specification items (APIs, attributes, behaviors, etc.) which

enable either the waveform or the platform developers to manage the various transceiver interfaces and

characterize their performance.

Example

The Feature “Transmit Channel” provides a reference function used by the Waveform Application to notify the

Transceiver that a packet of new baseband samples is ready, called pushBBSamplesTx(). Properties attached to

the baseband flow exchanged between Waveform Application and Transceiver are the sample rate and the

number of coding bits for the stream signal.

Common Concepts

A Common Concept is defined as a set of specification items collectively shared between different Features,

and captured independently from the Features themselves.

The introduction of Common Concepts avoids duplication of information throughout the specification.

Example

The concept of baseband signal power level is defined in the Common Concept that is used by both the

“Receive Channel” and “Transmit Channel” features.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 18 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

2 - Specification Assumptions

This chapter defines the specification assumptions as applied by the Facility to express formal requirements.

2.1 - Waveform engineering

The abstract and generic characterization of the Transceiver Subsystem which is realized by the Facility is

made through the External Interfaces and Internal Structure of the subsystem, as depicted in following

chapters.

These assumptions are intended for engineering of each specific Waveform Capability. They are not

addressing matters associated to Transceiver Subsystem implementations, and the issues related to

simultaneous support of different waveform capabilities by a given multi-radio Transceiver Subsystem.

Only mono-antenna transceiver capabilities are considered in this chapter, meaning that MIMO or Smart

Antenna techniques are not supported by the current specification.

2.1.1 External interfaces

The following figure depicts the external interfaces of a Transceiver Subsystem:

Transceiver

Subsystem

Baseband

Signal

RF

Signal

Real-time

Control

(Deployment)

Analogue

Interfaces

Programming

interfaces

Properties

R

W

R/W access granted to

Configuration

Figure 6: External interfaces of a Transceiver Subsystem

Programming Interfaces

The Baseband Signal interfaces convey the baseband signal from the Waveform Application (typically its

Modem part) to the Transceiver Subsystem. It represents the transceiver input data for transmission and the

output data for reception. Typically baseband I&Q samples from a particular waveform travel through this

interface.

The Real-time Control interfaces provide data flow control and real-time configuration. Typically the facility

provides an API with generic waveform-independent methods configuring transceiver performance and air-

interface RF access.

The Baseband Signal interfaces and the Real-time Control interfaces compose the Programming Interfaces

attached to the Transceiver Subsystem.

Analogue Interfaces

The RF Signal interfaces convey the radio frequency signal from the Transceiver Subsystem to the Antenna

Subsystem. They are the only externally visible Analogue Interfaces presented by the Transceiver Subsystem.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 19 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Properties

The Transceiver Subsystem properties are not as such interfaces, but they do correspond to data

representations of internal notions of the Transceiver Subsystem which enable the Waveform Configuration

to read current values taken by the considered notion or to write desired values to be implemented by the

considered notion.

2.1.2 Internal structure

The following figure depicts the internal structure of a Transceiver Subsystem:

Transceiver

Base-band

Signal

RF

Signal

Real-time

control

Receive Channel

Transmit Channel

(Deployment)

R

W

R/W properties access

Figure 7: Internal structure of a Transceiver

Transmit and Receive Channels are the core features associated with the Transceiver Subsystem. For a given

Waveform Capability, the way they are arranged characterizes three primary possibilities:

 “True” Transceiver: Receive and Transmit Channels core features are both needed

 Receiver (“Receive-only Transceiver”): only Receive Channel core feature is needed

 Transmitter (“Transmit-only Transceiver”): only Transmit Channel core feature is needed

As far as “True” Transceivers are concerned, the following possibilities can then be distinguished:

 Full-duplex Transceiver: Receive and Transmit Channels can be simultaneously activated

 Half-duplex Transceiver: Receive and Transmit Channels shall be exclusively activated

The Facility is based on a baseline specification of the identified core features, complemented by

Transceiver-level notions enabling the ability to characterize how they are arranged. Corresponding

specifications are provided in §3.

2.1.3 Deployment

Definition of “Deployment”

Deployment corresponds to the implementation-specific mechanisms used to dispose of a Transceiver

Subsystem operating in compliance with the needs of a particular radio capability.

Beyond the Transceiver Subsystem, deployment concerns the complete implementation of the considered

radio capability. It thus covers the deployment of the different software components of the Waveform

Application, and the way they are connected together and with the Transceiver Subsystem itself.

Deployment is primarily introduced to depict the reconfiguration mechanisms of SDR equipment, which

triggers deployments in order to evolve from one radio configuration to another.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 20 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Deployment typically covers the following steps:

 Creation: the expected Waveform Application components are created and the necessary

support subsystems (incl. Transceiver Subsystem) are attached to the waveform implementation

 Connection: the connections between Waveform Application components and support

subsystems (incl. Transceiver Subsystem) are established

 Initial configuration: initial values of properties of Waveform Application components and

support subsystems (incl. Transceiver Subsystem) are set

Deployment can be based on a proprietary solution or can use a standard solution such as SCA Core

Frameworks.

The previous definition encompasses non-SDR equipments, for which radio capabilities are implemented

using a static deployment mechanism, which deploys once-for-all the associated software, but does not allow

reconfiguration.

Deployment Abstraction

The Facility assumes a total abstraction of deployment mechanisms, making no assumption on the

deployment solution, which is considered as strictly dependent on Transceiver Subsystem implementation

choices.

This means in general that SDR or non-SDR implementations are addressed by the Facility.

Furthermore, in the mainstream case of SDR implementations, this abstraction enables to undistinctly

address standard-compliant (e.g. SCA) or proprietary solutions.

2.2 - Requirements

This chapter explains the different nature of requirements expressed by the Facility.

2.2.1 Abstraction and Genericity

The following chapters detail generally applicable constraints that have to be met by all the requirements

expressed in the Facility.

Abstraction

Abstraction (of the Transceiver Subsystem implementation) signifies that requirements of the Facility shall

be totally independent of any implementation choice of the Transceiver Subsystem.

This applies as well for implementation requirements, meaning that beyond the implementation specific

assumptions made (e.g. choice of a particular programming language), no further assumptions dependent on

the internal implementation choices may be made.

Genericity

Genericity (in front of as many radio capabilities as possible) signifies that requirements of the Facility shall

be applicable to the widest possible extent of waveform capabilities.

No additional requirement should be added for the sake of supporting a particular waveform needs, unless

the existing requirements would prove not usable by the considered waveform capability.

2.2.2 Functional requirements

2.2.2.1 Requirements Analysis

Analysis requirements are the very core of the Facility specification.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 21 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

They are expressed without any explicit assumption concerning the implementation choices of the Waveform

Application and the Transceiver-Subsystem.

Analysis requirements are applicable to any step of engineering activities related to the Transceiver

Subsystem and associated Waveform Applications (specification, preliminary design, detailed design, coding,

testing, integration, …).

Analysis requirements are expressed in common technical English language, with eventual usage of non-

normative technical illustrations to support explanation of the concepts. The principle objective is to achieve

as general as possible requirements.

Analysis requirements appear within the core text of the Facility.

2.2.2.2 Modelling requirements

Modelling requirements provide normative UML modelling artifacts to be used in Facility-compliant UML

models. Requirements specifically identify the associated modelling artifacts.

Modelling requirements are expressed in UML 2.0. They appear:

 Within the core text of the Facility, distributed in complementary sections next to the analysis

requirements to which they correspond

 As a reference model (the Transceiver Facility Reference UML Model) attached to the

specification, provided as XMI source file

Some specific UML conventions applied to build the UML artifacts associated with modelling requirements

are explained in the rest of the document using specific sections denoted “Modelling Support”. Applicable

stereotypes are a typical example of what is captured in such chapters.

Structural stereotypes

Analysis notions and concepts are developed in Features and Common Concepts specifications that are

modelled in UML as classes. The following stereotypes are applicable for modelling classes associated with

Transceiver structural concepts:

 <<core feature>> applicable to classes modelling core features

 <<feature concept>> applicable to sub-classes aggregated by features

 <<common concept>> applicable to common concepts

2.2.3 Programming language requirements

Programming language requirements provide the normative programming language source code to be used

in Facility-compliant software developments (Waveform Application components and Transceiver

Subsystem).

Current specification addresses the following programming languages:

 C++

 VHDL

 IDL

Programming language requirements appear:

 Throughout the core document, next to the corresponding Analysis requirements, organized into

language-specific sections

 As language-specific annexes to the document core, regrouping all the source code associated to

the considered programming languages

 As reference source code, provided as source files for the different programming languages

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 22 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

2.2.3.1 C++ requirements

C++ requirements address the C++ language.

Conformance to C++ reference standard, ISO/IEC 14882:2003, is assumed.

2.2.3.2 VHDL requirements

The version of the VHDL language used in this specification is VHDL 93.

The non-exhaustive list of naming conventions is presented in the following table:

VHDL constructs Naming conventions

generic G_ prefix with name in uppercase and

underscore between words

constant C_ prefix with name in uppercase and

underscore between words

active low signal _n suffix

Table 4: VHDL naming conventions

The mapping rules between UML, IDL and VHDL constructs are described below:

UML constructs IDL constructs VHDL constructs

 boolean Std_logic

 short Std_logic_vector (15 downto 0)

 unsigned short Std_logic_vector (15 downto 0)

 long Std_logic_vector (31 downto 0)

 unsigned long Std_logic_vector (31 downto 0)

integer of nbBits Std_logic_vector (nbBits-1 downto 0)

Package module M { ... }; package P is ... end package P;

Class interface I { ... }; Entity E is ... end entity E;

Table 5: UML, IDL and VHDL constructs mapping

Each Transceiver Feature is described by a VHDL entity, which has to include clock and asynchronous

active low reset signals. Other optional signals can be added to the entity by the designer if needed, such as

clocks for the following Features or access to FPGA pins (e.g. for LEDs control).

There are three possible implementations of a feature property:

1. It can be implemented as a CONSTANT if its value can not be modified once synthesized

(compilation time). The CONSTANT can be defined:

a. inside a Transceiver PACKAGE if it is desirable to make it accessible for every Feature, or

b. inside a feature specific PACKAGE if it is only needed by this feature,

c. a constant may be used to configure VHDL generics on the feature entity interface during

component instantiation.

2. It can be implemented as a register if its value may be modified during run time. The register can be

defined inside of a clocked process inside the architecture of the Feature.

3. It can be data/control signals

a. which are declared in the corresponding Feature entity, and

b. whose protocol is defined inside the Feature architecture.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 23 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Generally speaking, the transfer of information from and to the Transceiver features is based on two phases

1. Up stream or request flow consisting of

a. Useful data,

b. Control flow signals in the data direction with a mandatory ‘write’ signal, which means that

a valid data is ready to be sent,

c. Other optional signals to include user-defined extensions

2. Down stream or response flow consisting of

a. Control flow signals in the opposite data direction with a mandatory ‘ready’ signal, which

means that the next valid data to be sent will be accepted

b. Other optional signals to include user-defined extensions

2.2.3.3 IDL requirements

To be completed.

2.2.4 Implementation architecture requirements

Implementation architecture requirements provide normative complementary requirements which are

applicable in case the Waveform Application software and the Transceiver Subsystem are developed in

compliance with particular architecture assumptions.

The only case considered in the current specification is SCA compliancy. Others such as Native Simulation

are considered for future evolutions.

2.2.4.1 SCA

To be completed.

2.2.5 Requirements Identification and Numbering

This section summarizes the conventions used within the document for requirements specification.

Requirements identification

The requirements are identified by a unique identifier, composed of the following field:

 Requirement family: General  “GEN_”, Feature  “FEAT_”, Common Concept  “CC_”

 Mnemonic: “<mnemonic>_”

 Requirement number

A mnemonic is a short capital letters string of characters attached to a certain chapter/section of the

specification. The identifiers of the requirements attached to the chapter/section will be using the

chapter/section mnemonic.

The requirement numbering is a three decimal digits number.

Requirement tags

The requirements are tagged by a few words capturing the nature of each requirement. These tags are

intended to facilitate specification ease-of-read and are not normative concepts.

Delimitation of requirements

The beginning of a requirements expression is delimited by an introductive line, containing the identifier of

the requirements and its tag, in conformance with the following arrangement convention:

<IDENTIFIER> & <SPACE> & “[“ & <5 x SPACE> <TAG>

The format of the entry delimitation is in bold red text.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 24 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Example: FEAT_TXCHAN_010 [Example Req.

The end of a requirement expression is delimited by a conclusive line, containing the identifier of the

requirement, formatted as:

“] END_”& <IDENTIFIER>

The format of the end delimitation is in bold green text.

Example:] END_FEAT_TXCHAN_010.

Verification of requirements

Description of the verification principles for each identified requirement is not in the scope of the current

specification.

2.3 - Detailed specification conventions

Following chapters explain, for different sorts of concepts introduced within the specification, general

specification conventions applicable to the concerned concepts.

2.3.1 Classification of Transceiver Characteristics

2.3.1.1 Introduction

The Facility introduces many characteristics associated with the Transceiver Subsystem. “Characteristic”

refers to an information set, simple or structured, quantified or qualitative, which corresponds to a particular

notion of the Transceiver Subsystem.

Characteristics are used during radio capability engineering to define how the Transceiver Subsystem shall

operate in conjunction with the Waveform Application in order to implement the radio capability of interest.

The notions described thanks to characteristics can indistinctively be constant or transient.

Most characteristics of the Transceiver Subsystem are formally defined by the Facility, through specific

requirements. The purpose of this section is to define the classification used by the Facility in order to

differentiate those characteristics.

The categories of Notions and Constraints are the first level of differentiation used for discrimination of

characteristics.

This Facility defines as Notions characteristics of the Transceiver Subsystem which are observable. This

criteria (the possibility to be observed or not) is the fundamental frontier which distinguishes the concept of

Notion from the concept of Constraint.

“Observable” indicates that by using inspection, analysis and/or measurement means, values of the

considered characteristics of a specific implementation of a Transceiver Subsystem can be inferred. This

surely includes externally observable characteristics specified in implementation independent manner, but as

well, implementation specific aspects of the considered Transceiver Subsystem.

The Constraints are defined as non-observable notions, which are typically the design constraints captured in

the requirement specifications, which are satisfied by a given Transceiver Subsystem implementation, but

which are not explicitly defined by measurement. For instance all boundary values of Notions are typical of

constraints, which the observed notion is complying with, but being by definition impossible to measure by

themselves.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 25 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

2.3.1.2 Notions

Notions are Transceiver Subsystem observable characteristics, sorted by the Facility among three sub-

categories:

 Internal notions

 Implicit notions

 Explicit notions

Internal Notions

Internal Notions are Notions answering to the following criterion:

 Implementation dependency: one Internal Notion of a Transceiver Subsystem is dependent on

some implementation assumptions of the Transceiver Subsystem, no matter how minor such

assumptions may be

As a consequence, since the Facility is providing abstraction from the implementation choices, no

information relative to a particular value of an internal notion may be considered at any stage of the radio

capability engineering, from the design phases to the run-time software exchanges between the Waveform

Application and the Transceiver Subsystem.

Internal Notions are nevertheless essential to consider for Waveform Application design, and boundary

Constraints are handled in Waveform Engineering to make appropriate design. Internal Notions are typically

real-time or signal processing characteristics.

Examples

Up-conversion Latency is an “Internal Notion” which defines the time baseband samples need to travel across

the Up-conversion chain prior to becoming the radiated RF signal. This value is bounded by the Engineering

constraint “Max Up-conversion Latency”and its actual value depends on the particular Transceiver

implementation.

ConsumptionStartTime is an “Internal Notion” derived from TransmitStartTime as the instant at which

baseband samples should be consumed by the “Up-conversion chain” in order for the RF Transmission signal

to be available at the Transceiver output at instant TransmitStartTime.

Implicit Notions

Implicit Notions answer to the following criteria:

 Implementation independency: one Implicit Notion of a Transceiver Subsystem is

independent from any implementation assumptions of the Transceiver Subsystem, no matter

how minor such assumptions may be

 Not exchanged: no information relative to an Implicit Notion is exchanged at run-time between

the Waveform Application and the Transceiver Subsystem, through programming interfaces or

usage of Configuration

Implicit Notions are thus completely transparent from the Waveform Application point of view, but are

essential to be given a well defined value during Waveform Engineering, which will both influence the

implementation of the Waveform Application and the Transceiver Subsystem.

Such notions generally remain constant once deployment is completed. The Deployment is in charge to bring

the Transceiver Subsystem to support the specified values, as needed by the considered radio capability. The

mechanism of presets enables to switch during run-time among a predefined constant set of implicit notions.

Examples

The SamplingFrequency is an example of Implicit Notion. Its frequency in hertz is set once during Transceiver

deployment. No waveform is supposed to change it. It remains constant except if a reconfiguration occurs.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 26 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Explicit Notions

Explicit Notions answer to the following criteria:

 Implementation independency (as for Implicit Notions): one Explicit Notion of a Transceiver

Subsystem is independent from any implementation assumptions of the Transceiver Subsystem,

no matter how minor such assumption may be

 Exchanged: information relative to an Explicit Notion can be exchanged at run-time between

the Waveform Application and the Transceiver Subsystem, through programming interfaces or

usage of Configuration

Explicit Notions encompass both static concepts, changed only by means of the configuration functionalities

of the waveform application, and very transient concepts characterizing accurate real-time behaviour.

Explicit Notions belong to at least one of the two following sub-categories:

 Configurable

 Programmable

The Facility explicitly identifies which explicit notions are only Configurable, only Programmable, or

potentially accessed with both possibilities.

Explicit Notions potentially accessed by both possibilities are in principle accessed using only one of the two

possibilities once the engineering choices of the associated radio capability are done.

Configurable notions are accessed by the Configuration part of the Waveform Application (if existing for

the considered radio capability), which can read or write associated values through usage of the associated

Property. The Facility only identifies the nature of the Property, leaving to implementation choices the way

it is implemented by the Transceiver Subsystem and handled by Configuration.

Configurable notions are modified by external agents of the radio capability, typically the end user or a

remote configuration manager. The associated configuration mechanism is not strictly bounded from a real-

time perspective, what matters is to be reactive in front of the configuration agent needs.

Programmable notions are accessed by the Waveform Functional Application through usage of particular

operations of the Programming Interfaces specified by the Facility. Specifically related arguments of the

Programming Interfaces are introduced by the Facility.

Programmable notions are typically very transient values automatically accessed in run-time by the

Waveform Application software, thus generally answering to specific real-time constaints.

Example

The CarrierFrequency is an Explicit Notion as far as it has a dedicated argument in some waveform

programming interface operations i.e CreateTransmitChannel. It may be a static property whose value is set

only-once during configuration as in fixed frequencies radios (no need to use the dedicated argument in this

case) or a very transient property varying in run-time, typically frequency hopping radios (argument will be

use to convey information during run-time in this case).

2.3.1.3 Constraints

Per the definition provided beforehand, constraints are non observable characteristics of the Transceiver

Subsystem.

Constraints are assigned values during Waveform Engineering, and implementation phases ensure

compliancy with the assigned values. They lead to primary requirements within this specification.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 27 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Characteristics inferred from the previous definition are:

 Implementation independency

 Not exchanged

Example

Up-Conversion Latency which describes the elapsed time from the instant baseband samples arrive to the Up-

Conversion chain and the instant an RF signal is available at transceiver output is an Internal Notion. This time

is dependent on implementation (like any Internal Notion).“MaxUp-Conversion Latency” is the Constraint

which limits the value the Notion is allowed to take.

2.3.1.4 Summary table

The following table summarizes the essential criteria answered or not by the categories and sub-categories

indentified in the previous chapters:

Category Sub-Category Observable
Implementation

Dependency

Waveform/Transceiver

exchange

Notion

Internal Yes Yes No

Implicit Yes No No

Explicit Yes No Yes

Constraint N/A No No No

Table 6: Differences between Characteristics categories

2.3.1.5 Modelling support

The following stereotypes are defined for modelling support:

 Stereotype <<Constraint>> for constraints

 Stereotype <<Explicit>> for explicit notions

 Stereotype <<Implicit>> for implicit notions

2.3.2 Operations and Programming Interfaces

All information exchanges between the implementations of a Transceiver Subsystem and a Waveform

Application are realized thanks to operations. Operations are regrouped into Programming Interfaces.

An operation of the Transceiver Subsystem facility characterizes one possible information exchange

mechanism between the Waveform Application and the Transceiver Subsystem.

Operations and Programming Interfaces are primarily defined at analysis level in a strictly implementation-

independent approach. The requirements specific to implementation programming languages are then

provided as supplements, as detailed in chapter “Programming Languages Requirements”.

This section strictly focuses on the principles applied throughout the Facility for analysis level specification

of Operations and Programming Interfaces.

2.3.2.1 Static assumptions

Defining operations

Defining operations consists of providing a complete set of information, as detailed hereinafter.

Each operation is given a specific operation name.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 28 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

An operation enables information exchanges in a specific direction: from Waveform Application to

Transceiver Subsystem, or vice-versa.

Exchanges based on a given operation happen through circulation of elementary messages, each message

carrying a structured set of information characterized by the list of arguments of the operation.

The typing of operation arguments is compliant with arguments typing conventions detailed in a later chapter

of the specification.

The originator of the information exchanged through an operation has a use relationship with the operation,

while the addressee has a realize relationship with the operation.

Bi-directional Programming Interfaces

The Facility considers bi-directional interactions, which means that the Transceiver Subsystem is by

principle subject to invoke operations realised by the Waveform Application, additionally to the intuitive case

for which the Waveform Application invokes operations realized by the Transceiver Subsystem.

This approach, as suprising as it may appear at first sight, has been identified as the only solution that can

characterize the waveform application remaining in a truly implementation abstract mode. For instance, a

callback mechanism for reception is specifically software-based, and is at run-time equivalent to a call to a

registered method. The Facility is simply specifying the name and prototype of the call back, the registration

being part of life cyle designs which are not at analysis level.

Furthermore, this is compliant with the component-based software design paradigm which predominates for

standard-based SDR Waveform Application designs.

Example of Realized interfaces

The flagship example of Used interface if the operation pushBBSamplesRx(), which is enabling a Receive

Channel to notify the Waveform Application of the availability of a new packet of baseband samples.

This means that a waveform analysis based in the specification shall consider the Transceiver as the caller of

this operation, which corresponds to the natural flow of information. This is nevertheless sufficiently disruptive

in front of most frequent design approaches where the Transceiver Subsystem is considered as a “slave”

system, with the Waveform Application performing all the calls towards the Transceiver, with in particular

usage for reception of getSamples() or callbacks registration approaches.

Simplifying assumptions

A certain number of simplifying assumptions are used for specification of Operations. Those simplifications

focus on what is strictly necessary as far as engineering related to Transceiver Subsystem is concerned, in

order to facilitate as efficient as possible implementations of the Facility concepts.

Those simplifying assumptions are:

 No return value

 No exceptions

 Types subset

No return value: the operations are not be expected by the originator to bring return values after

completion.

No exceptions: the operations are not expected to generate any sort of software exceptions.

Types subset: the types applicable to operation arguments are limited to a certain sub-set in front of the

types set classically supported in software engineering. Refer to the chapter on typing conventions for

details.

Operations arguments naming convention

The arguments of the interface operations are all preceded by the keyword requested in order to make clear

distinction against the characteristics (explicit notions) they refer to.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 29 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Specification approach summary

At analysis level, operations are statically specified providing name, direction, and list of typed arguments.

The dynamics are specified through identification of what orginator and addressee shall do before, during

and after operation invocation.

2.3.2.2 Dynamic assumptions

Operations invocation

Invocation of an operation occurs when originator of the operation triggers the information exchange. In

doing so the originator provides the values to be carried by the generated message for each of the operations

arguments. Some arguments can remain undefined.

Invocation of an operation occurs at the certain invocation time.

Message handling carries the message to the addressee, which is triggered to perform operation execution,

which corresponds to the exploitation of the message.

Until the message handling is over, the originator is on hold. The instant when message handling is over is

defined as the completion time.

Interaction models

Different strategies can be associated with message handling, and are denoted interaction models.

Interaction models are primarily differentiated by considering the independence of the originator and

addressee of the message.

The originator and addressee can be executed on the same thread of control, in which case invocation

handling triggers the addressee for operation execution, while the originator is maintained on hold, waits for

the operation execution to be over, and only then releases the originator.

The originator and addressee can be executed on different threads of control (i.e. independently), in which

case invocation handling triggers the addressee for operation execution, but does not wait for operation

execution to start before releasing the originator.

2.3.2.3 Real-time Constraints

Maximum Invocation Duration

Max Invocation Duration is a constraint which can be attached to each interface specified in the Facility. It

characterizes the amount of time taken within the caller execution time when an operation is invoked.

Each occurrence of an invocation by the Caller of the operation happens at an instant denoted Invocation

Time. The Caller is then on hold until the operation invocation mechanism returns, giving back the hand to

let Caller proceed. The instant when the call returns is denoted Return Time. The time elapsed between

Invocation Time and Return Time is represented by the Internal Notion Invocation Duration.

Each occurrence of an operation call can have a different Invocation Duration. Whatever the occurrence of

an operation invocation, the constraint Max Invocation Duration specifies the maximum value possibly taken

by Invocation Duration.

A value for this constraint is defined when accurate real-time engineering is necessary for the considered

waveform capability.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 30 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

A constraint Max Invocation Duration, of domain type Latency, is specified by the Facility for each defined

operation, as depicted in following figure:

theOperation

Caller

theOperation

Callee

theOperation(…)

time

Invocation

Time

Invocation

Duration

Timely return

range

Too late

return

Return

Deadline
Max

Invocation

Duration

Invocation: caller on hold until

return (loses focus)

Return: caller goes on

(recovers focus)

Callee side assumptions are not

impacting definition of Max Invocation

Duration

Return

Time

Figure 8: Notion of Max Invocation Duration

2.3.2.4 Modelling support

UML interfaces are used to capture the programming interfaces.

UML operations are used to capture the analysis operations contained in programming interfaces.

2.3.3 Types setting conventions

This chapter gives the dispositions applicable, throughout the specification, for definition of (i) Notions and

Constraints types and (ii) Arguments of programming interfaces operations.

2.3.3.1 Analysis types

Base types

Allowed basic types used within the spec are::

Base Type Correspondance

Boolean True / False

Short Signed integer, 16 bits min

Long Signed integer, 32 bits min

UShort Unsigned integer, 16 bits min

Ulong Unsigned integer, 32 bits min

Table 7: Base types

The specified set of Base types has been taken as a sub-set of CORBA types.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 31 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Notice that those types represent an arbitrary design choice. The table above shows a minimum size for the

data types. These sizes are common to most of the embedded processors currently implemented in radio

equipement but can vary. The minimum has been selected in order to ensure functionality. Nevertheless,

depending upon the hardware Short, Long, Ushort and Ulong might be of a larger size and more accurate.

Composed types

The Composed types possibly used within the specification are limited to the following possibilities:

 Tables of base types

 Structures of base types

Domain types

Domain types are associated with domain-specific types, applicable for Notions and Constraints. They are

generally attached to physical quantities, and specify the base unit associated.

Types setting makes the association between a domain type and a base type. This shall be used when a

numerical representation of a Notion or Constraint is necessary, or to use an operation attached to the

domain type.

A default setting is systematically defined for each domain type. Supplementary settings may be defined.

Unless otherwise specified, any implementation of a given domain type shall be based on the default setting.

The domain types are defined within Common Concepts, with the exception of Timing Types, presented later

in this chapter.

Types settings for Notions and Constraints

Notions and Constraints of the Transceiver are generally first defined using an abstract type, representing the

physical value attached to the concept. Then, for the implemented ones, a data type is associated to the

concept type.

Types settings for Arguments

Arguments of programming interfaces operation require a functional definition subject to be translated into

programming language data type, since Waveform Application software will interact with the Transceiver

Subsystem according to information carried within the arguments.

2.3.3.2 Implementation specific types

For each considered implementation language, the association of base type definitions to types available

within the implementation language is defined.

2.3.4 States and Transitions

All transitions identified between states are instantaneous.

They are given a specific formal name.

A certain occurrence time can be attached to each transition. Occurrence times of a transition are identified

by the formal identifier of the transition it relates to, with “Time” appended. A specific occurrence is

identified by its count index.

2.3.5 Events Handling

This chapter exposes the concepts used in the Facility to specify requirements involving events handling.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 32 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

2.3.5.1 Events Timely Control

This chapter exposes how the Facility introduces timely control operations, through which the Waveform

Application can require internal events of the Transceiver Subsystem to occur at explicitly specified instants.

The timely control operation is invoked at Invocation Time, the Caller being the Waveform Application, the

Callee being the Transceiver Subsystem.

Target Event denotes the event attached to such a timely control operation. Target Event Time denotes the

effective occurrence time of Target Event, which shall be close to requestedEventTime.

The following concepts are attached to characterization of timely control operations:

 Argument requestedEventTime,

 Constraint Event Accuracy,

 Constraint Min Anticipation.

The argument requestedEventTime, of generic domain type Time, is used by timely control operations to

specify at which time Target Event shall happen. Put simply, it is the time at which the Transceiver must

fulfill an operation, typically a transmission start/stop or a reception start/stop. Refer to $4.2 Time handling

Domain Types for generic domain type Time description.

The constraint Event Accuracy, of domain type Latency, is specified by the Facility to capture the time

accuracy to be fulfilled by Target Event Time, which shall belong to the time interval defined by

requestedEventTime plus or minus Event Accuracy value.

The constraint Min Anticipation, of domain type Latency, characterizes the anticipation needed for

Invocation Time of timely control operations in front of the specified Target Event Time. Invocation Time

shall occur before requestedEventTime minus Min Anticipation.

The following figure illustrates the concepts introduced:

Waveform

Application

Transceiver

Sub-system

controlOperation(…, requestedEventTime)

time

Target Event

Time

Invocation

Time

MinAnticipation

Anticipation

 [requestedEventTime  EventAccuracy]

Timely

invocation

Too late

invocation

Invocation

Return

Target Event

Target Event is generated by

Transceiver Sub-system in a

implementation-dependent fashion.

Figure 9: Expression of Timely Events

2.3.5.2 Referencing Event Sources

This chapter exposes how reference event sources are identified.

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 33 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Referencing such event sources is a possibility for timely control operations to request event times, as

exposed in common concepts.

Principle

Event sources correspond to events of the Transceiver Subsystem which are defined by the specification and

thus useable for the engineering of Waveform Capabilities.

The Waveform Application can reference, in control messages, the Event Sources of the Transceiver

Subsystem. It may as well reference Event Sources belonging to other radio Subsystems of the Platform

Support attached to the Waveform Application.

Platform Support signifies the complete set of Radio Subsystems with which the Waveform Application is

interacting in order to implement a certain Waveform Capability. The Transceiver Subsystem is one Radio

Subsystem of the Platform Support.

Examples of Event Sources

RF Transmit Start and RF Transmit Stop are event sources attached to a Transmit Channel, while RF

Receive Start and RF Receive Stop are attached to a Receive Channel.

Event Sources Public Identifiers

A unique Public Identifier is assigned to each Event Source of the Platform Support. This assignment is

specific to each Waveform Capability, and can be different from one Waveform Cabability to another. The

deployment of the Platform Support is in charge to assign the desired Public Identifiers values.

The Public Identifier values are used by arguments of the control messages sent by the Waveform

Application to the Transceiver Subsystem. This enables the Waveform Application to specify accurate real-

time behaviors of the Transceiver Subsystem using any available Event Source of the Platform Support. The

usable Event Sources may therefore not be limited to those of the Transceiver Subsystem.

The following figure summarizes the principle of Event Sources Public Identifiers:

Transceiver

Sub-system

Other Radio

Sub-system

(e.g. Time Machine)
PublicId = 1

Waveform

Application

Event sources

A B

A

! !

PublicId = 3

PublicId = 2

!

!

Other Radio

Sub-system

No event source

Platform Support

Control Messages
control

control

respected by

respected by

respected by known by

known by

known by

referenced in

The Public Id assignment is specific to each

Waveform Capability

Figure 10: Event Sources Public Identifiers

SDRF-08-S-0008-V1.0.0 Specification Assumptions

 Page 34 of 130 Specification Assumptions

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Event Occurences

Event Sources generate Event Occurrences.

Each Event Source counts the generated Event Occurences using an unsigned 32 bit value. This enables

count values ranging from 1 to 4,294,967,295. the value 0 remaining unused.

Event Occurences count values can be used as arguments in control messages sent by the Waveform

Application to specify when particular events shall happen in the Transceiver Subsystem.

2.3.5.3 Last and Next Events

The notion of last and next event of a certain event source is defined relative to the instant when the control

operation referring to such events is invoked. Invocation Time and Event Time denote the time of

corresponding events.

To enable unambiguous identification of a previous event, the Invocation Time referencing the event shall

happen after a margin of time, denoted Real-time Accuracy. Otherwise, guaranteeing that existence of the

previous event is taken into account for correct realisation of the control operation is not possible.

Similarly, unambiguous identification of the next event requires Invocation Time to happen with at least

Real-time Accuracy before the target Event Time. A constraint of category Min Event Proximity, of domain

type Latency, is used to capture the time margin needed between the Invocation Time of any invoked

operation and a previous (resp. next) Target Event, where the Invocation Time shall happen at least Min

Event Proximity before (resp. after) Event Time.

The formal requirements using Min Event Proximity are specified by the Facility for each concerned timely

control operation for a given referenced event source.

The real-time engineering of the Waveform Application shall ensure that the Invocation Time of the timely

control operation never falls in the ambiguity period characterized by Min Event Proximity.

SDRF-08-S-0008-V1.0.0 Features Specification

 Page 35 of 130 Features Specification

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3 - Features Specification

3.1 - Transceiver composition

The Transceiver Subsystem can be composed of the following Core Features, as explained in chapter

Internal Structure:

 Transmit Channel,

 Receive Channel.

The following implicit notions directly attached to the Transceiver Subsystem are characterizing what is

specifically expected in terms of channels composition.

As the Transceiver Subsystem considered by the Facility is attached to a specific radio capability, in total

abstraction of the implementation assumption, the aspects covering multi-channel Transceiver Subsystems

are not addressed.

FEAT_GEN__010 [Used “Transmit Channel”

The implicit notion UsedTransmitChannel, of type Boolean, shall be used to specify if the considered radio

capability is requesting usage of a Transmit Channel core feature.

Value True in case a Transmit Channel is needed, False otherwise, may not be left undefined.

] END_FEAT_GEN_010

FEAT_GEN _020 [Used “Receive Channel”

The implicit notion UsedReceiveChannel, of type Boolean, shall be used to specify if the considered radio

capability is requesting usage of a Receive Channel core feature.

Value True in the case where a Transmit Channel is needed, False otherwise, may not be left undefined.

] END_FEAT_GEN_020

FEAT_GEN_ 030 [Half-duplex Transceiver

The implicit notion HalfDuplexTransceiver, of type Boolean, shall be used to specify if the considered radio

capability is requesting usage of a half-duplex Transceiver.

Value True in the case where the Transceiver is half-duplex, False otherwise (full-duplex). Can remain

undefined only if a simplex Transceiver is required (i.e. UsedReceiveChannel or UsedTransmitChannel set

to False).

] END_FEAT_GEN_030

Note: It is worth noting that the Transmit Channel and Receive Channel are the elementary features of any

Transceiver hence their classification as core features. Half-Duplex is an optional feature and it is not

elaborated in the current version of the Facility. Other features such as MIMO capability might be also

considered as optional and be introduced in future versions of the document. Distinguishing between Core

and Optional featues, as mentioned in previous chapters, is intended for specification extensibility.

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 36 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.2 - Core Feature “Transmit Channel”

3.2.1 Principle

For radio transmission, a Transmit Channel of a Transceiver Subsystem is up-converting bursts of input

Baseband Signal into bursts of RF Signal. A Transmit Cycle denotes the phase corresponding to the up-

conversion of a particular signal burst.

A Transmit Channel implementation is namely composed of the following specific sub-items:

 A Baseband FIFO

 An Up-conversion Chain

The Up-conversion Chain is the signal processing chain which performs the up-conversion and most

probably the upsampling and filtering of the burst of Baseband Signal contained in Baseband FIFO,

outputting it as a burst of RF Signal.

The programming interface TransmitDataPush enables the samples packets to be pushed by the Waveform

Application towards the Transmit Channel. The Transmit Channel takes in charge the packets pushed by

Waveform Application, stores them into Baseband FIFO, where Up-conversion Chain consumes them in

real-time to upconvert them and generate the RF Signal. The samples need to be available on time in

Baseband FIFO for the up-conversion process to start, and need to be continuously stored in Baseband FIFO

in a timely manner that prevents signal interruption occurrence.

The programming interface TransmitControl enables the Waveform Application to manage when and how

Transmit Cycles shall occur. For each Transmit Cycle, this control is based on specification of when the

concerned burst shall start and stop, and through characterization of the applicable Tuning Profile, which

characterizes the exact signal processing transformation to be applied to Baseband Signal by Up-conversion

Chain on the concerned burst in order to generate the RF Signal.

The following figure summarizes the previous concepts:

AntennaWaveform

Application

Transmit Channel

Packets

handling

Up-conversion

Chain

Baseband FIFO

Production Consumption

notifies

TransmitDataPush

Burst of Baseband Signal - sBB[n] Burst of RF Signal - sRF(t)

Pushed packet

RF Output

TransmitControl

controls

prepares

takes in

charge

EndStart

part of

propagates

towards

EndStart

controlsTransmit cycles

control

up-converted into
carries

Figure 11: Overview of a Transmit Channel

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 37 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.2.2 Overview

3.2.2.1 Programming interfaces overview

The following table provides an overview of the programming interface TransmitControl:

Signature summary (pseudo-code) Used by Realized by Description

createTransmitCycleProfile(

 Time requestedTransmitStartTime,

 Time requestedTransmitStopTime,

 UShort requestedPresetId,

 Frequency requestedCarrierFrequency,

 AnaloguePower requestedNominalRFPower)

Waveform

Application

Transceiver

Subsystem

Creation of a Transmit Cycle

Profile.

configureTransmitCycle(

 Ulong targetCycleId,

 Time requestedTransmitStartTime,

 Time requestedTransmitStopTime,

 Frequency requestedCarrierFrequency,

 AnaloguePower requestedNominalRFPower)

Waveform

Application

Transceiver

Subsystem

Configuration of an existing

Transmit Cycle Profile.

setTransmitStopTime(

 Ulong targetCycleId,

 Time requestedTransmitStopTime)

Waveform

Application

Transceiver

Subsystem

Specification of the end time of a

Transmit Cycle.

Table 8: Overview of programming interface TransmitControl

The following table provides an overview of the programming interface TransmitDataPush:

Signature summary (pseudo-code) Used by Realized by Description

pushBBSamplesTx(

 BBPacket thePushedPacket,

 Boolean endOfBurst)

Waveform

Application

Transceiver

Subsystem

Notifies availability of a baseband

samples packet.

Table 9: Overview of programming interface TransmitDataPush

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 38 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.2.2.2 Characteristics overview

Explicit Notions

Explicit Notions defined in §2.3 are observable, implementation independent and exchanged characteristics

of the Transceiver Subsystem. The following table summarizes the Explicit Notions related to Transmit

Channel:

Explicit Notion

Name

Defined in Nature Exchange

Mechanism

Associated Argument Associated

Property

TransmitCycle Core Feature Logical Programmable targetCycleId n.a.

TransmitStartTime Core Feature Real-Time Programmable requestedTransmitStartTime n.a.

TransmitStopTime Core Feature Real-Time Programmable requestedTransmitStopTime n.a.

TuningPreset Core Feature Logical Programmable requestedPresetId n.a.

CarrierFrequency Common

Concept

Signal

Processing

Programmable &

Configurable

requestedCarrierFrequency CarrierFrequency

NominalRFPower Common

Concept

Signal

Processing

Programmable &

Configurable

requestedNominalRFPower NominalRFPower

Table 10: Explicit Notions related to Transmit Channel

Implicit Notions

Implicit Notions defined in §2.3 are observable, implementation independent and not exchanged

characteristics of the Transceiver Subsystem. The following table summarizes the Implicit Notions related to

Transmit Channel:

Implicit Notion Name Defined in Nature

BasebandFIFOSize Core

Feature

Logical

MaxPushedPacketSize Core

Feature

Logical

OverflowMitigation Core

Feature

Logical

TuningStartThreshold Core

Feature

Logical

BasebandSignal:…

 BasebandSamplingFrequency

 BasebandCodingBits

 BasebandNominalPower

Common

Concept

Signal

Processing

Table 11: Implicit Notions related to Transmit Channel

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 39 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Internal Notions

Internal Notions defined in §2.3 are observable and implementation dependent characteristics of the

Transceiver Subsystem. The following table summarizes the Internal Notions related to Transmit Channel:

Name Defined in Nature Transceiver Design Formulas

TuningDuration Core

Feature

Real-time < MaxTuningDuration

TuningStartTime Core

Feature

Real-time = ConsumptionStartTime – TuningDuration

  [ConsumptionStartTime - MaxTuningDuration;

ConsumptionStartTime]

UpconversionLatency Core

Feature

Real-time < MaxUpConversionLatency

ConsumptionStartTime Core

Feature

Real-time = TransmitStartTime - UpConversionLatency

  [TransmitStartTime - MaxUpConversionLatency;
TransmitStartTime]

ConsumptionStopTime Core

Feature

Real-time = TransmitStopTime – UpConversionLatency

  [TransmitStopTime - MaxUpConversionLatency;
TransmitStopTime]

ReactivationTime Core

Feature

Real-Time = TransmitStartTime(n) – TransmitStopTime(n-1)

 > MinReactivationTime

TxChannelTransferFunction Common

Concept

Signal

Processing
 Fits in mask defined by ChannelMask

Table 12: Internal Notions related to Transmit Channel

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 40 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Constraints

Constraints defined in §2.3 are non-observable characteristics which constrain the Transceiver Subsystem

and/or Waveform Application implementation. The following table summarizes the Constraints related to

Transmit Channel:

Name of the Constraint Nature

MaxTuningDuration Real-time

MaxUpconversionLatency Real-time

MinTransmitStartProximity Real-time

MinTransmitStartAnticipation Real-time

TransmitTimeProfileAccuracy Real-time

MinTransmitStopAnticipation Real-time

MinTransmitStartProximity Real-time

MaxTransmitDataPushInvocationDuration Real-time

MinPacketStorageAnticipation Real-time

MinReactivationTime Real-time

ChannelMask:… Signal

Processing

SpectrumMask:… Signal

Processing

GroupDelayMask:… Signal

Processing

MaxCycleId Logical

MaxTxCycleProfiles Logical

Table 13: Constraints related to Transmit Channel

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 41 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.2.3 Analysis Requirements

The mnemonic used for identification of requirements of Transmit Channel feature is: “TX_CHAN”.

3.2.3.1 Transmit Channel

FEAT_TX_CHAN_ANA_010 [Definition of a “Transmit Channel”

The core feature Transmit Channel shall be used to refer to the capabilities provided by the Transceiver

Subsystem component that performs up-conversion of a succession of input Baseband Signal bursts into

output analogue RF Signal bursts.

] END_FEAT_TX_CHAN_ANA_010

FEAT_TX_CHAN_ANA_020 [Creation of a “Transmit Channel”

The deployment of a Transmit Channel and all its constituents shall be undertaken by Transceiver Subsystem

deployment, following implementation specific choices.

The state of a Transmit Channel just after its creation and any of its constituent shall be state Deployed.

The initialization of the Transmit Channel shall be conducted by deployment.

] END_FEAT_TX_CHAN_ANA_020

The steps setting one Up-conversion Chain into state Deployed are realized by (re)configuration mechanisms

proper to the Transceiver Subsystem implementation, which are out of the scope of this specification.

FEAT_TX_CHAN_ANA_030 [Composition of a “Transmit Channel”

The following concepts shall be integrated as constituents of a given Transmit Channel:

 Concept Up-conversion Chain,

 Concept Transmit Baseband Signal FIFO.

] END_FEAT_TX_CHAN_ANA_030

They are defined in their respective definition requirements as specified in the following paragraphs.

3.2.3.2 Transmit Baseband Signal

The Transmit Baseband Signal is the useful signal provided by the Waveform Application to the Transmit

Channel in order to be transmitted over the air.

Terms and definitions used in this chapter are based on those presented within Common Concepts Baseband

Interface 4.2.4 section.

FEAT_TX_CHAN_ANA_040 [Definition of “Transmit Baseband Signal”

The concept Transmit Baseband Signal shall describe the useful baseband signal sent by the Waveform

Application to a Transmit Channel for up-conversion.

] END_FEAT_TX_CHAN_ANA_040

Useful baseband signal corresponds to the signal useful to be transmitted on the antenna, and received by the

receiver.

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 42 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Useful baseband signal can include the following possible information:

 Power rising pattern

 Power falling pattern

 ALC and/or AGC patterns

 Data and eventually WF specifics pattern (sequences for synchronization)

FEAT_TX_CHAN_ANA_050 [Implicit Notions of “Transmit Baseband Signal”

A Transmit Baseband Signal shall be characterized using the following notions, defined by common concept

Baseband Signal.

 Implicit Notion Baseband Coding Bits

 Implicit NotionBaseband Nominal Power

] END_FEAT_TX_CHAN_ANA_050

FEAT_TX_CHAN_ANA_060 [Transmit Baseband Signal configuration

The properties of Transmit Baseband Signal shall be set to values appropriate for the considered waveform

during Transmit Channel deployment.

] END_FEAT_TX_CHAN_ANA_060

3.2.3.3 Transmit Baseband FIFO

The Transmit Baseband FIFO contains baseband signal samples provided by the Waveform Application in

order for them to be consumed by the Up-conversion Chain.

Consumption of baseband samples in the Transmit Baseband FIFO is realized in a packet mode.

The FIFO monitors samples availability in order to raise error notification in case the samples needed by the

Up-conversion chain would not be available (underflow situation).

FEAT_TX_CHAN_ANA_070 [Definition of “Transmit Baseband FIFO”

The terminology Transmit Baseband FIFO shall be associated with the part of the sub-part of the Transmit

Channel where the baseband samples of the bursts pushed by the Waveform Application are stored, waiting

to be consumed by the Up-conversion Chain.

] END_FEAT_TX_CHAN_ANA_070

FEAT_TX_CHAN_ANA_080 [Implicit Notion “BasebandFIFOSize”

The Implicit Notion BasebandFIFOSize shall be the Ulong value which captures the size of Transmit

Baseband FIFO, capturing the maximum number of baseband samples possibly stored inside the Baseband

FIFO.

] END_FEAT_TX_CHAN_ANA_080

FEAT_TX_CHAN_ANA_090 [Implicit Notion “TuningStartThreshold”

The Implicit Notion TuningStartThreshold shall be the Ulong value which defines the threshold applicable

to the number of samples received in the Transmit Baseband FIFO within a transmitted baseband samples

burst before Tuning transition is activated.

] END_FEAT_TX_CHAN_ANA_090

Remark: This active phase triggering mode is useful for waveforms having no specific requirement

concerning the instant when RFTransmitStart shall happen.

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 43 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_100 [Default value of “TuningStartThreshold”

The Implicit Notion TuningStartThreshold shall have a default value of 0, meaning the Waveform does not

use this threshold to set up when RFTransmitStart shall happen.

] END_FEAT_TX_CHAN_ANA_100

Keeping the default value means that Tuning activity starts immediately after first sample has been received,

which means further samples must arrive sufficiently fast from the Waveform Application.

FEAT_TX_CHAN_ANA_110 [Configuration of “Transmit Baseband FIFO”

The properties of Transmit Baseband FIFO shall be set to the values required by the considered Waveform

Application during the Transmit Channel deployment.

] END_FEAT_TX_CHAN_ANA_110

Availability deadline and Underflow situations

Any sample of the burst shall be present within baseband FIFO when the up-conversion needs to consume

them. An availability deadline is therefore attached to each sample to be transmitted within a cycle.

The availability deadline of the first transmitted sample is equal to ConsumptionStartTime which is derived

from the TransmitStartTime and UpConversionLatency. The availability deadline of each next sample is an

incrementof the baseband signal period per new sample, namely the time between two consecutive samples.

In case any sample to be transmitted would not be available within the FIFO before its availability deadline,

the Transmit Channel goes into a SignalUnderflow situation. This is an error situation.

FEAT_TX_CHAN_ANA_120 [Error “FIFOUnderflow”

During the Active Phase of a Transmit Cycle, an error ERR_FIFOUnderflow shall be generated if the FIFO

runs into underflow situtation.

] END_FEAT_TX_CHAN_ANA_120

FEAT_TX_CHAN_ANA_130 [FIFO Underflow TransmitStop

During the active state of a Transmit Cycle, if Baseband FIFO runs into underflow situation, the

transmission shall be stopped by initiating a TransmitStop transition, immediately after the last sample

pushed into baseband FIFO has been consumed by Up-conversion Chain.

] END_FEAT_TX_CHAN_ANA_130

3.2.3.4 Up-conversion Chain

FEAT_TX_CHAN_ANA_140[Definition of the “Up-conversion Chain”

Concept Up-conversion Chain shall denote the signal processing chain in the Transmit Channel which

undertakes, during periods of time denoted as Active Transmit Cycles, continuous transformation of one

input baseband signal burst into the corresponding RF signal burst.

] END_FEAT_TX_CHAN_ANA_140

FEAT_TX_CHAN_ANA_150 [Constraint “MaxUpconversionLatency”

The constraint MaxUpconversionLatency of type Latency shall be used to characterize the maximum

allowed elapsed time between the instant a sample is consumed by the Up-conversion Chain from the

Baseband FIFO and the instant this sample is on the RF output.

] END_FEAT_TX_CHAN_ANA_150

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 44 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

This value has to be taken into consideration by the waveform application engineering process. The term Up-

conversionLatency is used in the following sections as an Internal Notion which is implementation related

and does not exceed the above constraint.

States and Transitions of Up-conversion Chain

The following figure summarizes the concepts addressed in the following paragraphs:

Deployed
Entry transition

Unactive

SamplesConsumptionStart

Active Transmit

Cycle

[@ TransmitStartTime]

[@ TransmitStopTime]

Active

• Samples being consumed

• RF signal being produced

RFTransmitStart

RFTransmitStop

SamplesConsumptionStop

[@ ConsumptionStartTime]

[@ ConsumptionStopTime]

Activation

• Samples being consumed

• No RF signal

Transient

Deactivation

• No Samples being consumed

• RF signal being produced

Transient

Figure 12: States and transitions of the Up-conversion Chain

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 45 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_160 [States of Up-conversion Chain

The following states shall be implemented by an Up-conversion Chain:

 Deployed: Initial state of the chain once deployed according to considered Waveform

requirements.

 Unactive: The state during which the Up-conversion Chain is not consuming samples within

baseband FIFO, and is not outputing any signal at RF level. Automatically reached once Up-

conversion Chain is Deployed.

 Activation: The transient state during which the Up-conversion Chain has started to consume

input baseband signal, while it is not yet outputing the corresponding useful signal at RF level.

Arrival of the useful baseband signal at RF level corresponds to the end of the state.

 Active: The state during which the input baseband signal is continuously consumed by the Up-

conversion Chain, and transformed into the associated RF signal which is being produced by the

chain at its output.

 Deactivation: The transient state during which Tx baseband signal is not consumed anymore by

the Up-conversion Chain, while the previously consumed signal is still being processed by the

Up-conversion with associated signal produced. End of this useful signal processing corresponds

to the end of the state.

] END_FEAT_TX_CHAN_ANA_160

Activation and Deactivation are transient states which have a duration equal to the Up-conversionLatency,

which is the time elapsed between (i) the instant when consumption of a given sample occurs from the

Baseband FIFO and (ii) the instant when the corresponding RF signal is transmitted. A Tuning activity, not

depicted in the preceding figure, is the step during which the Waveform Application shall configure a

Transmit Cycle for the transmission of the next burst.

FEAT_TX_CHAN_ANA_170 [Transitions between “Up-conversion Chain” states

The instantaneous transitions between states of an Up-conversion Chain shall respect the following list:

 SamplesConsumptionStart: transition between states Unactive and Activation

 RFTransmitStart: transition between states Activation and Active

 SamplesConsumptionStop: transition between states Active and Deactivation

 RFTransmitStop: transition between states Deactivation and Unactive

] END_FEAT_TX_CHAN_ANA_170

FEAT_TX_CHAN_ANA_180 [Timings associated to Up-conversion Chain transitions

The following timings shall be associated with instants when instantaneous transitions of Up-conversion

Chain are happening:

 ConsumptionStartTime: associated to transition SamplesConsumptionStart

 TransmitStartTime: associated to transition RFTransmitStart

 ConsumptionStopTime: associated to transition SamplesConsumptionStop

 TransmitStopTime: associated to transition RFTransmitStop.

] END_FEAT_TX_CHAN_ANA_180

FEAT_TX_CHAN_ANA_190 [Tuning activity

The Tuning activity shall be used to configure the signal processing requirements captured in Tuning Profile.

This activity is characterized by the time it starts, TuningStartTime, and its duration, TuningDuration.

] FEAT_TX_CHAN_ANA_190

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 46 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_200 [Constraint “MaxTuningDuration”

The Constraint MaxTuningDuration shall be used to characterize the maximum allowable constant duration

of the Tuning activity.

] END_FEAT_TX_CHAN_ANA_200

It is the boundary for internal notion TuningDuration

FEAT_TX_CHAN_ANA_210 [Internal Notion “TuningStartTime”

The internal notion TuningStartTime shall be used to specify the beginning of the Tuning activity. Nominal

use of TuningStartTime is described by the relationships below:

tionTuningDurannStartTimeConsumptiontTimeTuningStar ]1[]1[

][]1[nopTimeTransmitStntTimeTuningStar 

In rare cases the TuningStartTime[n+1] would be allowed to start before the TransmitStopTime[n], for

example in case of duplicated channels for very fast frequency hopping applications.

] FEAT_TX_CHAN_ANA_210

The following figure summarizes the definitions introduced in this section:

t

t

sRF(t)

|sBB|[n]

ConsumptionStartTime
ConsumptionStopTime

TransmitStartTime TransmitStopTime

Active Transmit Cycle

UpconversionLatency

Active

As consumed by

Up-conversion

chain in FIFO

Activation Deactivation

TuningStartTime

Tuning

TuningDuration

UpconversionLatency

Undefined Undefined

No signal No signal

Baseband Burst

RF Burst

TransmitStartTime

TransmitStopTime

Time Profile

Figure 13: Time profile of Transmit Cycle

FEAT_TX_CHAN_ANA_220 [Constraint “MinReactivationTime”

The Constraint MinReactivationTime shall be used to quantify the minimum time elapsed between the

TransmitStopTime of one given Transmit Cycle and the TransmitStartTime of the next one.

] END_FEAT_TX_CHAN_ANA_220

Identification of Current Cycle

Default event-based time requests are to be based on the notion of “Current” Transmit Cycle.

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 47 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_230 [Definition of the “Current” Transmit Cycle

The notion of current Transmit Cycle shall be applied, for operations invoked by the Waveform Application

making event-based time requests, as a function of the instant when the considered operation is invoked by

Waveform Application.

] END_FEAT_TX_CHAN_ANA_230

FEAT_TX_CHAN_ANA_240 [Rule for “Current” Transmit Cycle identification

The current Transmit Cycle shall be the Active Transmit Cycle, if the operation is invoked when a Transmit

Cycle is active, or the last Transmit Cycle that finished before invocation.

] END_FEAT_TX_CHAN_ANA_240

Uncertainty of identification of the current Transmit Cycle thus exists when invocation of

createTransmitCycle() happens close to the ConsumptionStartTime of a certain cycle. It is up to Waveform

Application design to take appropriate assumptions to avoid calls happening within this time zone.

3.2.3.5 Transmit Cycle

A compliant execution by the Up-conversion Chain of a given Transmit Cycle relies upon availability of two

sorts of information:

 Control data, captured into the Transmit Cycle Profile

 Input data, denoted as the Transmit Cycle Input Burst

The Transmit Cycle Input Burst is the slice of baseband signal provided by the Waveform Application that

the Up-conversion Chain will transform into RF signal during the considered Transmit Cycle, in compliance

with the signal processing requirements captured in Tuning Profile and the real-time requirements captured

in the Time Profile.

Transmit Cycle Input Burst

FEAT_TX_CHAN_ANA_250 [Definition of “Transmit Cycle Input Burst”

The Transmit Cycle Input Burst shall denote the un-interrupted slice of baseband signal provided by the

Waveform Application for transmission during the considered Transmit Cycle.

] END_FEAT_TX_CHAN_ANA_250

FEAT_TX_CHAN_ANA_260 [Definition of “Transmit Cycle First Sample”

The Transmit Cycle First Sample shall denote the first sample of the considered input burst.

] END_FEAT_TX_CHAN_ANA_260

FEAT_TX_CHAN_ANA_270 [Definition of “Transmit Cycle Last Sample”

The Transmit Cycle Last Sample shall denote the last sample of the considered input burst.

] END_FEAT_TX_CHAN_ANA_270

The mechanisms provided to the Waveform Application for provision of the input bursts unambiguously

identify the burst first and last samples. This enables synchronization of the Up-conversion Chain operation

to meet accurate transmission start and end time requirements.

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 48 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Transmit Cycle Profile

FEAT_TX_CHAN_ANA_280 [Definition of “Transmit Cycle Profile”

The concept of Transmit Cycle Profile shall be used to control the Transmit Cycles implemented during the

life-time of one Up-conversion Chain. One specific Transmit Cycle Profile instance is created for each

specific Transmit Cycle occurrence.

] END_FEAT_TX_CHAN_ANA_280

Several Transmit Cycles Profiles may be simultaneously available. The profile corresponding to an Active

Phase of the Up-conversion Chain is the only profile active at this time.

FEAT_TX_CHAN_ANA_290 [Composition of “Transmit Cycle Profile”

A Transmit Cycle Profile shall be composed of a Cycle Identifier, a Time Profile and a Tuning Profile.

] END_FEAT_TX_CHAN_ANA_290

Cycle identifier

FEAT_TX_CHAN_ANA_300 [Explicit Notion “TransmitCycle”

Each created cycle has a unique integer identifier TransmitCycle which shall be set up during creation to a

value incremented by one for each newly created Transmit Cycle, starting at 0 (ZERO) for the first created

cycle and reaching the value of the constraint MaxCycleId before restarting counter to 0.

] END_FEAT_TX_CHAN_ANA_300

FEAT_TX_CHAN_ANA_310 [Constraint “MaxTxCycleProfiles”

The constraint MaxTxCycleProfiles shall refer to the maximum number of Transmit Cycles simultaneously

existing at any time within the Transmit Channel.

] END_FEAT_TX_CHAN_ANA_310

Time Profile

The Time Profile is set by the Waveform Application to define time positioning of the Transmit Cycle. It is

composed of Explicit Notions TransmitStartTime and TransmitStopTime.

They correspond to the only externally measurable instants attached to a Transmit Cycle which are not

dependent on the Up-conversion Chain implementation.

FEAT_TX_CHAN_ANA_320 [Definition of “Time Profile”

A Time Profile shall be composed of explicit notions TransmitStartTime and TransmitStopTime.

] END_FEAT_TX_CHAN_ANA_320

FEAT_TX_CHAN_ANA_330 [Constraint “TransmitTimeProfileAccuracy”

The constraint “TransmitTimeProfileAccuracy” shall refer to the Event Accuracy associated with the Time

Profile explicit notions, namely TransmitStartTime and TransmitStopTime.

] END_FEAT_TX_CHAN_ANA_330

FEAT_TX_CHAN_ANA_340 [Explicit Notion “TransmitStartTime”

The Explicit NotionTransmitStartTime shall be used within Time Profile to contain the Transmit Start Time

of the corresponding Transmit Cycle.

] END_FEAT_TX_CHAN_ANA_340034

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 49 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_350 [Referenced event source “TransmitStart”

The “TransmitStart” event, associated with the Transmit Start Time explicit notion, shall be the unique

Referenced Event Source of the Transmit Channel.

] END_FEAT_TX_CHAN_ANA_350

FEAT_TX_CHAN_ANA_360 [Explicit Notion “TransmitStopTime”

The Explicit Notion TransmitStopTime shall be used within Time Profile to contain the Transmit Stop Time

of the corresponding Transmit Cycle.

] END_FEAT_TX_CHAN_ANA_360

Explicit Notions TransmitStartTime and TransmitStopTime obey accuracy constraints directly imposed by

radio link interoperability conventions between transmitting and receiving radio nodes. Low accuracy on

those values is requested for waveforms such as fixed frequency AM/FM speech waveforms, while high

accuracy is needed for frequency hopping digitally modulated waveforms.

TransmitStartTime and TransmitStopTime may be explicitly set by the Waveform Application by means of

operations arguments. They belong to the Programmable subtype.

Their values can be measured thanks to external measurements conducted on a transmitting radio set without

any knowledge of the Transceiver Sub-system internal implementation.

Implementation-dependent time Internal Notions

Implementation-dependent time Internal Notions necessary for analysis may be derived from the Explicit

Notions introduced beforehand, using implementation-dependent durations or latencies:

 ConsumptionStartTime equals to TransmitStartTime less UpconversionLatency

 TuningStartTime equals ConsumptionStartTime less TuningDuration

 ConsumptionStopTime equals TransmitStopTime less UpconversionLatency

Refer to Figure 13: Time profile of Transmit Cycle for a graphical representation of above concepts

Tuning Profile

FEAT_TX_CHAN_ANA_370 [Definition of “Transmit Tuning Profile”

A Transmit Tuning Profile shall be used to characterize which signal processing explicit notions values shall

be applied by the Up-conversion Chain when the Transmit Cycle is activated.

] END_FEAT_TX_CHAN_ANA_370

These explicit notions will be fixed to the requested values and applicable for the complete duration of the

Transmit Cycle.

FEAT_TX_CHAN_ANA_380 [Contents of “Tuning Profile”

The following explicit notions are contained within the Tuning Profile:

 CarrierFrequency

 Nominal RF Power

 Tuning Preset

] END_FEAT_TX_CHAN_ANA_380

From one Transmit Cycle to the next, depending on the deployed waveform needs, the Tuning Profile may

be totally different, partially different, or identical.

Examples

In fixed frequency TDD mode with unique channelization, the Tuning Profile is identical from one transmit

cycle to another.

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 50 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

In advanced frequency hopping waveforms, the CarrierFrequency or the ChannelMask can be changed from

one Transmit Cycle to another, causing different Tuning Profiles.

States and Transitions of Transmit Cycle Profile

The following figure shows how, for Active Transmit Cycle number n of a given Up-conversion Chain,

active states of the corresponding Transmit Channel Profile are defined:

ActivePhaseStart

Active PhasePre-Activation Post-Activation

DestructionStart

Creation

ActivePhaseStop

Transmit Cycle Profile # n

Destruction

Created

ActiveActivation Deactivation

UnactiveSamplesConsumptionStart(n)

Up-conversion Chain

Active
RFTransmitStart(n)

RFTransmitStop(n)

SamplesConsumptionStop(n)

Activation Deactivation

(…) (…)

Transmit Cycle # n

Unactive

TuningStart(n)

Unactive

Figure 14: States and Transitions of a Transmit Cycle Profile

FEAT_TX_CHAN_ANA_390 [States of a “Transmit Cycle Profile”

The following states shall be implemented by a Transmit Cycle Profile:

 Creation: The Transmit Cycle Profile is created by Transmit Channel.

 Pre-Activation: The Transmit Cycle Profile is kept dormant with the possibility for the

Waveform Application to update the profile (Time Profile or Up-conversion Profile).

 Active Phase: The profile values are taken into account by the Up-conversion Chain to launch

the Transmit Cycle of interest, with undefined values completed according to Tuning, and

updated to reflect what is effectively implemented during the Transmit Cycle in case they change

because of Active Tuning.

 Post-Activation: The Transmit Cycle specified by the Transmit Cycle Profile is over, but profile

is kept available to let the Tuning of the next Transmit Cycle to re-use previous values

 Destruction: The Transmit Cycle Profile is destroyed by the Transmit Channel.

] END_FEAT_TX_CHAN_ANA_390

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 51 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_400 [Transitions of “Transmit Cycle Profile”

The instantaneous transitions between states of a Transmit Cycle Profile shall respect the following list:

 Created: transition between states Creation and Pre-Activation

 ActivePhaseStart: transition between states Pre-Activation and Active Phase

 ActivePhaseStop: transition between states Active Phase and Post-Activation

 DestructionStart: transition between states Post-Activation and Desctruction

] END_FEAT_TX_CHAN_ANA_400

FEAT_TX_CHAN_ANA_410 [Transitions correspondance

The transitions of the Up-conversion Chain for the Active Transmit Cycle # N shall follow the following

relationships with the transitions of the corresponding instance of Transmit Cycle Profile:

 ActivePhaseStart and TuningStart(n) simultaneous

 ActivePhaseStop and RFTransmitStop(n) simultaneous

 DestructionStart after than TransmitStartTime(n+1)

] END_FEAT_TX_CHAN_ANA_410

3.2.3.6 Active Phase

Triggering conditions

The process leading to the activation of the Transmit Channel Profile starts when the Up-conversion Chain

starts the Tuning activity, immediately before state Activation starts.

The triggering condition to start Tuning activity is based on the definition status of TransmitStartTime:

 If TransmitStartTime is defined, TuningStart will be realized so as to have the resulting

RFTransmitStart happen at TransmitStartTime.

 If TransmitStartTime is not defined, TuningStart will be realized as soon as the number of

baseband samples of the current burst accumulated in Transmit Baseband Signal FIFO has

reached TuningStartThreshold.

If explicit notion TransmitStopTime is set to a defined value when TuningStart is happening, the Transmit

Cycle is activated for a pre-defined duration. Otherwise, the cycle ending conditions remain to be defined

after the cycle has started.

FEAT_TX_CHAN_ANA_420 [Time-defined transition “StartTuning”

If the Explicit Notion TransmitStartTime of the TimeProfile is defined, the Transmit Channel shall initiate a

TuningStart transition so as to have the RFTransmitStart happen at the instant specified by value of property

TransmitStartTime.

] END_FEAT_TX_CHAN_ANA_420

FEAT_TX_CHAN_ANA_430 [Signal-defined transition “StartTuning”

If the Explicit Notion TransmitStartTime of the TimeProfile is not defined, the Transmit Channel shall

initiate a TuningStart transition as soon as the number of baseband samples in Transmit Baseband Signal

FIFO for the current burst has reached a value superior or equal to the value of Implicit Notion

TuningStartThreshold.

] END_FEAT_TX_CHAN_ANA_430

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 52 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_440 [Error “ERR_TooLateRequest”

In case the cycle specified by argument targetCycleId has already reached the state Tuning, or went further

in the life sequence of the Transmit Cycle Profile, the operation can not be taken into account and an error

ERR_TooLateRequest shall be generated.

] END_FEAT_TX_CHAN_ANA_440

Setting applicable profile

FEAT_TX_CHAN_ANA_450 [Precedence rules for Tuning explicit notions definition

For each up-conversion processing explicit notion of any given Transmit Cycle, except the first one, the

values applicable by the Up-conversion shall be determined during state Tuning in compliance with the

following precedence rules, sorted in decreasing order:

 Last value set by a call during the state Idle

 Value set during the call to createTransmitCycle()

 Value applied for the considered property on the previous Transmit Cycle, if defined

] END_FEAT_TX_CHAN_ANA_450

3.2.3.7 Post-Activation

Triggering conditions

State Post-Activation of the Transmit Channel Profile corresponds to when the Up-conversion Chain has

finished its state Deactivation and is back to state Unactive.

Entering into state Post-Activation is entirely based on the triggering conditions which push the Up-

conversion Chain into state Deactivation.

 If TransmitStopTime is defined, SignalConsumptionStop will be realized so as to have the

resulting RFTransmitStop happen at TransmitStopTime.

 If TransmitStopTime is not defined, availability of the last burst sample will trigger transition

SignalConsumptionStop.

The usage of operation setTransmitStopTime() with an undefined requestedTransmitStopTime value is

another possibility for SignalConsumptionStop trigger introduced previously.

FEAT_TX_CHAN_ANA_460 [Time-defined transition “SignalConsumptionStop”

If the explicit notion TransmitStopTime of the TimeProfile is defined, the Transmit Channel shall initiate a

transition SignalConsumptionStop so as to have the RFTransmitStop happen at the instant specified by value

of TransmitStopTime.

] END_FEAT_TX_CHAN_ANA_460

FEAT_TX_CHAN_ANA_470 [Signal-defined transition “SignalConsumptionStop”

If the explicit notion TransmitStopTime of the TimeProfile is not defined, the Transmit Channel shall initiate

a SignalConsumptionStop transition as soon as the last sample of the burst is available within Tx Baseband

Signal FIFO.

] END_FEAT_TX_CHAN_ANA_470

FEAT_TX_CHAN_ANA_480 [Useless samples discarding

The Tx Baseband Signal FIFO shall discard the samples transmitted by the Waveform Application within the

current burst which would exceed the last sample effectively consumed by the Up-conversion Chain in

respect of the specified TransmitStopTime.

] END_FEAT_TX_CHAN_ANA_480

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 53 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_490 [Destruction start time

The destruction of a given Transmit Cycle Profile shall not be realized by the Transmit Channel until the

next Transmit Cycle has reached its transition RFTransmitStart.

] END_FEAT_TX_CHAN_ANA_490

This requirement enables the Tuning of the next cycle to be able to re-use the previous Tuning Profile for

undefined properties.

FEAT_TX_CHAN_ANA_500 [Error “Too Short Burst”

When the last sample of a burst is consumed and consumption shall continue because ConsumptionStopTime

is not yet reached, the Transceiver Subsystem shall generate an error Too Short Burst.

] END_FEAT_TX_CHAN_ANA_500

3.2.3.8 Transmit Control

createTransmitCycleProfile()

Purpose

The operation createTransmitCycleProfile() enables to request the creation by the Up-conversion Chain of a

specific Transmit Cycle Profile. It aims at performing a systematic call for any necessary Transmit Cycle.

Syntax

FEAT_TX_CHAN_ANA_510 [Operation “createTransmitCycleProfile()”

The operation createTransmitCycleProfile() shall be implemented by the Transmit Channel and be used by

the Waveform Application in order to request the creation of a particular Transmit Cycle Profile.

] END_FEAT_TX_CHAN_ANA_510

FEAT_TX_CHAN_ANA_520 [Argument “requestedTransmitStartTime”

The argument requestedTransmitStartTime of type TimeRequest shall be used to request an initial value for

the explicit notion TransmitStartTime.

] END_FEAT_TX_CHAN_ANA_520

FEAT_TX_CHAN_ANA_530 [Constraint “MinTransmitStartProximity”

If the argument requestedTransmitStartTime is an Event-based Time, it shall respect the Min Event

Proximity constraint specified by “MinTransmitStartProximity”.

] END_FEAT_TX_CHAN_ANA_530

FEAT_TX_CHAN_ANA_540 [Constraint “MinTransmitStartAnticipation”

The constraint MinTransmitStartAnticipation of type Latency shall be used to characterize the minimum

allowed elapsed time between the instant the createTransmitCycleProfile() operation is invoked and the

target Transmission start time.

] END_FEAT_TX_CHAN_ANA_540

FEAT_TX_CHAN_ANA_550 [Argument “requestedTransmitStopTime”

The argument requestedTransmitStopTime of type TimeRequest shall be used to request an initial value for

the explicit notion TransmitStopTime.

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 54 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

] END_FEAT_TX_CHAN_ANA_550

FEAT_TX_CHAN_ANA_560 [Argument “requestedTuningPresetId”

The argument requestedTuningPresetId of type UShort shall be used in order to indicate the PresetId value

of the Tuning Preset to be applied on the considered burst.

] END_FEAT_TX_CHAN_ANA_560

The requirements associated with Tuning Presets are provided in Common Concepts.

FEAT_TX_CHAN_ANA_570 [Argument “requestedCarrierFrequency”

The argument requestedCarrierFrequency of type Frequency shall be used to request a value for tuning

explicit notion Carrier Frequency.

] END_FEAT_TX_CHAN_ANA_570

FEAT_TX_CHAN_ANA_580 [Argument “requestedNominalRFPower”

The argument requestedNominalRFPower of type Frequency shall be used to request a value for tuning

explicit notion Nominal RF Power.

] END_FEAT_TX_CHAN_ANA_580

Semantics

FEAT_TX_CHAN_ANA_590 [TransmitCycleProfile initialization

The Transmit Channel shall set the initial values of the corresponding explicit notions in

TransmitCycleProfile to the values specified by passed arguments.

] END_FEAT_TX_CHAN_ANA_590

If argument requestedTransmitStartTime is defined by the Waveform Application, the Transmit Channel will

start the Active Phase according to the speficied time. If the initial value of TransmitStartTime was left

undefined, the Active Phase may not start until the value is further set.

FEAT_TX_CHAN_ANA_600 [Constraint “MinTransmitStartAnticipation”

If argument requestedTransmitStartTime is set to a defined value by the Waveform Application, the

operation invocation which corresponds with internal notion TransmitStartAnticipation shall happen before

the corresponding TuningStartTime respecting the MinTransmitStartAnticipation real-time constraint.

] END_FEAT_TX_CHAN_ANA_600

FEAT_TX_CHAN_ANA_610 [Error “ERR_TooManyCreatedTxProfiles”

The Transmit Channel shall generate an error ERR_TooManyCreatedTxProfiles if creation of the Transmit

Cycle Profile would cause a number of created profiles exceeding the value of constraint

MaxTxCycleProfiles.

] END_FEAT_TX_CHAN_ANA_610

FEAT_TX_CHAN_ANA_620 [“requestedTransmitStartTime” using Absolute Time Request format

Usage of domain type Absolute Time Request format shall be available as a type possibility for argument

requestedTransmitStartTime.

] END_FEAT_TX_CHAN_ANA_620

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 55 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_630 [“requestedTransmitStartTime” using event-based format

Usage of domain type “Event-based Time Request”shall be available as a type possibility for argument

requestedTransmitStartTime.

] END_FEAT_TX_CHAN_ANA_630

FEAT_TX_CHAN_ANA_640 [Default event source for event-based time requests

The default Event Source for event-derived expression of requestedTransmitStartTime shall be the

TransmitStartTime of the current Transmit Cycle.

] END_FEAT_TX_CHAN_ANA_640

For the first Transmit Cycle of the Transmit Channel lifetime, since there is no available pre-existing

Transmit Cycle, the current Transmit Cycle is not defined so event-based approach can not be used.

FEAT_TX_CHAN_ANA_650 [Default event occurrence for event-derived time requests

The default event occurrence for event-derived expression of requestedTransmitStartTime shall be the last

occurence.

] END_FEAT_TX_CHAN_ANA_650

configureTransmitCycle()

Purpose

This operation is the way a Waveform Application can set the Up-conversion profile during its state Pre-

activation.

Syntax

FEAT_TX_CHAN_ANA_660 [Operation “configureTransmitCycle()”

The operation configureTransmitCycle() shall be implemented by the Transmit Channel and be used by the

Waveform Application in order to set the value of the properties of a previously created Transmit Cycle.

] END_FEAT_TX_CHAN_ANA_660

FEAT_TX_CHAN_ANA_670 [Target cycle identification in “configureTransmitCycle()”

The Transmit Cycle for which the requested properties values are applicable shall be identified by the

argument targetCycleId of type ULong, which specifies the Cycle Identifier of the target Transmit Cycle.

] END_FEAT_TX_CHAN_ANA_670

FEAT_TX_CHAN_ANA_680 [Argument “requestedTransmitStartTime”

The argument requestedTransmitStartTime of type TimeRequest shall be used to request an initial value for

the explicit notion TransmitStartTime.

] END_FEAT_TX_CHAN_ANA_680

FEAT_TX_CHAN_ANA_690 [Constraint “MinTransmitStartAnticipation”

The constraint MinTransmitStartAnticipation of type Latency shall be used to characterize the minimum

allowed elapsed time between the instant configureTransmitCycle() operation are invoked and the target

transmission start time, when the argument requestedTransmitStartTime is specified.

] END_FEAT_TX_CHAN_ANA_690

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 56 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_700 [Argument “requestedTransmitStopTime”

The argument requestedTransmitStopTime of type TimeRequest shall be used to request an initial value for

the explicit notion TransmitStopTime.

] END_FEAT_TX_CHAN_ANA_700

FEAT_TX_CHAN_ANA_710 [Argument “requestedCarrierFrequency”

The argument requestedCarrierFrequency of type Frequency shall be used to request a value for tuning

explicit notion Carrier Frequency.

] END_FEAT_TX_CHAN_ANA_710

FEAT_TX_CHAN_ANA_720 [Argument “requestedNominalRFPower”

The argument requestedNominalRFPower of type Frequency shall be used to request a value for tuning

explicit notion Nominal RF Power.

] END_FEAT_TX_CHAN_ANA_720

Errors

FEAT_TX_CHAN_ANA_730 [Error “Unkown Target Cycle”

In case the cycle specified by argument targetCycleId is not created, the operation can not be taken into

account and an error Unknown Target Cycle shall be generated.

] END_FEAT_TX_CHAN_ANA_730

setTransmitStopTime()

Purpose

The operation setTransmitStopTime() is intended to allow setting the explicit notion TransmitStopTime value

for a Transmit Cycle.

FEAT_TX_CHAN_ANA_740 [Operation “setTransmitStopTime()”

The operation setTransmitStopTime() shall be implemented by the Transmit Channel and be used by the

Waveform Application in order to set the TransmitStopTime of the considered Transmit Cycle.

] END_FEAT_TX_CHAN_ANA_740

FEAT_TX_CHAN_ANA_750 [Argument “requestedTransmitStopTime”

The argument requestedTransmitStopTime shall be available in operation setTransmitStopTime() in order to

enable the Waveform Application to specify when the transition RFTransmitStop shall happen.

] END_FEAT_TX_CHAN_ANA_750

FEAT_TX_CHAN_ANA_760 [Defined “requestedTransmitStopTime”

If argument requestedTransmitStartTime is set to a defined value by Waveform Application, the Transmit

Channel shall deactivate the Transmit Cycle in respect of the specified value.

] END_FEAT_TX_CHAN_ANA_760

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 57 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_770 [Undefined “requestedTransmitStopTime” (instant Deactivation)

If argument requestedTransmitStartTime is set to undefined by Waveform Application, the Transmit Channel

shall immediately turn the current Transmit Cycle into Deactivation state, discarding the unused baseband

samples eventually stored into Tx Baseband Signal FIFO for the aborted burst.

] END_FEAT_TX_CHAN_ANA_770

FEAT_TX_CHAN_ANA_780 [Constraint “MinTransmitStopAnticipation”

The operation setTransmitStopTime() shall be called with an anticipation relatively to the

requestedTransmitStopTime at least equal to value of constraint MinTransmitStopAnticipation, of type

Latency.

] END_FEAT_TX_CHAN_ANA_780

The operation setTransmitStopTime() may be used to modify as often as necessary the TransmitStopTime of

a Transmit Cycle, provided it always respects TransmitStopAnticipation invocation margin. Its actual

invocation time corresponds with internal notion TransmitStartAnticipation.

Errors

FEAT_TX_CHAN_ANA_790 [Error “ERR_TooLateRequest”

If the operation setTransmitStopTime() is invoked after TransmitStopTime – MinTransmitStopAnticipation,

the Transmit Channel is not able to guarantee correct application, and an error ERR_TooLateRequest shall be

generated.

] END_FEAT_TX_CHAN_ANA_790

Interface real-time constraints

FEAT_TX_CHAN_ANA_800 [Constraint “MaxTransmitControlInvocationDuration”

Operations of the TransmitControl interface shall respect the MaxInvocationDuration constraint specified by

MaxTransmitControlInvocationDuration.

] END_FEAT_TX_CHAN_ANA_800

3.2.3.9 Transmit Data Push

Overview

The programming interface Transmit Data Push enables the Waveform Application to push packets of

baseband samples towards the Transmit Channel.

The programming interface relies on: (i) a single operation, pushBBSamplesTx(), (ii) the data pushed by the

Waveform Application, denoted as The Pushed Packet.

pushBBSamplesTx() is used by the Waveform Application to: (i) notify the Transmit Channel of availability

of a new packet of samples, (ii) indicate if the pushed packet is the last packet of the transmitted burst.

The Pushed Packet structure is defined by common concept Baseband Packet. It must be prepared by

Waveform Application prior to the pushBBSamplesTx() notification. The samples are stored by the Waveform

Application in conformance with specific packets contents requirements.

Once pushBBSamplesTx() is called, the Transmit Channel undertakes packets handling activities. First, it has

to take in charge the pushed packet, copying its content into an internal memory zone. Second, it has to store

the corresponding data into the Baseband FIFO.

The way a Transmit Channel implementation takes in charge the pushed packet and stores it into the

Baseband FIFO is implementation dependent. Most reactive implementations will take in charge and store in

baseband FIFO the pushed packet into one single data copy. More complex designs may exist, especially

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 58 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

when the digital part of the Transceiver Subsystem is distributed over different digital signal processing

units.

The Pushed Packet

Structural requirements

FEAT_TX_CHAN_ANA_810 [Definition of “The Pushed Packet”

A data constuct denoted The Pushed Packet, of type Baseband Packet, shall be used to contain the Baseband

Signal samples to be pushed.

] END_FEAT_TX_CHAN_ANA_810

FEAT_TX_CHAN_ANA_820 [Creation of “The Pushed Packet”

The Pushed Packet shall be created by the Waveform Application.

] END_FEAT_TX_CHAN_ANA_820

FEAT_TX_CHAN_ANA_830[Visibility on “The Pushed Packet”

The Pushed Packet shall be visible by the Waveform Application with write rights and be visible by the

Transmit Channel with read rights.

] END_FEAT_TX_CHAN_ANA_830

FEAT_TX_CHAN_ANA_840[Destruction of “The Pushed Packet”

The Pushed Packet shall be destroyed by the Waveform Application.

] END_FEAT_TX_CHAN_ANA_840

Packets ordering requirements

This section specifies a certain number of requirements applicable to packets content.

FEAT_TX_CHAN_ANA_850 [Packets burst alignment

The pushed baseband samples shall be aligned with the Transmit Cycles Input Bursts, which means no

packet contains samples belonging to two different input bursts.

] END_FEAT_TX_CHAN_ANA_850

FEAT_TX_CHAN_ANA_860 [Sequential bursts transmission

The pushed baseband samples packets shall be transmitted one burst after the other.

] END_FEAT_TX_CHAN_ANA_860

FEAT_TX_CHAN_ANA_870 [Ordered packets pushes

The pushed baseband samples packets shall not be interverted within a given burst.

] END_FEAT_TX_CHAN_ANA_870

Packets identification

The first packet of a burst is defined as the packet where first sample is the first transmitted sample of the

burst.

The last packet of a burst is defined as the packet where last sample is the last transmitted sample of the

burst.

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 59 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

A packet containing all the samples of a given burst is at the same time the first and last packet of the burst.

The last packet of a burst is therefore systematically followed by the first packet of the next burst.

pushBBSamplesTx()

Syntax

FEAT_TX_CHAN_ANA_880 [Operation “pushBBSamplesTx()”

Operation pushBBSamplesTx() shall be used by the Waveform Application and realized by the Transmit

Channel, in order to: (i) notify the Transmit Channel of availability of a new packet of samples, (ii) indicate

if the pushed packet is the last packet of the transmitted burst.

] END_FEAT_TX_CHAN_ANA_880

FEAT_TX_CHAN_ANA_890 [Argument “thePushedPacket”

The argument thePushedPacket, of type BBSamplesPacket, shall contain information enabling to access to

the pushed packet.

] END_FEAT_TX_CHAN_ANA_890

The pushed packet content shall have been prepared by the Waveform Application to contain correct signal

before invocation. The size of the pushed packet is determined by the value of argument requestedPacketSize

set during the Transmit Cycle creation or profile configuration.

FEAT_TX_CHAN_ANA_900 [Argument “endOfBurst”

The argument endOfBusrt, of type Boolean, shall be used to indicate that the pushed packet is the last packet

of the current Transmit Cycle Input Burst.

Value True if the packet is the last packet, False or undefined otherwise.

] END_FEAT_TX_CHAN_ANA_900

Semantics

FEAT_TX_CHAN_ANA_910 [pushBBSamplesTx() Post-Invocation

When return of pushBBSamplesTx() returns, the samples values contained in the pushed packet shall have

been taken into account by the Transceiver Subsystem.

] END_FEAT_TX_CHAN_ANA_910

The Waveform Application is then free to handle in any way the pushed packet, since return from invocation

means the useful data hase been taken into account by Transmit Channel. Among possibilities, one can quote

that the same pushed packet can be re-used for the next push, that it can be destroyed with another one being

created for the next push, that a pair of packets may be alternately used in flip-flop.

FEAT_TX_CHAN_ANA_920 [pushBBSamplesTx() Post-Invocation for defined TransmitStopTime

When the TransmitStopTime of a burst is explicitly set, the Transmit Channel shall discard any pushed

samples in excess from the Baseband Burst limit set by TransmitStopTime value.

] END_FEAT_TX_CHAN_ANA_920

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 60 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Realt-time Constraints

FEAT_TX_CHAN_ANA_930 [Constraint “MaxTransmitDataPushInvocationDuration”

The constraint “MaxTransmitDataPushInvocationDuration”, of type Latency, shall be used to identify the

Max Invocation Duration to be met by pushBBSamplesTx implementations.

] END_FEAT_TX_CHAN_ANA_930

As noted in §2.3,the Max Invocation Duration of an operation corresponds to the time difference between:

 The instant when an operation invocation occurs

 The instant when an operation return occurs

The constraint may remain undefined if the real-time constraints of the radio capability do not justify it.

Max pushBBSamplesTx Invocation Duration is generally assigned a unique value, taking into consideration

the maximum packet size used by the waveform application.

FEAT_TX_CHAN_ANA_940 [Constraint “Min Packet Storage Anticipation”

The constraint Min Packet Storage Anticipation, of type Latency, shall be used to identify the Minimum

Anticipation to be guaranteed in order to have a packet stored in Baseband FIFO before the target time.

] END_FEAT_TX_CHAN_ANA_940

The target time to be considered takes into account the consumption start time of the considered burst and

the relative time shift between the first sample of the burst and the samples in the pushed packet.

Arguments Boundaries

FEAT_TX_CHAN_ANA_950 [Implicit Notion “MaxPushedPacketSize”

The implicit notion MaxPushedPacketSize, of type Ulong, shall be used to set the maximum packet size sent

through the operation pushBBSamplesPacket().

] END_FEAT_TX_CHAN_ANA_950

FEAT_TX_CHAN_ANA_960 [Error “ERR_Oversized Pushed Packet”

In case the size of a pushed packet exceeds the property MaxPushedPacket Size, the Transmit Channel shall

generate the error ERR_Oversized Pushed Packet.

] END_FEAT_TX_CHAN_ANA_960

Overflow mitigation

Two overflow mitigation options can be selected:

 Caller Blocked: The Transceiver Subsystem will block the waveform application until there is

sufficient space in the FIFO to copy the pushed packet.

 No Overflow: Reaching overflow is corresponded to an error, so the Transceiver Subsystem is

requested to generate an error.

FEAT_TX_CHAN_ANA_970 [Implicit notion “OverflowMitigation”

The enumerated implicit notion Overflow Mitigation shall be used to set the applicable overflow mitigation

option.

The possible values are: (i)Caller Blocked and (ii) No Overflow. Undefined corresponds to Caller Blocked.

] END_FEAT_TX_CHAN_ANA_970

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 61 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_980 [Caller Blocked Overflow Mitigation

When implicit notion Overflow Mitigation is set to CallerBlocked, the Transceiver Subsystem shall block the

Waveform Application execution until sufficient room is available within Baseband FIFO to complete copy

of the pushed packet. The constraint Max Invocation Duration is not applicable in this scenario.

] END_FEAT_TX_CHAN_ANA_980

This is the default mode since it does not require any supplementary dependency between the Waveform

Application and the platform. This occurs at the expense of handling trivial synchronization mechanisms. It

is therefore believed to be the optimal solution.

FEAT_TX_CHAN_ANA_990 [No Overflow Overflow Mitigation

When implicit notion Overflow Mitigation is set to No Overflow, the Transceiver Subsystem shall raise an

error in case an overflow of the FIFO occurs. The samples in excess are not copied into baseband FIFO.

] END_FEAT_TX_CHAN_ANA_990

This mode can be used in cases where waveform design is considering overflow case shall not occur. Two

mainstream design paradigms can justify usage of such an option:

 Synchronization events provide the Waveform Application with information which shall avoid

overflow situation.

 Flow control mechanisms enable the Transmit Channel to stop the Waveform Application when

the Tx Baseband Signal FIFO fill level becomes critical, and to restart it once room is available

again. This corresponds to feature AsyncControlMechanisms of [Digital IF Initial Submission].

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 62 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.2.3.10 Analysis Requirements Summary

The following table provides an overview of the Analysis requirements of Transmit Channel:

Identifier Tag Section

FEAT_TX_CHAN_ANA_010 Definition of a “Transmit Channel” Transmit Channel

FEAT_TX_CHAN_ANA_020 Creation of a “Transmit Channel” Transmit Channel

FEAT_TX_CHAN_ANA_030 Composition of a “Transmit Channel” Transmit Channel

FEAT_TX_CHAN_ANA_040 Definition of “Transmit Baseband Signal” Transmit Baseband Signal

FEAT_TX_CHAN_ANA_050 Implicit Notions of “Transmit Baseband Signal” Transmit Baseband Signal

FEAT_TX_CHAN_ANA_060 Transmit Baseband Signal configuration Transmit Baseband Signal

FEAT_TX_CHAN_ANA_070 Definition of “Transmit Baseband FIFO” Transmit Baseband FIFO

FEAT_TX_CHAN_ANA_080 Implicit Notion “BasebandFIFOSize” Transmit Baseband FIFO

FEAT_TX_CHAN_ANA_090 Implicit Notion “TuningStartThreshold” Transmit Baseband FIFO

FEAT_TX_CHAN_ANA_100 Default value of “TuningStartThreshold” Transmit Baseband FIFO

FEAT_TX_CHAN_ANA_110 Configuration of “Transmit Baseband FIFO” Transmit Baseband FIFO

FEAT_TX_CHAN_ANA_120 Error “FIFOUnderflow” Transmit Baseband FIFO

FEAT_TX_CHAN_ANA_130 FIFO Underflow TransmitStop Transmit Baseband FIFO

FEAT_TX_CHAN_ANA_140 Definition of the “Up-conversion Chain” Up-conversion Chain

FEAT_TX_CHAN_ANA_150 Constraint “MaxUpconversionLatency” Up-conversion Chain

FEAT_TX_CHAN_ANA_160 States of Up-convestion Chain Up-conversion Chain

FEAT_TX_CHAN_ANA_170 Transitions between “Up-conversion Chain” states Up-conversion Chain

FEAT_TX_CHAN_ANA_180 Timings associated to Up-convestion Chain transitions Up-conversion Chain

FEAT_TX_CHAN_ANA_190 Tuning activity Up-conversion Chain

FEAT_TX_CHAN_ANA_200 Constraint “MaxTuningDuration” Up-conversion Chain

FEAT_TX_CHAN_ANA_210 Internal Notion “TuningStartTime” Up-conversion Chain

FEAT_TX_CHAN_ANA_220 Constraint “MinReactivationTime” Up-conversion Chain

FEAT_TX_CHAN_ANA_230 Definition of the “Current” Transmit Cycle Up-conversion Chain

FEAT_TX_CHAN_ANA_240 Rule for “Current” Transmit Cycle identification Up-conversion Chain

FEAT_TX_CHAN_ANA_250 Definition of “Transmit Cycle Input Burst” Transmit Cycle

FEAT_TX_CHAN_ANA_260 Definition of “Transmit Cycle First Sample” Transmit Cycle

FEAT_TX_CHAN_ANA_270 Definition of “Transmit Cycle Last Sample” Transmit Cycle

FEAT_TX_CHAN_ANA_280 Definition of “Transmit Cycle Profile” Transmit Cycle

FEAT_TX_CHAN_ANA_290 Composition of “Transmit Cycle Profile” Transmit Cycle

FEAT_TX_CHAN_ANA_300 Explicit Notion “TransmitCycle” Transmit Cycle

FEAT_TX_CHAN_ANA_310 Constraint “MaxTxCycleProfiles” Transmit Cycle

FEAT_TX_CHAN_ANA_320 Definition of “Time Profile” Transmit Cycle

FEAT_TX_CHAN_ANA_330 Constraint « TransmitTimeProfileAccuracy » Transmit Cycle

FEAT_TX_CHAN_ANA_340 Explicit Notion “TransmitStartTime” Transmit Cycle

FEAT_TX_CHAN_ANA_350 Referenced event source « TransmitStart » Transmit Cycle

FEAT_TX_CHAN_ANA_360 Explicit Notion “TransmitStopTime” Transmit Cycle

FEAT_TX_CHAN_ANA_370 Definition of “Transmit Tuning Profile” Transmit Cycle

FEAT_TX_CHAN_ANA_380 Contents of “Tuning Profile” Transmit Cycle

FEAT_TX_CHAN_ANA_390 States of “Transmit Cycle Profile” Transmit Cycle

FEAT_TX_CHAN_ANA_400 Transitions of “Transmit Cycle Profile” Transmit Cycle

FEAT_TX_CHAN_ANA_410 Transitions correspondence Transmit Cycle

FEAT_TX_CHAN_ANA_420 Time-defined transition “StartTuning” Active Phase

FEAT_TX_CHAN_ANA_430 Signal-defined transition “StartTuning” Active Phase

FEAT_TX_CHAN_ANA_440 Error “ERR_TooLateRequest” Active Phase

FEAT_TX_CHAN_ANA_450 Precedence rules for Tuning explicit notions definition Active Phase

FEAT_TX_CHAN_ANA_460 Time-defined transition “SignalConsumptionStop” Post-Activation

FEAT_TX_CHAN_ANA_470 Signal-defined transition “SignalConsumptionStop” Post-Activation

FEAT_TX_CHAN_ANA_480 Useless samples discarding Post-Activation

FEAT_TX_CHAN_ANA_490 Desctruction start time Post-Activation

FEAT_TX_CHAN_ANA_500 Error TooShortBurst Post-Activation

FEAT_TX_CHAN_ANA_510 Operation “createTransmitCycleProfile()” Transmit Control

FEAT_TX_CHAN_ANA_520 Argument “requestedTransmitStartTime” Transmit Control

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 63 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_ANA_530 Constraint “MinTransmitStartProximity” Transmit Control

FEAT_TX_CHAN_ANA_540 Constraint “MinTransmitStartAnticipation” Transmit Control

FEAT_TX_CHAN_ANA_550 Argument “requestedTransmitStopTime” Transmit Control

FEAT_TX_CHAN_ANA_560 Argument “requestedTuningPresetId” Transmit Control

FEAT_TX_CHAN_ANA_570 Argument “requestedCarrierFrequency” Transmit Control

FEAT_TX_CHAN_ANA_580 Argument “requestedNominalRFPower” Transmit Control

FEAT_TX_CHAN_ANA_590 TransmitCycleProfile initialization Transmit Control

FEAT_TX_CHAN_ANA_600 Constraint “MinTransmitStartAnticipation” Transmit Control

FEAT_TX_CHAN_ANA_610 Error “ERR_TooManyCreatedTxProfiles” Transmit Control

FEAT_TX_CHAN_ANA_620 “requestedTransmitStartTime” using Absolute TimeRequest format Transmit Control

FEAT_TX_CHAN_ANA_630 “requestedTransmitStartTime” using event-based format Transmit Control

FEAT_TX_CHAN_ANA_640 Default event source for event-derived time requests Transmit Control

FEAT_TX_CHAN_ANA_650 Default event occurrence for event-derived time requests Transmit Control

FEAT_TX_CHAN_ANA_660 Operation “configureTransmitCycle()” Transmit Control

FEAT_TX_CHAN_ANA_670 Target cycle identification in “configureTransmitCycle()” Transmit Control

FEAT_TX_CHAN_ANA_680 Argument “requestedTransmitStartTime” Transmit Control

FEAT_TX_CHAN_ANA_690 Constraint “MinTransmitStartAnticipation” Transmit Control

FEAT_TX_CHAN_ANA_700 Argument “requestedTransmitStopTime” Transmit Control

FEAT_TX_CHAN_ANA_710 Argument “requestedCarrierFrequency” Transmit Control

FEAT_TX_CHAN_ANA_720 Argument “requestedNominalRFPower” Transmit Control

FEAT_TX_CHAN_ANA_730 Error “Unkown Target Cycle” Transmit Control

FEAT_TX_CHAN_ANA_740 Operation “setTransmitStopTime()” Transmit Control

FEAT_TX_CHAN_ANA_750 Argument “requestedTransmitStopTime” Transmit Control

FEAT_TX_CHAN_ANA_760 Defined “requestedTransmitStopTime” Transmit Control

FEAT_TX_CHAN_ANA_770 Undefined “requestedTransmitStopTime” (instant Deactivation) Transmit Control

FEAT_TX_CHAN_ANA_780 Constraint “TransmitStopAnticipation” Transmit Control

FEAT_TX_CHAN_ANA_790 Error “ERR_TooLateRequest” Transmit Control

FEAT_TX_CHAN_ANA_800 Constraint “MaxTransmitControlInvocationDuration” Transmit Control

FEAT_TX_CHAN_ANA_810 Definition of “The Pushed Packet” Transmit Data Push

FEAT_TX_CHAN_ANA_820 Creation of “The Pushed Packet” Transmit Data Push

FEAT_TX_CHAN_ANA_830 Visibility on “The Pushed Packet” Transmit Data Push

FEAT_TX_CHAN_ANA_840 Desctruction of “The Pushed Packet” Transmit Data Push

FEAT_TX_CHAN_ANA_850 Packets burst alignement Transmit Data Push

FEAT_TX_CHAN_ANA_860 Sequential bursts transmission Transmit Data Push

FEAT_TX_CHAN_ANA_870 Ordered packets pushes Transmit Data Push

FEAT_TX_CHAN_ANA_880 Operation “pushBBSamplesTx()” Transmit Data Push

FEAT_TX_CHAN_ANA_890 Argument “thePushedPacket” Transmit Data Push

FEAT_TX_CHAN_ANA_900 Argument “endOfBurst” Transmit Data Push

FEAT_TX_CHAN_ANA_910 pushBBSamplesTx() Post-Invocation Transmit Data Push

FEAT_TX_CHAN_ANA_920 pushBBSamplesTx() Post-Invocation for defined TransmitStopTime Transmit Data Push

FEAT_TX_CHAN_ANA_930 Constraint “MaxTransmitDataPushInvocationDuration” Transmit Data Push

FEAT_TX_CHAN_ANA_940 Constraint “MinPacketStorageAnticipation” Transmit Data Push

FEAT_TX_CHAN_ANA_950 Implicit Notion “MaxPushedPacketSize” Transmit Data Push

FEAT_TX_CHAN_ANA_960 Error “ERR_Oversized Pushed Packet” Transmit Data Push

FEAT_TX_CHAN_ANA_970 Implicit notion “Overflow Mitigation” Transmit Data Push

FEAT_TX_CHAN_ANA_980 Caller Blocked Overflow Mitigation Transmit Data Push

FEAT_TX_CHAN_ANA_990 No Overflow Overflow Mitigation Transmit Data Push

Table 14: Overview of Transmit Channel Analysis requirements

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 64 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.2.4 Modelling Requirements

3.2.4.1 Transmit Channel interfaces

The following class diagram involves the interfaces realized by the Transmit Channel, between the

Waveform Application and the Transceiver Subsystem:

Figure 15: Transmit Channel involved interfaces

FEAT_TX_CHAN_MOD_010 [Transmit Control interface

Transmit Control is the interface used to control the Transmit Channel behaviors according to the Waveform

needs. This interface shall include the following operations:

 createTransmitCycleProfile()

 configureTransmitCycle()

 setTransmitStopTime()

Definitions of operations and behaviors of their realizations by the Transmit Channel core feature are

specified in the baseline requirements of the Transmit Channel.

] END_FEAT_TX_CHAN_MOD_010

FEAT_TX_CHAN_MOD_020 [Transmit Data Push interface

Transmit Data Push is the interface used for transferring baseband samples from the Waveform Application

to the Transceiver Subsystem. This interface shall include the following operation:

 pushBBSamplesTx()

Definition of this operation and associated behaviour of its realization by the Transmit Channel core feature

are specified in the baseline requirements of the Transmit Channel.

] END_FEAT_TX_CHAN_MOD_020

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 65 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Note: Signatures of the operations are not provided for better visibility. Specification of the operations is

depicted in paragraph Baseline Requirements of this chapter.

3.2.4.2 Transmit Channel composition

FEAT_TX_CHAN_MOD_030 [Transmit Channel modelling elements 1

Transceiver Subsystem model involving feature Transmit Channel shall use the modelling elements depicted

in the following class diagram:

Figure 16: Transmit Channel main composition

] END_FEAT_TX_CHAN_MOD_030

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 66 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_TX_CHAN_MOD_040 [Transmit Channel modelling elements 2

Transceiver Subsystem model involving feature Transmit Channel shall use the modelling elements depicted

in the following class diagram :

Figure 17: Transmit Channel and Cycle Profile

] END_FEAT_TX_CHAN_MOD_040

3.2.5 Implementation Languages Requirements

3.2.5.1 C++ Requirements

Interfaces between the Waveform Application and the Transceiver Subsystem for the Transmit Channel core

feature are:

 Transmit Control

 Transmit Data Push

Both are seen in a modeling analysis as abstract classes defining abstract operations. In C++ language, this

leads to consider these operations as pure virtual methods of its respective classes. These methods can not be

implemented by these abstract classes, but shall be overridden and implemented by derived classes.

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 67 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

TransmitControl interface

FEAT_TX_CHAN_CPP_010 [TransmitControl C++ definition

Implementations in C++ using the feature Transmit Channel shall use the interface TransmitControl as

declared in the following C++ reference source code extract:

class I_TransmitControl

{

public :

 virtual void createTransmitCycleProfile(

 Time requestedTransmitStartTime,

 Time requestedTransmitStopTime,

 UShort requestedPresetId,

 Frequency requestedCarrierFrequency,

 AnaloguePower requestedNominalRFPower) = 0;

 virtual void configureTransmitCycle(

 ULong targetCycleId,

 Time requestedTransmitStartTime,

 Time requestedTransmitStopTime,

 Frequency requestedCarrierFrequency,

 AnaloguePower requestedNominalRFPower) = 0;

 virtual void setTransmitStopTime(

 ULong targetCycleId,

 Time requestedTransmitStopTime) = 0;

};

] END_FEAT_TX_CHAN_CPP_010

FEAT_TX_CHAN_CPP_020 [TransmitControl C++ header file

Implementations in C++ using the feature Transmit Channel shall include the header file entitled

TransmitControl.h, corresponding to the header file of the TransmitControl definition.

] END_FEAT_TX_CHAN_CPP_020

TransmitDataPush interface

FEAT_TX_CHAN_CPP_030 [TransmitDataPush C++ definition

Implementations in C++ using the feature Transmit Channel shall use the interface TransmitDataPush as

declared in the following C++ reference source code extract:

class I_TransmitDataPush

{

public :

 virtual void pushBBSamplesTx(

 BBPacket * thePushedPacket,

 Boolean endOfBurst) = 0;

};

] END_FEAT_TX_CHAN_CPP_030

FEAT_TX_CHAN_CPP_040 [TransmitDataPush C++ header file

Implementations in C++ using the feature Transmit Channel shall include the header file entitled

TransmitDataPush.h, corresponding to the header file of the TransmitDataPush definition.

] END_FEAT_TX_CHAN_CPP_040

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 68 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.2.5.2 VHDL Requirements

The pushBBSamplesTx operation of the Transmit feature is described in VHDL as:

library IEEE;

use IEEE.std_logic_1164.ALL;

entity Transmit is

 generic(

 G_CODING_BITS : natural := 16 -- for instance

);

 port (

 -- Common Signals

 clk : in std_logic; -- Clock signal

 rst_n : in std_logic; -- Reset signal

 -- pushBBSamplesTx

 BBSample_I : in std_logic_vector(G_CODING_BITS-1 downto 0);

 BBSample_Q : in std_logic_vector(G_CODING_BITS-1 downto 0);

 BBSample_write : in std_logic;

 BBSamplesPacket_start : in std_logic;

 BBSamplesPacket_end : in std_logic;

 BBSample_ready : out std_logic

 -- Other signals

);

end entity Transmit;

The Transmit entity signals are summarized in the following table:

Signal Name Direction Signal Format
Signal

Units

Signal

Min Value

Signal

Max Value
Notes

Clk in 1-bit Discrete Clock
0->1 =

Active Edge

1->0 =

Passive Edge XX MHz Transmit Clock

rst_n in 1-bit Discrete Level 0 1
Active-low, asynchronous
reset.

BBSample_I In CodingBits-1 bit Signed N/A -32,768 32,767 Imaginary Sample value

BBSample_Q in CodingBits-1 bit Signed N/A -32,768 32,767 Quadrature Sample value

BBSample_write in 1-bit Discrete Level 0 1
Data valid flag to request
sample transmission

BBSamplesPacket_start in 1-bit Discrete Level 0 1 Packet start flag

BBSamplesPacket_end in 1-bit Discrete Level 0 1 Packet end flag

BBSample_ready out 1-bit Discrete Level 0 1
Accept/ready flag to activate
sample transmission

Table 15: VHDL Transmit Entity signals

A BBSample is transmitted only if both ‘write’ and ‘ready’ signals are asserted.

The BBSamplePacket concept is described in VHDL using additional signals to indicate the start and the end

of a sample packet:

Every feature using BBSamplePacket concept has to implement the following protocol:

 the BBSamplesPacket_start signal is asserted with the first sample of a packet

 the BBSamplesPacket_end signal is asserted with the last sample of a package

 In any other case, BBSamplesPacket_start and BBSamplesPacket_end signals are deasserted

SDRF-08-S-0008-V1.0.0 Core Feature “Transmit Channel”

 Page 69 of 130 Core Feature “Transmit Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

This behaviour is shown in the next timing diagram:

CLK

BBSample_I
BBSample_Q

 BBSample_write

 BBSample_ready

Next_signal

A B

A B

C

C C

BBSamplesPacket_start

BBSamplesPacket_end

Figure 18: BBSamplePacket Transmit Timing diagram for VHDL

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 70 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.3 - Core Feature “Receive Channel”

3.3.1 Principle

For radio reception, a Receive Channel within a Transceiver Subsystem is down-converting and most

probably down sampling and filtering bursts of input RF signal into bursts of output Baseband Signal. A

Receive Cycle denotes the phase corresponding to the down-conversion of a particular RF signal burst.

A Receive Channel implementation is namely composed of the following specific sub-items:

 A Baseband FIFO

 A Down-conversion Chain

The Down-conversion Chain is the signal processing chain which performs the down-conversion of the burst

of RF Signal, outputting it as a burst of Baseband Signal to be contained in Baseband FIFO

The programming interface ReceiveDataPush enables the samples packets to be retrieved by the Waveform

Application from the Receive Channel. The ReceiveChannel takes in charge the packets produced by Down-

Conversion Chain, stores them into Baseband FIFO, where Waveform Application retrieves them in real-

time and generates the Baseband Signal. The samples need to be available in Baseband FIFO before the

retrieving process starts, and need to be continuously stored in Baseband FIFO in a timely manner that

prevents signal corruption from occurring.

The programming interface ReceiveControl enables the Waveform Application to manage when and how

Receive Cycles shall occur. For each Receive Cycle, this control is based on specification of when the

concerned RF burst reception shall start and stop, and through characterization of the applicable Tuning

Profile, which characterizes the exact signal processing transformation to be applied to RF Signal by Down-

conversion Chain on the concerned burst in order to generate the Baseband Signal.

The following figure summarizes the previous concepts:

Receive Channel
Antenna

Waveform

Application

Receive cycles

control

Down-conversion

Chain

Base-band FIFO

Production

ReceiveControl

Pushed packet

packet copies

controls

Packets

preparing

ReceivetDataPush

propagates

towards

Burst of Baseband Signal - sBB[n]

Start

part of

Burst of RF Signal - sRF(t)

Start

RF Input

controls

Retrieval

Figure 19: Overview of a Receive Channel

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 71 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.3.2 Overview

3.3.2.1 Programming interfaces overview

The following table provides an overview of the programming interface ReceiveControl:

Signature (in pseudo-code) Used by Realized by Description

createReceiveCycleProfile (

 Time requestedReceiveStartTime,

 Time requestedReceiveStopTime,

 Ulong requestedPacketSize,

 UShort requestedPresetId,

 Frequency requestedCarrierFrequency);

Waveform

Application

Transceiver

Sub-system

Creation and configuration of a

Receive Cycle.

configureReceiveCycle (

 Ulong targetCycleId,

 Time requestedReceiveStartTime,

 Time requestedReceiveStopTime,

 Ulong RequestedPacketSize,

 Frequency requestedCarrierFrequency);

Waveform

Application

Transceiver

Sub-system

Configuration of an existing Receive

Cycle.

setReceiveStopTime (

 Ulong targetCycleId,

 Time requestedReceiveStopTime);

Waveform

Application

Transceiver

Sub-system

Configuration or reconfiguration of

the end of a Receive Cycle.

Table 16: Overview of programming interface ReceiveControl

The following table provides an overview of the programming interface ReceiveDataPush:

Signature (in pseudo-code) Used by Realized by Description

pushBBSamplesRx(

 BBPacket thePushedPacket,

 Boolean endOfBurst);

Transceiver

Sub-system

 Waveform

Application

Enable the Waveform Application to

retrieve a baseband samples packet

from the Receive Channel.

Table 17: Overview of programming interface ReceiveDataPush

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 72 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.3.2.2 Charactersistics overview

Explicit Notions

Explicit Notions as defined in §2.3 are observable, implementation in-dependent and exchanged

characteristics of the Transceiver Subsystem. The following table summarizes the Explicit Notions related to

Receive Channel:

Explicit Notion Name Defined in Nature Exchange

Mechanism

Associated Argument Associated

Property

ReceiveCycle Core

Feature

Logical Programmable targetCycleId n.a.

ReceiveStartTime Core

Feature

Real-Time Programmable requestedReceiveStartTime n.a.

ReceiveStopTime Core

Feature

Real-Time Programmable requestedReceiveStopTime n.a.

TuningPreset Core

Feature

Logical Programmable requestedPresetId n.a.

CarrierFrequency Common

Concept

Signal

Processing

Programmable

&

Configurable

requestedCarrierFrequency CarrierFrequency

PacketSize Common

Concept

Signal

Processing

Programmable

&

Configurable

requestedPacketSize PacketSize

Table 18: Explicit Notions related to Receive Channel

Implicit Notions

Implicit Notions as defined in §2.3 are observable, implementation in-dependent and not exchanged

characteristics of the Transceiver Subsystem. The following table summarizes the Implicit Notions related to

Receive Channel:

Implicit Notion Name Defined in Nature

BasebandFIFOSize Core

Feature

Logical

MaxPushedPacketSize Core

Feature

Logical

OverflowMitigation Core

Feature

Logical

BasebandSignal:…

 BasebandSamplingFrequency

 BasebandCodingBits

 BasebandNominalPower

Common

Concept

Signal

Processing

Table 19: Implicit Notions related to Receive Channel

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 73 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Internal Notions

Internal Notions as defined in §2.3 are observable and implementation dependent characteristics of the

Transceiver Subsystem. The following table summarizes the Internal Notions related to Receive Channel:

Name Defined in Nature Transceiver Design Formulas

TuningDuration Core Feature Real-time < MaxTuningDuration

TuningStartTime Core Feature Real-time = ReceiveStartTime – TuningDuration

  [ReceiveStartTime - MaxTuningDuration;

ReceiveStartTime]

DownconversionLatency Core Feature Real-time < MaxDownConversionLatency

ProductionStartTime Core Feature Real-time = ReceiveStartTime + DownConversionLatency

  [ReceiveStartTime; ReceiveStartTime +

DownConversionLatency]

ProductionStopTime Core Feature Real-time = ReceiveStopTime + DownConversionLatency

  [ReceiveStopTime; ReceiveStopTime +

DownConversionLatency]

ReactivationTime Core Feature Real-Time = ReceiveStartTime(n) – ReceiveStopTime(n-1)

 > MinReactivationTime

RxChannelTransferFunction Common

Concept

Signal

Processing

 Fits in mask defined by ChannelMask

Table 20: Internal Notions related to Receive Channel

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 74 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Constraints

Explicit Notions as defined in §2.3 are non-observable characteristics which are constraining the Transceiver

Subsystem and/or Waveform Application implementation. The following table summarizes the Constraints

related to Receive Channel:

Name of the Constraint Nature

MaxTuningDuration Real-time

MaxDownconversionLatency Real-time

MinReceiveStartProximity Real-time

MinReceiveStartAnticipation Real-time

ReceiveTimeProfileAccuracy Real-time

MinReceiveStopAnticipation Real-time

MaxReceiveControlInvocationDuration Real-time

MaxReceiveDataPushInvocationDureation Real-time

MinPacketPreparationTime Real-time

MinReactivationTime Real-time

ChannelMask:… Signal

Processing

SpectrumMask:… Signal

Processing

GroupDelayMask:… Signal

Processing

MaxCycleId Logical

MaxRxCycleProfiles Logical

Table 21: Constraints related to Receive Channel

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 75 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.3.3 Analysis Requirements

The mnemonic used for identification of requirements of Transmit Channel feature is: “RX_CHAN”.

3.3.3.1 Receive Channel

FEAT_RX_CHAN_ANA_010 [Definition of a “Receive Channel“

The core feature Receive Channel shall be used to refer to the capabilities provided by the Transceiver Sub-

system component that performs down-conversion of a succession of input analogue RF Signal bursts into

Baseband Signal bursts.

] END_FEAT_RX_CHAN_ANA_010

FEAT_RX_CHAN_ANA_020 [Creation of a “Receive Channel”

The deployment of a Receive Channel and all its constituents shall be undertaken by the Transceiver Sub-

system implementation, following implementation specific choices.

The state of a Receive Channel just after its creation and any of its constituent shall be state Deployed.

The initialization of the Receive Channel shall be conducted by deployment.

] END_FEAT_RX_CHAN_ANA_020

The steps setting one Down-conversion Chain into state Deployed are realized by (re)configuration

mechanisms proper to the Transceiver implementation, which are out of the scope of this specification.

FEAT_RX_CHAN_ANA_030 [Composition of a “Receive Channel”

The following concepts shall be integrated as constituents of a given Receive Channel:

 Concept Down-conversion Chain,

 Concept Receive Baseband Signal FIFO.

] END_FEAT_RX_CHAN_ANA_030

They are defined in their respective definition requirements as specified in the following paragraphs.

3.3.3.2 Receive Baseband Signal

The Receive Baseband Signal is the signal provided by the Receive Channel to the Waveform Application in

order to be processed.

Terms and definitions used in this section are based on those presented within Common Concepts §4.2.4

Baseband Signal.

FEAT_RX_CHAN_ANA_040 [Definition of “Receive Baseband Signal”

The concept Receive Baseband Signal shall describe the useful baseband signal sent by the Receive Channel

to the Waveform Application for baseband signal processing and further treatments.

] END_FEAT_RX_CHAN_ANA_040

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 76 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Useful baseband signals can include the following possible information:

 Power rising pattern

 Power falling pattern

 ALC and/or AGC patterns

 Data and eventually WF specifics pattern (sequences for synchronization)

FEAT_RX_CHAN_ANA_050 [Implicit Notions of “Receive Baseband Signal”

A Receive Baseband Signal shall be characterized using the following notions, defined by Common Concept

Baseband Signal.

 Implicit notion Baseband Coding Bits

 Implicit notion Baseband Nominal Power

] END_FEAT_RX_CHAN_ANA_050

FEAT_RX_CHAN_ANA_060 [Receive Baseband Signal configuration

The properties of Receive Baseband Signal shall be set to values appropriate for the considered waveform

during Receive Channel deployment.

] END_FEAT_RX_CHAN_ANA_060

3.3.3.3 Receive Baseband FIFO

The Receive Baseband FIFO contains baseband signal samples provided by the Down-conversion Chain in

order for them to be consumed by the Waveform Application.

Consumption of baseband samples in the Receive Baseband FIFO is realized in a packet mode.

The FIFO monitors samples availability in order to raise error notification in case the samples needed by the

Waveform Application are not consumed properly (overflow situation).

FEAT_RX_CHAN_ANA_070 [Definition of “Receive Baseband FIFO”

The terminology Receive Baseband FIFO shall be associated with the part of the sub-part of the Receive

Channel storing the baseband samples pushed by the Down-conversion Chain and consumed by the

Waveform Application.

] END_FEAT_RX_CHAN_ANA_070

FEAT_RX_CHAN_ANA_080 [Implicit Notion “BasebandFIFOSize”

The implicit notion BasebandFIFOSize shall be the Ulong value which captures the size of the Receive

Baseband FIFO, capturing the maximum number of baseband samples possibly stored inside the Baseband

FIFO.

] END_FEAT_RX_CHAN_ANA_080

FEAT_RX_CHAN_ANA_090 [Configuration of “Receive Baseband FIFO”

The properties of Receive Baseband FIFO shall be set to the values required by the considered Waveform

Application during the Receive Channel deployment.

] END_FEAT_RX_CHAN_ANA_090

Availability deadline and Overflow situations

Any sample of the burst shall be present within baseband FIFO when the Waveform Application is going to

consume them. An availability deadline is therefore attached to each sample to be consumed.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 77 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

In case any received sample to be consumed would not be retrieved effectively by the Waveform

Application, the Receive Channel goes into a SignalOverflow situation. This is an error situation.

FEAT_RX_CHAN_ANA_100 [Error “FIFOOverflow”

During the Active state of a Receive Cycle, an error ERR_FIFOOverflow shall be generated if the FIFO runs

into an overflow situtation.

] END_FEAT_RX_CHAN_ANA_100

FEAT_TX_CHAN_ANA_110 [FIFO Overrflow ReceiveStop

During the active state of a Receive Cycle, if Baseband FIFO runs into an overflow situation, the reception

shall be stopped by initiating a ReceiveStop transition, immediately after the last sample pushed into

baseband FIFO has been retrieved by Waveform Application.

] END_FEAT_TX_CHAN_ANA_110

It is worth noting that during reception there is only the overflow scenario that deserves consideration as an

error, because this means that the waveform application is not consuming samples fast enough to ensure

continuous operation. Underflow scenario would signifie only that the waveform is faster than the down-

conversion chain.

3.3.3.4 Down-conversion Chain

FEAT_RX_CHAN_ANA_120 [Definition of the “Down-conversion Chain”

Concept Down-conversion Chain shall denote the signal processing chain in the Receive Channel which

undertakes, during periods of time denoted as Active Receive Cycles, continuous transformation of one input

RF signal burst into the corresponding output Baseband signal burst.

] END_FEAT_RX_CHAN_ANA_120

FEAT_RX_CHAN_ANA_130 [Constraint “MaxDownconversionLatency”

The constraint MaxDownconversionLatency of type Latency shall be used to characterize the allowable time

boundary between the instant an RF signal is consumed by the Down-conversion Chain and the instant the

first corresponding sample is produced for the Baseband FIFO.

] END_FEAT_RX_CHAN_ANA_130

This value has to be taken into consideration by the waveform application engineering process. The term

DownconversionLatency is used in the following sections as an Internal Notion which is implementation

related and does not exceed the above constraint.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 78 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

States and Transitions of Down-conversion Chain

The following figure summarizes the concepts addressed in this section:

Deployed
Entry transition

Unactive

RFReceiveStart

Active Receive

Cycle

[@ ProductionStartTime]

[@ ProductionStopTime]

Active

• RF signal being consumed

• Samples being produced

BBProductionStart

BBProductionStop

RFReceiveStop

[@ ReceiveStartTime]

[@ ReceiveStopTime]

Activation

• RF signal being consumed

• No sample produced

Transient

Deactivation

• No RF signal being consumed

• Samples being produced

Transient

Figure 20: States and transitions of the Down-conversion Chain

FEAT_RX_CHAN_ANA_140 [States of Down-conversion Chain

The following states shall be implemented by a Down-conversion Chain:

 Deployed: Initial state of the chain once deployed according to considered Waveform

requirements.

 Unactive: The state during which the Down-conversion Chain is not consuming RF signal, and

is not outputing any baseband signal in the Baseband FIFO. Automatically reached once Down-

conversion Chain is Deployed.

 Activation: The transient state during which the Down-conversion Chain has started to consume

RF signal, while it is not yet outputting the corresponding baseband signal in the Baseband

FIFO. Arrival of the useful baseband signal in the Baseband FIFO corresponds to the end of the

state.

 Active: The state during which the input RF signal is continuously consumed by the Down-

conversion Chain, and transformed into the associated baseband signal which is produced by the

chain at its output.

 Deactivation: The transient state during which the RF signal is not consumed anymore by the

Down-conversion Chain, while the previously consumed signal is still being processed by the

Down-conversion with associated baseband signal produced. End of useful signal processing

corresponds to the end of the state.

] END_FEAT_RX_CHAN_ANA_140

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 79 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Activation and Deactivation are transient states which have a duration equal to the DownconversionLatency,

which is the time elapsed between (i) the instant when consumption of the RF signal occurs at the RF

connector and (ii) the instant when the corresponding baseband signal is output in the Baseband FIFO.

A Tuning activity, not depicted in the preceding figure, is the step during which the Waveform Application

shall configure a Receive Cycle for the reception of the next burst.

FEAT_RX_CHAN_ANA_150 [Transitions between “Down-conversion Chain” states

The instantaneous transitions between states of a Down-conversion Chain shall respect the following list:

 RFReceiveStart: transition between states Unactive and Activation

 BBProductionStart: transition between states Activation and Active

 RFReceiveStop: transition between states Active and Deactivation

 BBProductionStop: transition between states Deactivation and Unactive

] END_FEAT_RX_CHAN_ANA_150

FEAT_RX_CHAN_ANA_160 [Timings associated to Down-conversion Chain transitions

The following timings shall be associated to instants when instantaneous transitions of Down-conversion

Chain are happening:

 ReceiveStartTime: associated with transition RFReceiveStart

 ProductionStartTime: associated with transition BBProductionStart

 ReceiveStopTime: associated with transition RFReceiveStop

 ProductionStopTime: associated with transition BBProductionStop

] END_FEAT_RX_CHAN_ANA_160

FEAT_RX_CHAN_ANA_170 [Tuning activity

The Tuning activity shall be used to configure the signal processing requirements captured in Tuning Profile.

This activity is characterized by the time it starts, TuningStartTime, and its duration, TuningDuration.

] FEAT_RX_CHAN_ANA_170

FEAT_RX_CHAN_ANA_180 [Constraint “MaxTuningDuration”

The Constraint MaxTuningDuration of type Latency shall be used to characterize the maximum allowable

constant duration of the Tuning activity.

] END_FEAT_RX_CHAN_ANA_180

This value has to be taken into consideration by the waveform application engineering process. The term

TuningDuration is used in the following sections as an Internal notion which is implementation related and

does not exceed the above constraint.

FEAT_RX_CHAN_ANA_190 [Internal notion “TuningStartTime”

The internal notion TuningStartTime shall be used to specify the beginning of the Tuning activity. Nominal

use of TuningStartTime is described by the relationships below:

TuningStartTime[n+1] = RFReceiveStart[n+1] – TuningDuration

TuningStartTime[n+1]  ProductionStopTime[n]

Although rarely used, the TuningStartTime[n+1] may start before the ProductionStopTime[n], for example

in case of duplicated channels for very fast frequency hopping applications.

] FEAT_RX_CHAN_ANA_190

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 80 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

The following figure summarizes the definitions introduced in this section:

t

|sBB|[n]

ProductionStartTime ProductionStopTime

As produced by

Down-conversion

chain in FIFO

Undefined Undefined

Baseband Burst

t

sRF(t)

ReceiveStartTime ReceiveStopTime

Active Receive Cycle

DownconversionLatency

Active
Activation Deactivation

TuningStartTime

Tuning

TuningDuration

DownconversionLatency

No signal No signal

RF Burst

ReceiveStartTime

ReceiveStopTime

Time Profile

Figure 21: Time Profile of a Receive Cycle

FEAT_RX_CHAN_ANA_200 [Constraint “MinReactivationTime”

The constraint MinReactivationTime of type Latency shall be used to quantify the minimum time elapsed

between the ReceiveStopTime of one given Receive Cycle and the ReceiveStartTime of the next one.

] END_FEAT_RX_CHAN_ANA_200

Remark: Transmit Channel has its own “MinReactivationTime” constraint, but not equally defined.

Identification of Current Cycle

Default event-based time requests are to be based on the notion of “Current” Transmit Cycle.

FEAT_RX_CHAN_ANA_210 [Definition of the “Current” Receive Cycle

The notion of current Receive Cycle shall be applied, for operations invoked by the Waveform Application

making event-based time requests, as a function of the instant when the considered operation is invoked by

Waveform Application.

] END_FEAT_RX_CHAN_ANA_210

FEAT_RX_CHAN_ANA_220 [Rule for “Current” Receive Cycle identification

The current Receive Cycle shall be the Active Receive Cycle, if the operation is invoked when a Receive

Cycle is active, or the last Receive Cycle that finished before invocation.

] END_FEAT_RX_CHAN_ANA_220

Uncertainty of identification of the current Receive Cycle thus exists when invocation of

createReceiveCycle() happens close to the ReceiveStartTime of a certain cycle. It is up to Waveform

Application design to make appropriate assumptions to avoid calls happening within this time zone.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 81 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.3.3.5 Receive Cycle

A compliant execution by the Down-conversion Chain of a given Receive Cycle relies on availability of two

sorts of information:

 Control data, captured into the Receive Cycle Profile

 Output data, denoted as the Receive Cycle Output Burst

The Receive Cycle Output Burst is the slice of baseband signal, provided by the Down-conversion Chain

after application of signal processing requirements captured in Tuning Profile and real-time requirements

captured in Time Profile.

Receive Cycle Output Burst

FEAT_RX_CHAN_ANA_230 [Definition of “Receive Cycle Output Burst”

The Receive Cycle Output Burst shall denote the un-interrupted slice of Baseband signal provided by the

Down-conversion Chain for being transferred and processed by the Waveform Application during the

considered Receive Cycle.

] END_FEAT_RX_CHAN_ANA_230

FEAT_RX_CHAN_ANA_240 [Definition of “Receive Cycle First Sample”

The Receive Cycle First Sample shall denote the first sample of the considered output burst.

] END_FEAT_RX_CHAN_ANA_240

FEAT_RX_CHAN_ANA_250 [Definition of “Receive Cycle Last Sample”

The Receive Cycle Last Sample shall denote the last sample of the considered output burst.

] END_FEAT_RX_CHAN_ANA_250

Receive Cycle Profile

FEAT_RX_CHAN_ANA_260 [Definition of “Receive Cycle Profile”

The concept of Receive Cycle Profile shall be used to control the Receive Cycles implemented during the

life-time of one Down-conversion Chain, one specific Receive Cycle Profile instance being created for each

specific Receive Cycle occurrence.

] END_FEAT_RX_CHAN_ANA_260

FEAT_RX_CHAN_ANA_270 [Composition of “Receive Cycle Profile”

A Receive Cycle Profile shall be composed of a Cycle Identifier, a Time Profile and a Tuning Profile.

] END_FEAT_RX_CHAN_ANA_270

Cycle identifier

FEAT_RX_CHAN_ANA_280 [Explicit notion “ReceiveCycle”

Each created cycle has a unique integer identifier ReceiveCycle which shall be an explicit notion set up

during creation to a value incremented by one for each newly created Receive Cycle, starting at 0 (ZERO)

for the first created cycle and reaching the value of constraint MaxCycleId before restarting counter to 0.

] END_FEAT_RX_CHAN_ANA_280

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 82 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_RX_CHAN_ANA_290 [Constraint “MaxRxCycleProfiles”

The constraint MaxRxCycleProfiles shall refer to the maximum number of Receive Cycles simultaneously

existing at any time within the Receive Channel.

] END_FEAT_RX_CHAN_ANA_290

Time Profile

The Time Profile is set by the Waveform Application to define time positioning of the Receive Cycle. It is

composed of Explicit Notions ReceiveStartTime and ReceiveStopTime.

They correspond to the only externally observable instants attached to a Receive Cycle which are not

dependent on the Down-conversion Chain implementation.

FEAT_RX_CHAN_ANA_300 [Definition of “Time Profile”

A Time Profile shall be composed of a ReceiveStartTime explicit notion and a ReceiveStopTime explicit

notion.

] END_FEAT_RX_CHAN_ANA_300

FEAT_RX_CHAN_ANA_310 [Constraint “ReceiveTimeProfileAccuracy”

The constraint ReceiveTimeProfileAccuracy shall refer to the Event Accuracy associated to the Time Profile

explicit notions, namely ReceiveStartTime and ReceiveStopTime.

] END_FEAT_RX_CHAN_ANA_310

FEAT_RX_CHAN_ANA_320 [Explicit notion “ReceiveStartTime”

The implementation-independent explicit notion ReceiveStartTime shall be used within Time Profile to

contain the Receive Start Time of the corresponding Receive Cycle.

] END_FEAT_RX_CHAN_ANA_320

FEAT_RX_CHAN_ANA_330 [Referenced event source “ReceiveStart”

The “ReceiveStart” event, associated to the Receive Start Time explicit notion, shall be the unique

Referenced Event Source of the Receive Channel.

] END_FEAT_RX_CHAN_ANA_330

FEAT_RX_CHAN_ANA_340 [Explicit notion “ReceiveStopTime”

The implementation-independent explicit notion ReceiveStopTime shall be used within Time Profile to

contain the Receive Stop Time of the corresponding Receive Cycle.

] END_FEAT_RX_CHAN_ANA_340

Explicit notions ReceiveStartTime and ReceiveStopTime obey accuracy assumptions directly imposed by

radio link interoperability conventions between transmitting and receiving radio nodes. Low accuracy on

those values is requested for waveforms such as fixed frequency AM/FM speech waveforms, while high

accuracy is needed for frequency hopping digitally modulated waveforms.

ReceiveStartTime and ReceiveStopTime may be explicitly set by the Waveform Application by means of

operations arguments. They belong to the Programmable subtype

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 83 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Implementation-dependent internal notions

Implementation-dependent time internal notions may be derived from implementation-independent explicit

notions introduced beforehand, using implementation-dependent durations or latencies:

 ProductionStartTime equal to ReceiveStartTime plus DownconversionLatency

 TuningStartTime equal to ReceiveStartTime less TuningDuration

 ProductionStopTime equal to ReceiveStopTime plus DownconversionLatency

Refer to Figure 21: Time Profile of a Receive Cycle for a graphical representation of above concepts

Tuning Profile

FEAT_RX_CHAN_ANA_350 [Definition of “Receive Tuning Profile”

A Tuning Profile shall be used to characterize which signal processing explicit notions values shall be

applied by the Down-conversion Chain when the Receive Cycle is activated.

] END_FEAT_RX_CHAN_ANA_350

FEAT_RX_CHAN_ANA_360 [Contents of “Tuning Profile”

The following explicit notions are contained within the Tuning Profile:

 PacketSize

 Tuning Preset

 CarrierFrequency

] END_FEAT_RX_CHAN_ANA_360

From one Receive Cycle to the next one, depending on the deployed waveform needs, Tuning Profile explicit

notions may be totally different, partially different, or identical.

Examples

In fixed frequency TDD mode with unique channelization, the Tuning Profile is identical from one Receive

Cycle to the next.

In advanced frequency hopping waveforms, the CarrierFrequency, the Channelization and even the Sampling

Rate can be changed from one Receive Cycle to the next, incurring different Tuning Profiles.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 84 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

States and Transitions of Receive Cycle Profile

The following figure shows how, for Active Receive Cycle number n of a given Down-conversion Chain,

active states of the corresponding Receive Cycle Profile are defined:

ActivePhaseStart

Active PhasePre-Activation Post-Activation

DestructionStart

Creation

ActivePhaseStop

Receive Cycle Profile # n

Destruction

Created

ActiveActivation Deactivation

UnactiveRFReceiveStart(n)

Down-conversion Chain

Active
BBProductionStart(n)

BBProductionStop(n)

RFReceiveStop(n)

Activation Deactivation

(…) (…)

Receive Cycle # n

Unactive

TuningStart(n)

Unactive

Figure 22: States and Transitions of a Receive Cycle Profile

FEAT_RX_CHAN_ANA_370 [States of a “Receive Cycle Profile”

The following states shall be implemented by a Receive Cycle Profile:

 Creation: The Receive Cycle Profile is created by Receive Channel.

 Pre-Activation: The Receive Cycle Profile is kept dormant with possibility for the Waveform

Application to update profiles’ explicit notions (Time Profile or Tuning Profile).

 Active Phase: The profile values are taken into account by the Down-conversion Chain to

launch the Receive Cycle of interest, with undefined explicit notions completed according to

Tuning, and updated to reflect what is effectively implemented during the Receive Cycle.

 Post-Activation: The Receive Cycle specified by the Receive Cycle Profile is over, but the

profile is kept available to let the Tuning of the next Receive Cycle re-use previous values.

 Destruction: The Receive Cycle Profile is destroyed by the Receive Channel.

] END_FEAT_RX_CHAN_ANA_370

Remark: Receive Cycle Profile states are identical to Transmit Cycle Profile state, but not their transitions.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 85 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_RX_CHAN_ANA_380 [Transitions of “Receive Cycle Profile”

The instantaneous transitions between states of a Receive Cycle Profile shall respect the following list:

 Created: transition between states Creation and Pre-Activation

 ActivePhaseStart: transition between states Pre-Activation and Active Phase

 ActivePhaseStop: transition between states Active Phase and Post-Activation

 DestructionStart: transition between states Post-Activation and Desctruction

] END_FEAT_RX_CHAN_ANA_380

FEAT_RX_CHAN_ANA_390 [Transitions correspondance

The transitions of the Down-conversion Chain for the Active Receive Cycle # N shall comply with the

following relationships with the transitions of the corresponding instance of Receive Cycle Profile:

 ActivePhaseStart and TuningStart(n) simultaneous

 ActivePhaseStop and BBProductionStop(n) simultaneous

 DestructionStart after than TransmitStartTime(n+1)

] END_FEAT_RX_CHAN_ANA_390

3.3.3.6 Active Phase

Triggering conditions

The process leading to the activation of the Receive Channel Profile is starting when the Down-conversion

Chain starts the Tuning activity, shortly before state Activation starts.

The triggering condition to start Tuning activity is based on the definition status of ReceiveStartTime:

 If ReceiveStartTime is defined, TuningStart will be realized so as to have the resulting

RFReceiveStart happen at ReceiveStartTime.

 Another triggering condition can be envisaged. The principle is to trigger the reception at the

input of the Down-conversion Chain as soon as the power of the RF signal reaches a threshold

power.

If explicit notion ReceiveStopTime is set to a defined value when TuningStart is happening, the Receive

Cycle is activated for a pre-defined duration. Otherwise, the cycle ending conditions remain to be defined

after the cycle has started.

FEAT_RX_CHAN_ANA_400 [Time-defined transition “StartTuning”

If the explicit notion ReceiveStartTime of the TimeProfile is defined, the Receive Channel shall initiate a

TuningStart transition so as to have the RFReceiveStart happen at the instant specified by value of explicit

notion ReceiveStartTime.

] END_FEAT_RX_CHAN_ANA_400

FEAT_RX_CHAN_ANA_410 [Error “ERR_TooLateRequest”

In case the cycle specified by argument targetCycleId has already reached the state Tuning, or went further

in the life sequence of the Receive Cycle Profile, the operation can not be taken into account and an error

ERR_TooLateRequest shall be generated.

] END_FEAT_RX_CHAN_ANA_410

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 86 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Setting applicable profile

FEAT_RX_CHAN_ANA_420 [Precedence rules for Tuning explicit notions definition

For each Down-conversion processing explicit notion of any given Receive Cycle, except the first one, the

values applicable by the Down-conversion shall be determined during state Tuning in compliance with the

following precedence rules, sorted in decreasing order:

 Last value set by a call during the state Idle

 Value set during the call to createReceiveCycle()

 Value applied for the considered explicit notion on the previous Receive Cycle, if defined

] END_FEAT_RX_CHAN_ANA_420

3.3.3.7 Post-Activation

Triggering conditions

State Post-Activation of the Receive Channel Profile corresponds to when the Down-conversion Chain has

finished its state Deactivation and is back to state Unactive.

Entering into state Post-Activation is entirely based on the triggering condition ReceiveStopTime which

causes the Down-conversion Chain to enter into state Deactivation.

 ReceiveStopTime shall be defined and RF Signal reception will be stopped at the instant

provided by the ReceiveStopTime explicit notion value. Baseband samples production will

continue until RF Signal will be exhausted at instant BBproductionStop.

 If ReceiveStopTime value is not defined RF Signal receptions will be stopped immediately.

FEAT_RX_CHAN_ANA_430 [Destruction start time

The destruction of a given Receive Cycle Profile shall not be realized by the Receive Channel until the next

Receive Cycle has reached its transition RFReceiveStart.

] END_FEAT_RX_CHAN_ANA_430

This requirement allows the Tuning of the next cycle to be able to re-use the previous Tuning Profile for

undefined properties.

3.3.3.8 Receive Control

createReceiveCycleProfile()

Purpose

The operation createReceiveCycleProfile() enables to request the creation by the Down-conversion chain of

a specific Receive Cycle Profile. It aims at performing a systematic call for any necessary Receive Cycle.

Syntax

FEAT_RX_CHAN_ANA_440 [Operation “createReceiveCycleProfile()”

The operation createReceiveCycleProfile() shall be implemented by the Receive Channel and be used by the

Waveform Application in order to request the creation of a particular Receive Cycle Profile.

] END_FEAT_RX_CHAN_ANA_440

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 87 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_RX_CHAN_ANA_450 [Argument “requestedReceiveStartTime”

The argument requestedReceiveStartTime of type Time shall be used to request an initial value for the

explicit notion ReceiveStartTime.

] END_FEAT_RX_CHAN_ANA_450

FEAT_RX_CHAN_ANA_460 [Constraint “MinReceiveStartProximity”

If the argument requestedReceiveStartTime is an Event-based Time, it shall respect the Min Event Proximity

constraint specified by “MinReceiveStartProximity”.

] END_FEAT_RX_CHAN_ANA_460

FEAT_RX_CHAN_ANA_470 [Constraint “MinReceiveStartAnticipation”

The constraint MinReceiveStartAnticipation of type Latency shall be used to characterize the minimum

allowed elapsed time between the instant the createReceiveCycleProfile() operation is invoked and the target

Receive start time.

] END_FEAT_RX_CHAN_ANA_470

FEAT_RX_CHAN_ANA_480 [Argument “requestedReceiveStopTime”

The argument requestedReceiveStopTime of type Time shall be used to request an initial value for the

explicit notion ReceiveStopTime.

] END_FEAT_RX_CHAN_ANA_480

FEAT_RX_CHAN_ANA_490 [Argument “requestedPacketSize”

The argument RequestedPacketSize of type ULong shall be used in order to request initial values for the

PacketSize explicit notion.

] END_FEAT_RX_CHAN_ANA_490

FEAT_RX_CHAN_ANA_500 [Argument “requestedPresetId”

The argument requestedPresetId of type UShort shall be used in order to indicate the PresetId value of the

Tuning Preset to be applied on the considered burst.

] END_FEAT_RX_CHAN_ANA_500

The requirements associated to Tuning Presets are provided in Common Concepts.

FEAT_RX_CHAN_ANA_510 [Argument “requestedCarrierFrequency”

The argument requestedCarrierFrequencyof type Frequency shall be used in order to request initial values

for the CarrierFreqcuency explicit notion.

] END_FEAT_RX_CHAN_ANA_510

Semantics

FEAT_RX_CHAN_ANA_520 [ReceiveCycleProfile initialization

The Receive Channel shall set the initial values of the corresponding explicit notions in ReceiveCycleProfile

to the values specified by passed arguments.

] END_FEAT_RX_CHAN_ANA_520

If argument requestedReceiveStartTime is defined by the Waveform Application, the Receive Channel will

start the Active Phase according to the speficied time. If the initial value of ReceiveStartTime was left

undefined, the Active Phase may not start until the value is further set or signal-based conditions are met.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 88 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_RX_CHAN_ANA_530 [Constraint “MinReceiveStartAnticipation”

If argument requestedRecieveStartTime is set to a defined value by the Waveform Application, the operation

invocation which corresponds with internal notion ReceiveStartAnticipation shall happen before the

corresponding TuningStartTime respecting the MinReceiveStartAnticipation real-time constraint

] END_FEAT_RX_CHAN_ANA_530

FEAT_RX_CHAN_ANA_540 [Error “ERR_TooManyCreatedRxProfiles”

The Receive Channel shall generate an error ERR_TooManyCreatedRxProfiles if creation of the Receive

Cycle Profile would cause a number of created profiles exceeding the value of constraint

MaxRxCycleProfiles.

] END_FEAT_RX_CHAN_ANA_540

FEAT_RX_CHAN_ANA_550 [“requestedReceiveStartTime” using Absolute Time Request format

Usage of domain type Absolute Time Request format shall be available as a type possibility for argument

requestedReceiveStartTime.

] END_FEAT_RX_CHAN_ANA_550

FEAT_RX_CHAN_ANA_560 [“requestedReceiveStartTime” using event-based format

Usage of domain type Event-based Time Request shall be available as a type possibility for argument

requestedReceiveStartTime.

] END_FEAT_RX_CHAN_ANA_560

FEAT_RX_CHAN_ANA_570 [Default event source for event-based time requests

The default Event Source for event-derived expression of requestedReceiveStartTime shall be the

ReceiveStartTime of the current Receive Cycle.

] END_FEAT_RX_CHAN_ANA_570

For the first Receive Cycle of the Receive Channel lifetime, since no previous Receive Cycle exists, the

current Receive Cycle is not defined and an event-based approach can not be used.

FEAT_RX_CHAN_ANA_580 [Default event occurrence for event-derived time requests

The default event occurrence for event-derived expression of requestedReceiveStartTime shall be the current

occurence.

] END_FEAT_RX_CHAN_ANA_580

configureReceiveCycle()

Purpose

This operation is the way a Waveform Application can set the Down-conversion profile during its state Pre-

activation.

Syntax

FEAT_RX_CHAN_ANA_590 [Operation “configureReceiveCycle()”

The operation configureReceiveCycle() shall be implemented by the Receive Channel and be used by the

Waveform Application in order to set all explicit notions values of a previously created Receive Cycle.

] END_FEAT_RX_CHAN_ANA_590

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 89 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_RX_CHAN_ANA_600 [Target cycle identification in “configureReceiveCycle()”

The Receive Cycle for which the requested explicit notions values are applicable shall be identified by the

argument targetCycleId of type ULong, which specifies the Cycle Identifier of the target Receive Cycle.

] END_FEAT_RX_CHAN_ANA_600

FEAT_RX_CHAN_ANA_610 [Argument “requestedReceiveStartTime”

The argument requestedReceiveStartTime of type Time shall be used to request an initial value for the

explicit notion ReceiveStartTime.

] END_FEAT_RX_CHAN_ANA_610

FEAT_RX_CHAN_ANA_620 [Constraint “MinReceiveStartAnticipation”

The constraint MinReceiveStartAnticipation of type Latency shall be used to characterize the minimum

allowed elapsed time between the instant the configureReceiveCycle() operation is invoked and the target

Receive start time.

] END_FEAT_RX_CHAN_ANA_620

FEAT_RX_CHAN_ANA_630 [Argument “requestedReceiveStopTime”

The argument requestedReceiveStopTime of type Time shall be used to request an initial value for the

explicit notion ReceiveStopTime.

] END_FEAT_RX_CHAN_ANA_630

FEAT_RX_CHAN_ANA_640 [Argument “RequestedPacketSize”

The argument RequestedPacketSize of type ULong shall be used to request an initial value for the explicit

notion PacketSize.

] END_FEAT_RX_CHAN_ANA_640

FEAT_RX_CHAN_ANA_650 [Argument “requestedCarrierFrequency”

The argument requestedCarrierFrequency of type Frequency shall be used to request an initial value for the

explicit notion CarrierFrequency.

] END_FEAT_RX_CHAN_ANA_650

Errors

FEAT_RX_CHAN_ANA_660 [Error “Unkown Target Cycle”

In case the cycle specified by argument targetCycleId is not created, the operation can not be taken into

account and an error Unknown Target Cycle shall be generated.

] END_FEAT_RX_CHAN_ANA_660

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 90 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

setReceiveStopTime()

Purpose

The operation setReceiveStopTime() is intended to allow setting the explicit notion ReceiveStopTime value

for a Receive Cycle.

FEAT_RX_CHAN_ANA_670 [Operation “setReceiveStopTime()”

The operation setReceiveStopTime() shall be implemented by the Receive Channel and be used by the

Waveform Application in order to set the ReceiveStopTime of the considered Receive Cycle.

] END_FEAT_RX_CHAN_ANA_670

FEAT_RX_CHAN_ANA_680 [Argument “requestedReceiveStopTime”

The argument requestedReceiveStopTime shall be available in operation setReceiveStopTime() in order to

enable the Waveform Application to specify when the transition RFReceiveStop shall happen.

] END_FEAT_RX_CHAN_ANA_680

FEAT_RX_CHAN_ANA_690 [Constraint “MinReceiveStopAnticipation”

The constraint MinReceiveStopAnticipation of type Latency shall be used to characterize the minimum

allowed elapsed time between the instant the setReceiveStopTime() operation is invoked and the target

Receive stop time.

] END_FEAT_RX_CHAN_ANA_690

FEAT_RX_CHAN_ANA_700 [Defined “requestedReceiveStopTime”

If argument requestedReceiveStartTime is set to a defined value by Waveform Application, the Receive

Channel shall deactivate the Receive Cycle in respect of the specified value.

] END_FEAT_RX_CHAN_ANA_700

FEAT_RX_CHAN_ANA_710 [Undefined “requestedReceiveStopTime” (instant Deactivation)

If argument requestedReceiveStartTime is set to undefined by Waveform Application, the Receive Channel

shall immediately turn the current Transmit Cycle into Deactivation state.

] END_FEAT_RX_CHAN_ANA_710

FEAT_RX_CHAN_ANA_720 [Constraint “MinReceiveStopAnticipation”

The operation setReceiveStopTime() shall be called with an anticipation relative to the

requestedReceiveStopTime at least equal to the value of the constraint “MinReceiveStopAnticipation, of type

Latency.

] END_FEAT_RX_CHAN_ANA_720

The operation setReceiveStopTime() may be used to modify as often as necessary the ReceiveStopTime of a

Transmit Cycle, provided it always respects the ReceiveStopAnticipation invocation margin.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 91 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Errors

FEAT_RX_CHAN_ANA_730 [Error “ERR_TooLateRequest”

If the operation setReceiveStopTime() is invoked after ReceiveStopTime – MinReceiveStopAnticipation, the

Receive Channel is not able to guarantee correct application, and an error ERR_TooLateRequest shall be

generated.

] END_FEAT_RX_CHAN_ANA_730

Interface real-time constraints

FEAT_RX_CHAN_ANA_740 [Constraint “MaxReceiveControlInvocationDuration”

Operations of the ReceiveControl interface shall respect the MaxInvocationDuration constraint specified by

MaxReceiveControlInvocationDuration.

] END_FEAT_RX_CHAN_ANA_740

3.3.3.9 Receive Data Push

Overview

The programming interface Receive Data Push enables the Waveform Application to retrieve packets of

baseband samples from the Receive Channel.

The programming interface relies on: (i) a single operation, pushBBSamplesRx(), (ii) the data retrieved by the

Waveform Application, denoted as The Pushed Packet.

pushBBSamplesRx() is used by the Transceiver Subsystem to: notify the Waveform Application of the

availability of a new packet in the Baseband FIFO of size Packet size.

The Pushed Packet structure is defined by common concept Baseband Packet. It must be prepared by the

Down-Conversion Chain prior to the pushBBSamplesRx() notification. The samples are retrieved by the

Waveform Application in conformance with specific packets contents requirements.

Prior to pushBBSamplesRx() notification, the Receive Channel undertakes packets handling activities:

 First, it takes in charge the pushed packet, copying its content into an internal memory zone.

 Second, it stores the corresponding data into the Baseband FIFO.

The way a Receive Channel implementation takes in charge the pushed packet and stores it into the

Baseband FIFO is implementation dependent. Most reactive implementations will take in charge and store

in baseband FIFO the pushed packet in one single data copy. More complex designs may exist, especially

when the digital part of the Transceiver Subsystem is distributed over different digital signal processing

units.

Under notification by the pushBBSamplesRx(), the Waveform Application launches a packet copy of the

pushed packet into its own memory. The packet copy is an implementation-dependent mechanism, which

may involve several elementary copies (for instance pushed samples to be distributed at both ends of a

circular buffer).

The Pushed Packet

Structural requirements

FEAT_RX_CHAN_ANA_750 [Definition of “The Pushed Packet”

A data constuct denoted The Pushed Packet, of type Baseband Packet, shall be used to contain the Baseband

Signal samples to be retrieved.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 92 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

] END_FEAT_RX_CHAN_ANA_750

FEAT_RX_CHAN_ANA_760 [Creation of “The Pushed Packet”

The Pushed Packet shall be created by the Receive Channel.

] END_FEAT_RX_CHAN_ANA_760

FEAT_RX_CHAN_ANA_770 [Visibility on “The Pushed Packet”

The Pushed Packet shall be visible by the Waveform Application with read rights and be visible by the

Receive Channel with write rights.

] END_FEAT_RX_CHAN_ANA_770

FEAT_RX_CHAN_ANA_780[Destruction of “The Pushed Packet”

The Pushed Packet shall be destroyed by the Receive Channel.

] END_FEAT_RX_CHAN_ANA_780

Packets ordering requirements

This section specifies a certain number of requirements applicable to packets content.

FEAT_RX_CHAN_ANA_790 [Packets burst alignment

The pushed baseband samples shall be aligned with the Receive Cycles Input Bursts, which means no packet

contains samples belonging to two different input bursts.

] END_FEAT_RX_CHAN_ANA_790

FEAT_RX_CHAN_ANA_800 [Sequential bursts transmission

The pushed baseband samples packets shall be transmitted one burst after the other.

] END_FEAT_RX_CHAN_ANA_800

FEAT_RX_CHAN_ANA_810 [Ordered packets pushes

The pushed baseband samples packets shall not be interverted within a given burst.

] END_FEAT_RX_CHAN_ANA_810

Packets identification

The first packet of a burst is defined as the packet where the first sample is the first received sample of the

burst.

The last packet of a burst is defined as the packet where the last sample is the last received sample of the

burst.

A packet containing all the samples of a given burst is at the same time the first and last packet of the burst.

The last packet of a burst is therefore systematically followed by the first packet of the next burst.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 93 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

pushBBSamplesTx()

Syntax

FEAT_RX_CHAN_ANA_820 [Operation “pushBBSamplesRx()”

Operation pushBBSamplesRx() shall be used by the Transceiver Subsystem and realized by the Waveform

Application, in order to: (i) notify the Waveform Application of the availability of a new packet of samples,

and (ii) indicate if the pushed packet is the last packet of the received burst.

] END_FEAT_RX_CHAN_ANA_820

FEAT_RX_CHAN_ANA_830 [Argument “thePushedPacket”

The argument thePushedPacket, of type BBPacket, shall contain information enabling access to the pushed

packet.

] END_FEAT_RX_CHAN_ANA_830

The pushed packet content shall have been prepared by the Receive Cycle to contain the correct signal before

invocation. The size of the pushed packet is determined by the value of argument requestedPacketSize set

during the Receive Cycle creation or profile configuration.

FEAT_RX_CHAN_ANA_840 [Argument “endOfBurst”

The argument endOfBusrt, of type Boolean, shall be used to indicate that the pushed packet is the last packet

of the current Receive Cycle Burst.

Value True if the packet is the last packet, False or undefined otherwise.

] END_FEAT_RX_CHAN_ANA_840

Semantics

FEAT_RX_CHAN_ANA_850 [pushBBSamplesRx() Pre-Invocation

When invocation of pushBBSamplesRx() occurs, the samples values contained in the pushed packet shall be

compliant with the packet contents requirements.

] END_FEAT_RX_CHAN_ANA_850

FEAT_RX_CHAN_ANA_860 [pushBBSamplesRx() Post-Invocation

When return of pushBBSamplesRx() returns, the samples values contained in the pushed packet shall have

been taken into account by the Waveform Application.

] END_FEAT_RX_CHAN_ANA_860

Realt-time Constraints

FEAT_RX_CHAN_ANA_870 [Constraint “MaxReceiveDataPushInvocationDuration”

The constraint MaxReceiveDataPushInvocationDuration, of type Latency, shall be used to identify the Max

Invocation Duration to be met by pushBBSamplesRx implementations.

] END_FEAT_RX_CHAN_ANA_870

As noted in §2.3, the Max Invocation Duration of an operation corresponds to the time difference between:

 The instant when an operation invocation occurs,

 The instant when an operation return occurs.

The constraint may remain undefined if the real-time constraints of the radio capability do not justify it.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 94 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Max pushBBSamplesRx Invocation Duration is generally assigned a unique value, taking into consideration

the maximum packet size used by the waveform application.

FEAT_RX_CHAN_ANA_880 [Constraint “MaxPacketPreparationTime”

The constraint MaxPacketPreparationTime, of type Latency, shall be used to identify the Maximum Time to

be guaranteed in order to have a packet prepared in Baseband FIFO by the Transceiver Subsystem before a

particular target time.

] END_FEAT_RX_CHAN_ANA_880

Transceiver Subsystem should be compliant with this constraint in order to avoid out of synchronization

situations or scenarios where Transceiver Subsystem delays the signal leading to real-time violation.

Overflow mitigation

Two overflow mitigation options can be selected:

 PacketsTrashing: Transceiver Subsystem will trash the packets if the FIFO is completely filled

and the waveform application does not retrieve them or does so at a slower pace.

 No Overflow: reaching overflow is corresponded to an error so the Transceiver Subsystem is

requested to generate an error.

FEAT_RX_CHAN_ANA_890 [Implicit notion “OverflowMitigation”

The enumerated implicit notion Overflow Mitigation shall be used to set the applicable overflow mitigation

option.

The possible values are: PacketsTrashing, and No Overflow. Undefined corresponds to Packets Trashing.

] END_FEAT_RX_CHAN_ANA_890

FEAT_RX_CHAN_ANA_900 [PacketsTrashing Overflow Mitigation

When implicit notion Overflow Mitigation is set to PacketsTrashing, the Transceiver Subsystem shall

discard extra packets once the FIFO buffer reachs its maximum size.

] END_FEAT_RX_CHAN_ANA_900

This mode is kept as the default mode since it does not requireany supplementary dependency between the

Waveform Application and the platform. This occurs at the expense of handling trivial synchronization

mechanisms.

FEAT_RX_CHAN_ANA_910 [No Overflow Overflow Mitigation

When implicit notion Overflow Mitigation is set to No Overflow, the Transceiver Subsystem shall raise an

error if an overflow of the FIFO occurs.

] END_FEAT_RX_CHAN_ANA_910

This mode can be used in cases where the waveform design determines that overflow cases shall not occur.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 95 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.3.3.10 Analysis Requirements Summary

The following table provides an overview of the Analysis requirements of Receive Channel:

Identifier Tag Section

FEAT_RX_CHAN_ANA_010 Definition of a “Receive Channel“ Receive Channel

FEAT_RX_CHAN_ANA_020 Creation of a “Receive Channel” Receive Channel

FEAT_RX_CHAN_ANA_030 Composition of a “Receive Channel” Receive Channel

FEAT_RX_CHAN_ANA_040 Definition of “ Receive Baseband Signal” Receive Baseband Signal

FEAT_RX_CHAN_ANA_050 Implicit Notions of “Receive Baseband Signal” Receive Baseband Signal

FEAT_RX_CHAN_ANA_060 Receive Baseband Signal configuration Receive Baseband Signal

FEAT_RX_CHAN_ANA_070 Definition of “Receive Baseband FIFO” Receive Baseband FIFO

FEAT_RX_CHAN_ANA_080 Implicit Notion “BasebandFIFOSize” Receive Baseband FIFO

FEAT_RX_CHAN_ANA_090 Configuration of “Receive Baseband FIFO” Receive Baseband FIFO

FEAT_RX_CHAN_ANA_100 Error “FIFOOverflow” Receive Baseband FIFO

FEAT_TX_CHAN_ANA_110 FIFO Overrflow ReceiveStop Receive Baseband FIFO

FEAT_RX_CHAN_ANA_120 Definition of the “Down-conversion Chain” Down-conversion Chain

FEAT_RX_CHAN_ANA_130 Constraint “MaxDownconversionLatency” Down-conversion Chain

FEAT_RX_CHAN_ANA_140 States of Down-conversion Chain Down-conversion Chain

FEAT_RX_CHAN_ANA_150 Transitions between “Down-conversion Chain” states Down-conversion Chain

FEAT_RX_CHAN_ANA_160 Timings associated to Down-conversion Chain transitions Down-conversion Chain

FEAT_RX_CHAN_ANA_170 Tuning activity Down-conversion Chain

FEAT_RX_CHAN_ANA_180 Constraint “MaxTuningDuration” Down-conversion Chain

FEAT_RX_CHAN_ANA_190 Internal notion “TuningStartTime” Down-conversion Chain

FEAT_RX_CHAN_ANA_200 Constraint “MinReactivationTime” Down-conversion Chain

FEAT_RX_CHAN_ANA_210 Definition of the “Current” Receive Cycle Down-conversion Chain

FEAT_RX_CHAN_ANA_220 Rule for “Current” Receive Cycle identification Down-conversion Chain

FEAT_RX_CHAN_ANA_230 Definition of “Receive Cycle Output Burst” Receive Cycle

FEAT_RX_CHAN_ANA_240 Definition of “Receive Cycle First Sample” Receive Cycle

FEAT_RX_CHAN_ANA_250 Definition of “Receive Cycle Last Sample” Receive Cycle

FEAT_RX_CHAN_ANA_260 Definition of “Receive Cycle Profile” Receive Cycle

FEAT_RX_CHAN_ANA_270 Composition of “Receive Cycle Profile” Receive Cycle

FEAT_RX_CHAN_ANA_280 Explicit notion “ReceiveCycle” Receive Cycle

FEAT_RX_CHAN_ANA_290 Constraint “MaxRxCycleProfiles” Receive Cycle

FEAT_RX_CHAN_ANA_300 Definition of “Time Profile” Receive Cycle

FEAT_RX_CHAN_ANA_310 Constraint “ReceiveTimeProfileAccuracy” Receive Cycle

FEAT_RX_CHAN_ANA_320 Explicit notion “ReceiveStartTime” Receive Cycle

FEAT_RX_CHAN_ANA_330 Referenced event source “ReceiveStart” Receive Cycle

FEAT_RX_CHAN_ANA_340 Explicit notion “ReceiveStopTime” Receive Cycle

FEAT_RX_CHAN_ANA_350 Definition of “Receive Tuning Profile” Receive Cycle

FEAT_RX_CHAN_ANA_360 Contents of “Tuning Profile” Receive Cycle

FEAT_RX_CHAN_ANA_370 States of a “Receive Cycle Profile” Receive Cycle

FEAT_RX_CHAN_ANA_380 Transitions of “Receive Cycle Profile” Receive Cycle

FEAT_RX_CHAN_ANA_390 Transitions correspondance Receive Cycle

FEAT_RX_CHAN_ANA_400 Time-defined transition “StartTuning” Active Phase

FEAT_RX_CHAN_ANA_410 Error “ERR_TooLateRequest” Active Phase

FEAT_RX_CHAN_ANA_420 Precedence rules for Tuning explicit notions definition Active Phase

FEAT_RX_CHAN_ANA_430 Desctruction start time Post-Activation

FEAT_RX_CHAN_ANA_440 Operation “createReceiveCycleProfile()” Receive Control

FEAT_RX_CHAN_ANA_450 Argument “requestedReceiveStartTime” Receive Control

FEAT_RX_CHAN_ANA_460 Contraint “MinReceiveStartProximity” Receive Control

FEAT_RX_CHAN_ANA_470 Constraint “MinReceiveStartAnticipation” Receive Control

FEAT_RX_CHAN_ANA_480 Argument “requestedReceiveStopTime” Receive Control

FEAT_RX_CHAN_ANA_490 Argument “requestedPacketSize” Receive Control

FEAT_RX_CHAN_ANA_500 Argument “requestedPresetId” Receive Control

FEAT_RX_CHAN_ANA_510 Argument “requestedCarrierFrequency” Receive Control

FEAT_RX_CHAN_ANA_520 ReceiveCycleProfile initialization Receive Control

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 96 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_RX_CHAN_ANA_530 Constraint “MinReceiveStartAnticipation” Receive Control

FEAT_RX_CHAN_ANA_540 Error “ERR_TooManyCreatedRxProfiles” Receive Control

FEAT_RX_CHAN_ANA_550 “requestedReceiveStartTime” using Absolute Time Requests format Receive Control

FEAT_RX_CHAN_ANA_560 “requestedReceiveStartTime” using event-based format Receive Control

FEAT_RX_CHAN_ANA_570 Default event source for event-based time requests Receive Control

FEAT_RX_CHAN_ANA_580 Default event occurrence for event-derived time requests Receive Control

FEAT_RX_CHAN_ANA_590 Operation “configureReceiveCycle()” Receive Control

FEAT_RX_CHAN_ANA_600 Target cycle identification in “configureReceiveCycle()” Receive Control

FEAT_RX_CHAN_ANA_610 Argument “requestedReceiveStartTime” Receive Control

FEAT_RX_CHAN_ANA_620 Constraint “MinReceiveStartAnticipation” Receive Control

FEAT_RX_CHAN_ANA_630 Argument “requestedReceiveStopTime” Receive Control

FEAT_RX_CHAN_ANA_640 Argument “RequestedPacketSize” Receive Control

FEAT_RX_CHAN_ANA_650 Argument “requestedCarrierFrequency” Receive Control

FEAT_RX_CHAN_ANA_660 Error “Unkown Target Cycle” Receive Control

FEAT_RX_CHAN_ANA_670 Operation “setReceiveStopTime()” Receive Control

FEAT_RX_CHAN_ANA_680 Argument “requestedReceiveStopTime” Receive Control

FEAT_RX_CHAN_ANA_690 Constraint “MinReceiveStopAnticipation” Receive Control

FEAT_RX_CHAN_ANA_700 Defined “requestedReceiveStopTime” Receive Control

FEAT_RX_CHAN_ANA_710 Undefined “requestedReceiveStopTime” (instant Deactivation) Receive Control

FEAT_RX_CHAN_ANA_720 Constraint “MinReceiveStopAnticipation” Receive Control

FEAT_RX_CHAN_ANA_730 Error “ERR_TooLateRequest” Receive Control

FEAT_RX_CHAN_ANA_740 Constraint “MaxReceiveControlInvocationDuration” Receive Control

FEAT_RX_CHAN_ANA_750 Definition of “The Pushed Packet” Receive Data Push

FEAT_RX_CHAN_ANA_760 Creation of “The Pushed Packet” Receive Data Push

FEAT_RX_CHAN_ANA_770 Visibility on “The Pushed Packet” Receive Data Push

FEAT_RX_CHAN_ANA_780 Destruction of “The Pushed Packet” Receive Data Push

FEAT_RX_CHAN_ANA_790 Packets burst alignment Receive Data Push

FEAT_RX_CHAN_ANA_800 Sequential bursts transmission Receive Data Push

FEAT_RX_CHAN_ANA_810 Ordered packets pushes Receive Data Push

FEAT_RX_CHAN_ANA_820 Operation “pushBBSamplesRx()” Receive Data Push

FEAT_RX_CHAN_ANA_830 Argument “thePushedPacket” Receive Data Push

FEAT_RX_CHAN_ANA_840 Argument “endOfBurst” Receive Data Push

FEAT_RX_CHAN_ANA_850 pushBBSamplesRx() Pre-Invocation Receive Data Push

FEAT_RX_CHAN_ANA_860 pushBBSamplesRx() Post-Invocation Receive Data Push

FEAT_RX_CHAN_ANA_870 Constraint “Max pushBBSamplesRx Invocation Duration” Receive Data Push

FEAT_RX_CHAN_ANA_880 Constraint “MaxPacketPreparationTime” Receive Data Push

FEAT_RX_CHAN_ANA_890 Implicit notion “OverflowMitigation” Receive Data Push

FEAT_RX_CHAN_ANA_900 PacketsTrashsing Overflow Mitigation Receive Data Push

FEAT_RX_CHAN_ANA_910 No Overflow Overflow Mitigation Receive Data Push

Table 22: Overview of Receive Channel Analysis requirements

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 97 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.3.4 Modelling Requirements

3.3.4.1 Receive Channel interfaces

The following class diagram involves the interfaces realized and used by the Receive Channel, between the

Waveform Application and the Transceiver Subsystem:

Figure 23: Receive Channel involved interfaces

FEAT_RX_CHAN_MOD_010 [Receive Control interface

Receive Control is the interface used to control the Receive Channel behaviors according to the Waveform

needs. This interface shall include the following operations:

 createReceiveCycleProfile()

 configureReceiveCycle()

 setReceiveStopTime()

Definitions of operations and behaviors of their realizations by the Receive Channel core feature are

specified in the baseline requirements of the Receive Channel.

] END_FEAT_RX_CHAN_MOD_010

FEAT_RX_CHAN_MOD_020 [Receive Data Push interface

Receive Data Push is the interface used for transferring baseband samples from the Transceiver Subsystem

to the Waveform Application. This interface shall include the following operation:

 pushBBSamplesRx()

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 98 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Definition of this operation and associated behaviour of its realization by the Waveform Application are

specified in the baseline requirements of the Receive Channel.

] END_FEAT_RX_CHAN_MOD_020

Note: Signatures of the operations are not provided for better visibility. Specification of the operations is

depicted in paragraph Baseline Requirements of this chapter.

3.3.4.2 Receive Channel composition

FEAT_RX_CHAN_MOD_030 [Receive Channel modelling elements 1

Transceiver Subsystem model involving feature Receive Channel shall use the modelling elements depicted

in the following class diagram:

Figure 24: Receive Channel main composition

] END_FEAT_RX_CHAN_MOD_030

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 99 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

FEAT_RX_CHAN_MOD_040 [Receive Channel modelling elements 1

Transceiver Subsystem model involving feature Receive Channel shall use the modelling elements depicted

in the following class diagram:

Figure 25: Receive Channel and Cycle Profile

] END_FEAT_RX_CHAN_MOD_040

3.3.5 Implementation Languages Requirements

3.3.5.1 C++ Requirements

Interfaces between the Waveform Application and the Transceiver Subsystem for the Receive Channel core

feature are:

 Receive Control,

 Receive Data Push.

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 100 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Both are seen in a modeling analysis as abstract classes defining abstract operations. In C++ language, this

leads to consider these operations as pure virtual methods of its respective classes. These methods can not be

implemented by these abstract classes, but shall be overridden and implemented by derived classes.

ReceiveControl interface

FEAT_RX_CHAN_CPP_010 [ReceiveControl C++ definition

Implementations in C++ using the feature Receive Channel shall use the interface ReceiveControl as

declared in the following C++ reference source code extract:

class I_ReceiveControl

{

public :

 virtual void createReceiveCycleProfile(

 Time requestedReceiveStartTime,

 Time requestedReceiveStopTime,

 ULong requestedPacketSize,

 UShort requestedPresetId,

 Frequency requestedCarrierFrequency) = 0;

 virtual void configureReceiveCycle(

 ULong targetCycleId,

 Time requestedReceiveStartTime,

 Time requestedReceiveStopTime,

 ULong requestedPacketSize,

 Frequency requestedCarrierFrequency) = 0;

 virtual void setReceiveStopTime(

 ULong targetCycleId,

 Time requestedTransmitStopTime) = 0;

};

] END_FEAT_RX_CHAN_CPP_010

FEAT_RX_CHAN_CPP_020 [ReceiveControl C++ header file

Implementations in C++ using the feature Receive Channel shall include the header file entitled

ReceiveControl.h, corresponding to the header file of the ReceiveControl definition.

] END_FEAT_RX_CHAN_CPP_020

ReceiveDataPush interface

FEAT_RX_CHAN_CPP_010 [ReceiveDataPush C++ definition

Implementations in C++ using the feature Receive Channel shall use the interface ReceiveDataPush as

declared in the following C++ reference source code extract:

class I_ReceiveDataPush

{

public :

 virtual void pushBBSamplesRx(

 BBPacket * thePushedPacket,

 Boolean endOfBurst) = 0;

};

] END_FEAT_RX_CHAN_CPP_010

FEAT_RX_CHAN_CPP_020 [ReceiveDataPush C++ header file

Implementations in C++ using the feature Receive Channel shall include the header file entitled

ReceiveDataPush.h, corresponding to the header file of the ReceiveDataPush definition.

] END_FEAT_RX_CHAN_CPP_020

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 101 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

3.3.5.2 VHDL Requirements

The pushBBSamplesRx operation of the Receive feature is described in VHDL as:

library IEEE;

use IEEE.std_logic_1164.ALL;

entity Receive is

 generic(

 G_CODING_BITS : natural := 16 -- for instance

);

 port (

 -- Common Signals

 clk : in std_logic; -- Clock signal

 rst_n : in std_logic; -- Reset signal

 -- pushBBSamplesTx

 BBSample_I : out std_logic_vector(G_CODING_BITS-1 downto 0);

 BBSample_Q : out std_logic_vector(G_CODING_BITS-1 downto 0);

 BBSample_write : out std_logic;

 BBSamplesPacket_start : out std_logic;

 BBSamplesPacket_end : out std_logic;

 BBSample_ready : in std_logic

 -- Other signals

);

end entity Receive;

The Receive entity signals are summarized in the following table:

Signal Name Direction Signal Format
Signal

Units

Signal

Min Value

Signal

Max Value
Notes

Clk in 1-bit Discrete Clock
0->1 =

 Active Edge

1->0 =

Passive Edge XX MHz Transmit Clock

rst_n in 1-bit Discrete Level 0 1
Active-low, asynchronous
reset.

BBSample_I out CodingBits-1-bit Signed N/A -32,768 32,767 Imaginary Sample value

BBSample_Q out CodingBits-1-bit Signed N/A -32,768 32,767 Quadrature Sample value

BBSample_write out 1-bit Discrete Level 0 1
Data valid flag to request
sample transmission

BBSamplesPacket_start out 1-bit Discrete Level 0 1 Packet start flag

BBSamplesPacket_end out 1-bit Discrete Level 0 1 Packet end flag

BBSample_ready in 1-bit Discrete Level 0 1
Accept/ready flag to activate
sample transmission

Table 23: VHDL Receive Entity signals

A BBSample is transmitted only if both ‘write’ and ‘ready’ signals are asserted.

The BBSamplePacket concept is described in VHDL using additional signals to indicate the start and the end

of a sample packet.

Every Feature using BBSamplePacket concept has to implement the following protocol:

 the BBSamplesPacket_start signal is asserted with the first sample of a packet,

 the BBSamplesPacket_end signal is asserted with the last sample of a package,

 In any other case, BBSamplesPacket_start and BBSamplesPacket_end signals are deasserted

SDRF-08-S-0008-V1.0.0 Core Feature “Receive Channel”

 Page 102 of 130 Core Feature “Receive Channel”

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

This behaviour is shown in the next timing diagram:

CLK

BBSample_I
BBSample_Q

 BBSample_write

 BBSample_ready

Next_signal

A B

A B

C

C C

BBSamplesPacket_start

BBSamplesPacket_end

Figure 26: BBSamplePacket Transmit Timing diagram for VHDL

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 103 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4 - Common Concepts Specification

4.1 - Introduction

The following chapters specify Common Concepts:

 Time handling Domain Types

 Tuning Characteristics Definition

 Tuning Characteristics Setting

 Baseband Packets

Overview of specified Characteristics

The following table identifies the notions specified by Common Concepts:

Name of the Notion Category Sub-category (if applicable)

Baseband Signal

BasebandSamplingFrequency Implicit

BasebandCodingBits Implicit

BasebandNominalPower Implicit

RF Signal

CarrierFrequency Explicit Programmable &

Configurable

NominalRFPower Explicit Programmable &

Configurable

ChannelTransferFunction Internal

PresetId Explicit Programmable

Table 24: Overview of Common Concepts notions

PresetId is a programmable argument, and takes its values from a requested argument through interfaces

defined in core features. In Transmit Channel and Receive Channel features, PresetId is requested through

argument requestedTuningPreset, respectively in operations createTransmitCycleProfile() and

createReceiveCycleProfile().

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 104 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

The following tables identify the constraints specified by Common Concepts:

Name of the Constraint Category

Channel Mask

ChannelBandwidth Signal Processing

CarrierFrequencyAccuracy Signal Processing

Spectrum Mask

Ripple Signal Processing

HighBoundTransitionBand Signal Processing

HighBoundRejectionGain Signal Processing

HighBoundRejectionSlope Signal Processing

LowBoundTransitionBand Signal Processing

LowBoundRejectionGain Signal Processing

LowBoundRejectionSlope Signal Processing

Group Delay Mask MaxGroupDelayDispersion Signal Processing

Table 25: Overview of Common Concepts constraints

Refer to Figure 27: Characteristics of Spectrum Mask and Figure 28: Characteristics of Group Delay Mask

in the following paragraphs for an schematic representation of the above Constraints.

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 105 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4.2 - Time handling Domain Types

This chapter specifies requirements applicable to domain times used to specify time values.

CC_TIME_000 [Generic Domain Type “Time”

The generic domain type Time shall be used for arguments of control operations used to specify a time

request, specifying the Event Time of a particular event. The associated physical unit is the second.

The generic type can be derived into type Absolute Time or Event-based Time.

] END_CC_TIME_000

MinAnticipation and Accuracy are constraints attached by the Facility core specification to each control

operation. Each Waveform Capability is subject to define specific values for those properties, else they

remain undefined.

4.2.1 Absolute Time

Principle

Absolute Time uses a time representation convention which counts the duration between an Absolute Time

Reference and the Event Time. The Absolute Time Reference is equal to the begining of year 2000, i.e.

January 1st 2000, 00:00:00.

This count is realized using an Absolute Time, composed of an unsigned 32 bit value, complemented by an

unsigned 32 bit value, counting the nanoseconds.

Absolute Time values handle a notion of time which corresponds to the time accessible to the Transceiver

Sub-system.

Handling of the corresponding time source (by the Waveform Application or by Radio Set specific

mechanisms), namely to set it to the right time with the required accuracy, is not in the scope of the current

specification.

Specification

CC_TIME_010 [Domain type “Absolute Time”

The domain type Absolute Time shall be used to express time requests defined as the time elapsed from

January 1st 2000, 00:00:00 (24h) to the Event Time.

It is derived from generic domain type Time.

] END_CC_TIME_010

CC_TIME_020 [Default setting for “Time Specification”

The default setting for the domain type Time Specification shall be expressed using a couple of unsigned 32

bit values, respectively representing the number Second Count of seconds (s) elapsed since the reference

time, and the number Nanosecond Count of supplementary nano-seconds (ns) within the referenced second.

] END_CC_TIME_020

The maximal accessible date approximately equals to
910.4 seconds after 1-jan-00, i.e. slightly more than

136 years. The default setting provides a resolution of 1 ns.

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 106 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4.2.2 Event-based Time

Principle

Event-based Time uses a time representation convention which identifies the requested Event Time using a

reference event available within the platform, from which a time shift enables accurate identification of the

desired Event Time.

The reference event is identified using a particular event source, which is identified using its public

identifier, in conformance with the principles exposed in § Event Sources. The occurrence count value and

the notion of last and previous events, introduced in this chapter, are used as well.

Event-based time presents the advantage of avoiding (i) the Waveform Application part realizing control

operations on the Transceiver Sub-system and (ii) the Transceiver Sub-system itself having knowledge of the

absolute date.

It requires, as a counterpart, to carry on a generally more difficult real-time engineering effort, and may not

be applicable to the radio interoperability protocols of most demanding waveforms.

Requirements

CC_TIME_030 [Domain type “Event-based Time”

The domain type Event-based Time shall be used to express a Time Request defined through (i) identification

of a Reference Event, a specific past or coming event generated by the Platform Support, (ii) provision of a

Time Shift to apply from this Reference Event to compute the Event Time.

It is derived from generic domain type Time.

] END_CC_TIME_030

CC_TIME_040 [Composition of an “Event-based Time”

The domain type Event-based Time shall be a structure composed of the four following fields:

 Event Source Id,

 Event Count Origin,

 Event Count,

 Time Shift.

] END_CC_TIME_040

Fields Event Source Id, Event Count Origin and Event Count together define the Reference Event.

CC_TIME_050 [Field “Event Source Id”

The field Event Source Id of the domain type Event-based Time shall be an unsigned 16 bit value,

identifying the Event Source from the Platform Support used to define the Reference Event.

] END_CC_TIME_050

CC_TIME_060 [Undefined “Event Source Id” value

An Undefined value for field Event Source Id shall correspond to the Default Event Source attached to the

control operation.

] END_CC_TIME_060

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 107 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

CC_TIME_070 [Defined field “Event Source Id”

A Defined value for field Event Source Id shall refer to the Event Source Identifier of the event source used

to identify the Reference Event.

] END_CC_TIME_070

CC_TIME_080[Field “Event Count Origin”

The field Event Count Origin of the domain type Event-based Time shall be an enumerated field, taking

values between {Beginning, Previous, Next}, identifying the origin from which the events of the event

source are counted in order to identify the Reference Event.

] END_CC_TIME_080

CC_TIME_090 [Enumerated value “Beginning”

The enumerated value Beginning of the enumerated field Event Count Origin shall be used to indicate that

the Reference Event shall be counted from first occurrence of the Event Source.

] END_CC_TIME_090

CC_TIME_100 [Enumerated value “Previous”

The enumerated value Previous of the enumerated field Event Count Origin shall be used to indicate that the

Reference Event shall be counted from the previous occurrence of the Event Source, relative to the instant

when the operation is invoked.

] END_CC_TIME_100

CC_TIME_110 [Enumerated value “Next”

The enumerated value Next of the enumerated field Event Count Origin shall be used to indicate that the

Reference Event shall be counted from the next occurrence of the Event Source, relative to the instant when

the operation is invoked.

] END_CC_TIME_110

CC_TIME_120 [Field “Event Count”

The field Event Count of the domain type Event-based Time shall be a signed 32 bit value which identifies

the number of Event Source occurences separating the Reference Event from the Event Count Origin.

] END_CC_TIME_120

A value of 0 for Event Count Value means that the Reference Event is equal to the Event Count Origin.

CC_TIME_130 [Undefined “Event Count” value

An Undefined value for field Event Count shall not be used by the Waveform Application.

] END_CC_TIME_130

CC_TIME_140 [Field “Time Shift”

The field Time Shift of the domain type Event-based Time shall be a domain type Latency value which gives

the positive or negative amount of time separating the Requested Time from the Reference Event.

] END_CC_TIME_140

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 108 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4.3 - Tuning Characteristics Definition

4.3.1 Introduction

The Tuning Characteristics Definition exhaustively identifies the set of notions and constraints which need

to be assigned a value in order for the Up-/Down-conversion Chains to be tuned before activation.

This chapter explains the question of definition of the Tuning Characteristics.

4.3.2 Domain definitions

Baseband Power

The Baseband Power of Baseband Signal is measured over a time period consistent with the stationarity of

the measured signal.

dBFS

A Baseband Power value is expressed in “dB relative to full scale”, abbreviated as “dBFS”, capturing the

power ratio between the measured signal and a reference harmonic signal. The reference full scale signal is

defined as a complex harmonic signal with an envelope magnitude equal to the maximum envelope possible

coded using the full scale of the stream defined by the number of coding bits.

Nominal reception conditions

In reception, nominal conditions are defined as conditions when a reference signal with a constant level is

applied at Low Power RF level, while a baseband signal is generated towards the Waveform Application,

using nominal reception gain settings.

Nominal transmissionconditions

In transmission, nominal conditions are defined as conditions when a reference signal with a constant level is

applied at baseband signal level by the Waveform Application, while a Low Power RF Level is generated at

Transceiver Subsystem output, using nominal transmission gain settings.

Absolute uncertainty

The Absolute Uncertainty, denoted dx, attached to a specified property value x, shall be such that the

Transceiver Subsystem implementation guarantees a measurable implementation value comprised in the

interval [x-dx;x+dx].

4.3.3 Domain types

This chapter introduces domain types applicable to characteristics of (i) the common concept and (ii) features

specifications.

The requirement attached to the domain type definition indicates the signification of the type with the

associated physical unit, while the default setting is attached to a default numerical representation.

The default setting is not useful in the context of the characteristic remaining virtually defined with no

representation in the Transceiver Subsystem implementation. Any design value can then be taken into

consideration.

If the considered characteristic is represented, in any respect, in the Transceiver Subsystem implementation,

the default setting is then applicable to characterize how the associated characteristic shall be numerically

represented. This is realized using a base type and identifying the chosen sub-unit for this representation.

Floating point representation is voluntarily ignored to achieve generic radio configuration designs.

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 109 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

When accessing implemented characteristics, a read operation will retrieve values compliant with the setting

chosen for the characteristic. This value will represent the true value with an accuracy eventually

documented in the Transceiver Sub-system implementation release notes.

Frequency

CC_DOMAIN_TYPE_000 [Domain type “Frequency”

The domain type Frequency shall be used to refer to any frequency expressions within the specification,

using hertz (Hz) as the default associated physical unit.

] END_CC_DOMAIN_TYPE_000

CC_DOMAIN_TYPE_020 [Default setting for “Frequency”

The default setting for the domain type Frequency shall be expression of values represented using ULong

values, representing positive values in steps of 1 hertz.

] END_CC_BB_DOMAIN_TYPE_020

The default setting provides a resolution of 1 Hz, a minimal value of 0 Hz, and a maximal value of

4,294,967,295 Hz.

Note that for some applications, i.e satellite communications, the frequency range is not large enough.

Further improvements are thus needed, such as a so-called “type of range” setting, which would set the

appropriate frequency range (application dependent) during the deployment.

Baseband Power

CC_DOMAIN_TYPE_030 [Domain type “Baseband Power”

The domain type Baseband Power shall be used to refer any baseband signal power expression, using

decibels-relative-to-full-scale (dBFS) as the associated unit.

] END_CC_DOMAIN_TYPE_030

CC_DOMAIN_TYPE_040 [Default setting for “Baseband Power”

The default setting for the domain type Baseband Power shall be an expression of values represented using

Short values, representing signed values in steps of 0.1 dBFS.

] END_CC_BB_DOMAIN_TYPE_040

The default setting provides a resolution of 0.1 dBFS, a minimum value of -3276.8 dBFS, and a maximum

value of +3276.7 dBFS. Such values largely exceed meaningful physical values, towards low or high values.

In particular, exceeding by more than a few dB the full scale signal is not physically possible.

Analogue Power

CC_DOMAIN_TYPE_050 [Domain type “Analogue Power”

The domain type Analogue Power shall be used to refer any analogue signal power expression, using

decibels-relative-to-1-milliwatt (dBm) as the associated physical unit.

] END_CC_DOMAIN_TYPE_050

CC_DOMAIN_TYPE_060 [Default setting for “Analogue Power”

The default setting for the domain type Analogue Power shall be an expression of values represented using

Short values, representing signed values in steps of 0.1 dBm.

] END_CC_DOMAIN_TYPE_060

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 110 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

The default setting provides a resolution of 0.1 dBm, a minimum value of -3276.8 dBm, and a maximum

value of +3276.7 dBm. The step value chosen, 0.1 dBm, satisfy most of the current Transceiver architectures.

Latency

CC_DOMAIN_TYPE_070 [Domain type “Latency”

The domain type Latency shall be used to refer to any analogue signal power expression, using seconds (s)

as the associated physical unit.

] END_CC_DOMAIN_TYPE_070

CC_DOMAIN_TYPE_080 [Default setting for “Latency”

The default setting for the domain type Latency shall be an expression of values represented using Ulong

values, representing signed values in steps of 1 ns.

] END_CC_DOMAIN_TYPE_080

The default setting provides a resolution of 1 ns, a minimum value of 0 ns, and a maximum value of

+4,294,967,295 ns.

Gain

CC_DOMAIN_TYPE_090 [Domain type “Gain”

The domain type Gain shall be used to refer to any gain expression, using decibel (dB) as the associated

physical unit.

] END_CC_DOMAIN_TYPE_090

CC_DOMAIN_TYPE_100 [Default setting for “Gain”

The default setting for the domain type Gain shall be an expression of values represented using Short values,

representing signed values in steps of 0.1 dB.

] END_CC_DOMAIN_TYPE_100

The default setting provides a resolution of 0.1 dB, a minimum value of -3276.8 dB, and a maximum value

of +3276.7 dB.

Gain Slope

CC_DOMAIN_TYPE_110 [Domain type “Gain Slope”

The domain type Gain Slope shall be used to refer to any gain slope expression, using decibels per kilohertz

(dB/kHz) as the associated physical unit.

] END_CC_DOMAIN_TYPE_110

CC_DOMAIN_TYPE_120 [Default setting for “Gain Slope”

The default setting for the domain type Gain Slope shall be expression of values represented using Short

values, representing signed values in steps of 0.1 dB/kHz.

] END_CC_DOMAIN_TYPE_120

The default setting provides a resolution of 0.1 dB/kHz, a minimum value of -3276.8 dB/kHz, and a

maximum value of +3276.7 dB/kHz.

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 111 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4.3.4 Baseband Signal

This chapter identifies the burst tuning characteristics attached to the Baseband Signal.

CC_BB_SIGNAL_000 [Definition of “Baseband Signal”

The concept of Baseband Signal shall be used to refer to the baseband analytic signal exchanged between

Waveform Application and (i) Transmit Channels for transmission, (ii) Receive Channels for reception.

] END_CC_BB_SIGNAL_000

The implicit notions attached to Baseband Signal are:

 Baseband Sampling Frequency

 Baseband Coding Bits

 Baseband Nominal Power

Notion “Baseband Sampling Frequency”

CC_BB_SIGNAL_010 [Notion “Baseband Sampling Frequency”

The implicit notion Baseband Sampling Frequency, of type Frequency, shall be used for the sampling rate of

the complex analytic baseband signal exchanged at the Baseband Signal.

] END_CC_BB_SIGNAL_010

Usage of default settings provide a range of values going from 0 to4.2 GHz by steps of 1 Hz.

Notion “Baseband Coding Bits”

CC_BB_SIGNAL_020 [Notion “Baseband Coding Bits”

The implicit notion Baseband Coding Bits, expressed using UShort values, shall be used for the number of

bits used for quantification of each of the InPhase and InQuadrature (I,Q) components of the Baseband

Signal it is referring to.

] END_CC_BB_SIGNAL_020

Any signal in the stream with (I,Q) components instant values exceeding the maximum possible dynamic

range shall be cut off in order to respect the value of Baseband Coding Bits.

The typical values for Baseband Coding Bits are from 12 to 20, depending on the dynamic range of the radio

signal represented. Lower values can be encountered for radio environments with low co-channel

interference, thus reducing the desired dynamic range.

Denoting n as a certain Baseband Coding Bits value, the possible expressed signal values range from -2n-1 to

+2n-1-1.

Notion “Baseband Nominal Power”

CC_BB_SIGNAL_030 [Notion “Baseband Nominal Power”

The implicit notion Baseband Nominal Power, of type Baseband Power, shall be used as a representation of

the power of the Baseband Signal measured under nominal conditions.

] END_CC_BB_SIGNAL_030

The Baseband Signal measured under nominal conditions is defined differently in receive and transmit cases.

The dynamic range of a Baseband Signal is defined as the ratio between the maximum instantaneous

Baseband Power and the smallest positive instantaneous Baseband Power. Denoting n as a certain Signal

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 112 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

Coding Bits value, the dynamic range of a given digital representation is then equal to 20*log(2n) = 6.02 * n

dB.

With a typical value for n 20 this results in a thereoretical maximum dynamic range of 120 dB, if the

analogue RF Signal is scaled appropriately.

4.3.5 RF Signal

This chapter identifies the tuning characteristics attached to RF Signal.

CC_RF_SIGNAL_000 [Definition of “RF Signal”

The concept of RF Signal shall be used to refer to the RF analogue signal on the antenna either in

transmission or reception.

] END_CC_BB_RF_SIGNAL_000

The characteristics attached to RF Signal are:

 Carrier Frequency

 Nominal RF Power

Notion “Carrier Frequency”

CC_RF_SIGNAL_010 [Notion “Carrier Frequency”

The explicit notion Carrier Frequency, of type Frequency, shall be used for the carrier frequency around

which the RF Signal is centered.

] END_CC_RF_SIGNAL_010

Since the default setting for domain type Frequency has a maximum value around 4.2 GHz, addressing

“beyond 4 GHz” radio capabilities would require introduction of supplementary settings.

Since the default setting for domain type Frequency has a resolution of 1 Hz, addressing “VLF” radio

capabilities would require introduction of supplementary settings.

Notion “Nominal RF Power”

CC_RF_SIGNAL_020 [Notion “Nominal RF Power”

The explicit notion Nominal RF Power, of type Analogue Power, shall be used for the nominal power

attached to the RF Signal.

] END_CC_RF_SIGNAL_020

The notion Nominal RF Power will be attached to different nature of signals dependent on the receive or

transmit case.

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 113 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4.3.6 Channelization

This chapter identifies the tuning characteristics attached to Channelization. Channelization denotes signal

processing characterization of the treatments performed by Up- / Down-conversion chains.

CC_CHAN_000 [Definition of “Channel Transfer Function”

The internal notion of Channel Transfer Function shall designate the transfer function response of the

transformation operated, by Up-conversion Chain between the Baseband Signal and RF Signal, and by

Down-conversion Chain between the RF Signal and the Baseband Signal.

It shall not operate spectrum inversion.

] END_CC_CHAN_000

Note that Channel Transfer Function is an internal notion and not a constraint. The constraints applicable to

the Channel Transfer Function are defined below.

Channel Mask

CC_CHAN_010 [Definition of “Channel Mask”

The concept Channel Mask shall be used to define the requirements which shall be met by the Channel

Transfer Function of a given Conversion Chain.

] END_CC_CHAN_010

The characteristics directly attached to a Channel Mask are:

 Channel Bandwidth

 Carrier Frequency Accuracy

CC_CHAN_020 [Constraint “Channel Bandwidth”

The signal processing constraint Channel Bandwidth, of type Frequency, shall determine the bandwidth of

the channel.

] END_CC_CHAN_020

CC_CHAN_030 [Constraint “Carrier Frequency Accuracy”

The signal processing constraint Carrier Frequency Accuracy, of type Frequency, shall be used to

characterize the absolute uncertainty attached to the Carrier Frequency.

] END_CC_CHAN_030

Additional characteristics attached to Channel Mask are regrouped under the following concepts:

 SpectrumMask

 GroupDelayMask

Spectrum Mask characteristics

CC_CHAN_040 [Concept “Spectrum Mask”

The concept Spectrum Mask shall be used to characterize the spectrum mask to be satisfied by the modulus

of the Channel Transfer Function.

] END_CC_CHAN_040

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 114 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

The characteristics attached to Spectrum Mask are:

 Ripple,

 High Bound Transition Band,

 High Bound Rejection Gain,

 High Bound Rejection Slope,

 Low Bound Transition Band,

 Low Bound Rejection Gain,

 Low Bound Rejection Slope.

The following figure illustrates those characteristics signification:

frequency

gain

Channel Bandwidth

Ripple

Gcarrier

LowBoundRejectionGain HighBoundRejectionSlope

LowBoundRejectionSlope

HighBoundRejectionGain

LowBoundTransitionBand
HighBoundTransitionBand

Carrier Frequency

Figure 27: Characteristics of Spectrum Mask

The Carrier Frequency appearing on the figure corresponds to the null frequency of the baseband signal.

CC_CHAN_050 [Constraint “Ripple”

The signal processing constraint Ripple, of type Gain, shall be used to characterize the absolute uncertainty

to be met by the Channel Transfer Function relative to the gain at Carrier Frequency.

] END_CC_CHAN_050

CC_CHAN_060 [Constraint “High Bound Transition Band”

The signal processing constraint High Bound Transition Band, of type Frequency, shall be used to

characterize the frequency span from Carrier Frequency, equal to Carrier Frequency + (Signal Bandwith)/2

+ High Bound Transition Band, after which a certain rejection level shall be met by Channel Transfer

Function.

] END_CC_CHAN_060

CC_CHAN_070 [Constraint “High Bound Rejection Gain”

The signal processing constraint High Bound Rejection Gain, of type Gain, shall be used to characterize the

minimum attenuation met by the Channel Transfer Function at the frequency span specified using High

Bound Transition Bound.

] END_CC_CHAN_070

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 115 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

CC_ CHAN_080 [Constraint “High Bound Rejection Slope”

The signal processing constraint High Bound Rejection Slope, of type GainSlope, shall be used to

characterize the attenuation progression to be followed by the Channel Transfer Function at frequency spans

higher than the point specified using High Bound Transition Band.

] END_CC_ CHAN_080

CC_ CHAN_090 [Constraint “Low Bound Transition Band”

The signal processing constraint Low Bound Transition Band, of type Frequency, shall be used to

characterize the frequency span from Carrier Frequency, equal to Carrier Frequency - (Signal Bandwith)/2 -

Low Bound Transition Band, before which a certain rejection level shall be met by Channel Transfer

Function.

] END_CC_ CHAN_090

CC_ CHAN_100[Constraint “Low Bound Rejection Gain”

The signal processing constraint Low Bound Rejection Gain, of type Gain, shall be used to characterize the

minimum attenuation met by the Channel Transfer Function at the frequency span specified using Low

Bound Transition Band.

] END_CC_ CHAN_100

CC_ CHAN_110[Constraint “Low Bound Rejection Slope”

The signal processing constraint Low Bound Rejection Slope, of type GainSlope, shall be used to

characterize the attenuation progression to be followed by the Channel Transfer Function at frequency spans

lower than the point specified using Low Bound Transition Band.

] END_CC_ CHAN_110

Group Delay Mask Properties

CC_ CHAN_120[Concept “Group Delay Mask”

The concept Group Delay Mask shall be used to characterize the group delay response to be satisfied by the

Channel Transfer Function.

] END_CC_ CHAN_120

The characteristic attached to Group Delay Mask is the Max Group Delay Dispersion.

The following figure illustrates this characteristic signification:

frequency

-1/2.d(Arg(H(f))/df

max latency

min latency

Max GroupDelay Dispersion

Channel Bandwidth

Carrier Frequency

Up/Down Conversion

Latency

Figure 28: Characteristics of Group Delay Mask

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 116 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

CC_ CHAN_130 [Constraint “Max Group Delay Dispersion”

The signal processing constraint Max Group Delay Dispersion, of type Latency, shall be used to characterize

absolute uncertainty possible tolerated from Carrier Latency for values of group delay of frequencies

comprised within Channel Bandwidth.

] END_CC_BB_ CHAN_130

4.3.7 Implementation Language Requirements

4.3.7.1 C++ Implementation

Base Types

Base Types are platform dependent and can be set as follows:

typedef bool Boolean

typedef short Short

typedef long Long

typedef unsigned short UShort

typedef unsigned long ULong CC_CPP_010 [BaseTypes C++ header file

Base types shall be defined in the header file untitled BaseTypes.h.

] END_CC_CPP_010

CC_CPP_020 [BaseTypes.h edition

BaseTypes.h header file shall be edited in consideration with the target processor, as base types depend on

the processor.

] END_CC_CPP_020

Domain Types

Requirements on domain types are relative to the default setting. Use of the domain types with settings

different from the default ones is not in the scope of this specification.

The default settings can be defined as follows:

typedef ULong typeFrequency

typedef Short typeBasebandPower

typedef Short typeAnaloguePower

typedef ULong typeLatency

typedef Short typeGain

typedef Short typeGainSlope

typedef Short typeIQ

CC_CPP_030 [DefaultSetting.h C++ header file

Implementation using default settings for domain types shall include the DefaultSetting.h header file.

] END_CC_CPP_030

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 117 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

CC_CPP_040 [DefaultSetting.h edition

DefaultSetting.h header file shall be edited in consideration with the target processor, as for BaseTypes.h.

] END_CC_CPP_040

The domain types are set as follow, in case of using default settings:

typedef typeFrequency Frequency;

typedef typeGain Gain;

typedef struct EventBasedTimeStruct

{

 UShort eventSourceId;

 enum{ Beginning, Previous, Next } eventCountOrigin;

 ULong eventCount;

 Latency timeShift;

}EventBasedTime;

etc…

Note that other definitions of domain types can be used, for example in order to use different settings for

different variables.

CC_CPP_050 [Domain type “Frequency” C++ definition

The domain type Frequency with the associated default setting shall be defined as follows:

typedef typeFrequency Frequency;

] END_CC_CPP_050

CC_CPP_060 [Domain type “Baseband Power” C++ definition

The domain type Baseband Power with the associated default setting shall be defined as follows:

typedef typeBasebandPower BasebandPower;

] END_CC_CPP_060

CC_CPP_070 [Domain type “Analogue Power” C++ definition

The domain type Analogue Power with the associated default setting shall be defined as follows:

typedef typeAnaloguePower AnaloguePower;

] END_CC_CPP_070

CC_CPP_080 [Domain type “Latency” C++ definition

The domain type Latency with the associated default setting shall be defined as follows:

typedef typeLatency Latency;

] END_CC_CPP_080

CC_CPP_090 [Domain type “Gain” C++ definition

The domain type Gain with the associated default setting shall be defined as follows:

typedef typeGain Gain;

] END_CC_CPP_090

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 118 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

CC_CPP_100 [Domain type “Gain Slope” C++ definition

The domain type Gain Slope with the associated default setting shall be defined as follows:

typedef typeGainSlope GainSlope;

] END_CC_CPP_100

CC_CPP_110 [Domain type “Event-based Time” C++ definition

The domain type Event-based Time with the associated default setting shall be defined as follows:

typedef struct EventBasedTimeStruct

{

 UShort eventSourceId;

 enum{ Beginning, Previous, Next } eventCountOrigin;

 ULong eventCount;

 Latency timeShift;

}EventBasedTime;

] END_CC_CPP_110

CC_CPP_120 [Domain type “Absolute Time” C++ definition

The domain type Absolute Time with the associated default setting shall be defined as follows:

typedef struct AbsoluteTimeStruct

{

 ULong secondCount;

 ULong nanosecondCount;

}AbsoluteTime;

] END_CC_CPP_120

CC_CPP_130 [Domain type “Time” C++ definition

The domain type Time with the associated default setting shall be defined as follows:

class C_Time

{

public:

 AbsoluteTime absolute;

 EventBasedTime eventBased;

 // Instances of this class will be either AbsoluteTime, or

 // EventBasedTime, depending on the type of time provided

 // in the constructor

 Time(AbsoluteTime);

 Time(EventBasedTime);

 ~Time();

};

] END_CC_CPP_130

CC_CPP_140 [DomainTypes.h C++ header file

Implementations in C++ using domain types shall include the header file untitled DomainTypes.h,

corresponding to the header file of the domain types definitions.

] END_CC_CPP_140

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 119 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4.4 - Tuning Characteristics Setting

4.4.1 Introduction

The Tuning Characteristics Setting specifies mechanisms that enable access to tuning characteristics.

Tuning actors

Dependent on the nature of characteristics, Tuning characteristics can be set by the Deployment, the

Configuration or the Waveform Application.

Deployment setting of a characteristic consists of initializing the Transceiver Subsystem so as to support the

considered characteristic initial value. This initial value may be explicitly described to Deployment thanks

to meta-data, or be hard coded with no explicit implementation.

Waveform Configuration setting of a characteristic consists in the setting the Transceiver Subsystem so as to

support the desired characteristic value.

The Waveform Application can only set programmable characteristics (explicit notions), thanks to

programming interface operations introducing a forward relationship between the Waveform Application and

the Transceiver Subsystem.

Any implementation-level representation of a characteristic shall use the format specified for the considered

characteristic.

Access mechanisms

Two sorts of access mechanisms are identified as access characteristics:

 Elementary access

 Preset usage

A given notion may exclusively be subject to one of the possibilities, and this choice is mandated by the

specification.

These access mechanisms are not applicable on internal notions. They pertain to characteristics which are

implicit and explicit notions.

Elementary access

Elementary access corresponds to individual access to a notion. It is used for notions taking values

independently from others, with possible values among a presumably large range of values.

Elementary access can be realized using:

 Programming interface operations access, when the Waveform Application is using a

Programming interface,

 Direct access, when Configuration is accessing the characteristic, through an explicit notion.

Preset usage

Preset usage corresponds to simultaneous access to a collection of tuning characteristics. A unique preset is

defined in the specification, which characterizes a possible signal processing performance tuning for the

Conversion Chains.

The Deployment initializes all the presets applicable for a given radio configuration, each of them being

given a unique identifier eventually known by the Waveform Application.

At run-time, the Waveform Application or the Configuration is subject to modification by applicable preset.

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 120 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4.4.2 Preset characteristics

CC_PRESET_010 [Definition of “Tuning Preset”

A concept Tuning Preset shall be used to identify a set of tuning characteristics values, and provides the

corresponding requested values.

] END_CC_PRESET_010

CC_PRESET_020[Composition of a “Tuning Preset”

A Tuning Preset shall be composed of a unique identifier PresetId, of type UShort, followed by a list of

requested characteristics values attached to the preset.

] END_CC_PRESET_020

CC_PRESET_030 [List of characteristics in a “Tuning Preset”

A Tuning Preset shall be composed of the following characteristics:

From Baseband Signal:

 Baseband Sampling Frequency

 Baseband Coding Bits

 Baseband Nominal Power

From Channel Mask:

 Channel Bandwidth

 Carrier Frequency Accuracy

From Spectrum Mask:

 Ripple

 High Bound Transition Band

 High Bound Rejection Gain

 High Bound Rejection Slope

 Low Bound Transition Band

 Low Bound Rejection Gain

 Low Bound Rejection Slope

From Group Delay Mask:

 Max Group Delay Dispersion

] END_CC_PRESET_030

Refer to Figure 27: Characteristics of Spectrum Mask and Figure 28: Characteristics of Group Delay Mask

for a graphical representation of above constraints.

In the current version of the Facility the Preset characteristics are only accessible via the “Tuning Preset” or

“Configuration”.

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 121 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4.4.3 Modelling Support Requirements

CC_PRESET_040 [Tuning Preset modelling elements

Transceiver Subsystem model involving concept Tuning Preset shall use the modelling elements depicted in

the following class diagram:

Figure 29: Tuning Preset class diagram

] END_CC_PRESET_040

4.5 - Baseband Packets

4.5.1 Introduction

Overview

The concept of Baseband Packets adresses the transmit or receive baseband samples interface, which are the

main data interfaces exchanged between the Waveform Application and the Transceiver Subsystem.

The following concepts are defined by Baseband Packets:

 Baseband Packet

 Baseband Sample

Baseband Packets are the data structures used for signal exchange between the Waveform Application and

the Transceiver Subsystem.

Baseband Samples are the elementary information items contained in Baseband Packets.

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 122 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4.5.2 Specification

Baseband packet

Baseband Packets are the elementary pieces of information involved during effective real-time exchanges

between the Waveform Application and the Transceiver Subsystem. Usage of Baseband Packets is specified

with operations using them.

CC_BB_PACKET_010 [Concept “Baseband Packet”

The concept of Baseband Packet shall be used to refer to the packet of samples exchanged between the

Waveform Application and Transceiver Sub-system.

A Baseband packet is a finite number of sequenced baseband samples.

The private attribute Samples Number, of type ULong, contains the number of samples contained in the

Baseband Packet.

The packet is composed of a quantity of Baseband Samples equal to Samples Number.

] END_CC_BB_PACKET_010

Baseband sample

CC_BB_PACKET_020 [Concept “Baseband Sample”

The concept Baseband Sample shall represent an elementary complex sample of the Baseband Signal. It is

composed of a valueI and valueQ, represented on an implementation language-dependent type.

] END_CC_BB_PACKET_020

The type chosen for implementation to represent the Baseband Samples components shall be capable of

representing values coded on a number of bits equal to the implicit notion BasebandCodingBits.

4.5.3 Implementation Language Requirements

4.5.3.1 C++ Implementation

BBSample

CC _CPP_150 [BBSample C++ definition

Implementations in C++ using the Common Concept BasebandPackets shall use the class BBSample as

declared in the following C++ reference source code extract:

typedef struct BBSampleStruct

{

 typeIQ valueI;

 typeIQ valueQ;

}BBSample;

] END_CC_XXX_CPP_150

CC _CPP_160 [BBSample.h C++ header file

Implementations in C++ using the Common Concept BasebandPackets shall include the header file untitled

BBSample.h, corresponding to the header file of the BBSample definition.

] END_CC_CPP_160

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 123 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

BBPacket

CC _CPP_170 [BBPacket C++ definition

Implementations in C++ using the Common Concept BasebandPackets shall use the class BBPacket as

declared in the following C++ reference source code extract:

class C_BBPacket

{

private:

 ULong SamplesNumber;

 BBSample * packet;

public:

 BBPacket(ULong, BBSample *);

 ~BBPacket();

};

] END_CC_CPP_170

CC_CPP_180 [BBPacket.h C++ header file

Implementations in C++ using the Common Concept BasebandPackets shall include the header file untitled

BBPacket.h, corresponding to the header file of the BBPacket definition.

] END_CC_CPP_180

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 124 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

4.5.4 List of requirements

For convenience, the following table provides an overview of the requirements specified in the chapter

Common Concepts:

Identifier Tag Section

CC_TIME_010 Generic Domain Type “Time” Time handling Domain Types

 Domain type “Absolute Time” Time handling Domain Types

 Default setting for “Time Specification” Time handling Domain Types

 Domain type “Event-based Time” Time handling Domain Types

5 Composition of an “Event-based Time” Time handling Domain Types

 Field “Event Source Id” Time handling Domain Types

 Undefined “Event Source Id” value Time handling Domain Types

 Defined field “Event Source Id” Time handling Domain Types

 Field “Event Count Origin” Time handling Domain Types

10 Enumerated value “Beginning” Time handling Domain Types

 Enumerated value “Previous” Time handling Domain Types

 Enumerated value “Next” Time handling Domain Types

 Field “Event Count” Time handling Domain Types

 Undefined “Event Count” value Time handling Domain Types

15 Field “Time Shift” Time handling Domain Types

 Domain type “Frequency” Domain types

 Default setting for “Frequency” Domain types

 Domain type “Baseband Power” Domain types

 Default setting for “Baseband Power” Domain types

20 Domain type “Analogue Power” Domain types

 Default setting for “Analogue Power” Domain types

 Domain type “Latency” Domain types

 Default setting for “Latency” Domain types

 Domain type “Gain” Domain types

25 Default setting for “Gain” Domain types

 Domain type “Gain Slope” Domain types

 Default setting for “Gain Slope” Domain types

 Definition of “Baseband Signal” Baseband Signal

 Property “Baseband Sampling Frequency” Baseband Signal

30 Property “Baseband Coding Bits” Baseband Signal

 Property “Baseband Nominal Power” Baseband Signal

 Definition of “RF Signal” RF Signal

 Property “Carrier Frequency” RF Signal

 Property “Nominal RF Power” RF Signal

35 Definition of “Channel Transfer Function” Channelization

 Definition of “Channel Mask” Channelization

 Property “Channel Bandwidth” Channelization

 Property “Carrier Frequency Accuracy” Channelization

 Concept “Spectrum Mask” Channelization

40 Property “Ripple” Channelization

 Property “High Bound Transition Band” Channelization

 Property “High Bound Rejection Gain” Channelization

 Property “High Bound Rejection Slope” Channelization

 Property “Low Bound Transition Band” Channelization

45 Property “Low Bound Rejection Gain” Channelization

 Property “Low Bound Rejection Slope” Channelization

 Concept “Group Delay Mask” Channelization

 Constraint “Max Group Delay Dispersion” Channelization

 BaseTypes C++ header file Tuning Properties Definition C++

50 BaseTypes.h edition Tuning Properties Definition C++

 DefaultSetting.h C++ header file Tuning Properties Definition C++

 DefaultSetting.h edition Tuning Properties Definition C++

 Domain type “Frequency” C++ definition Tuning Properties Definition C++

SDRF-08-S-0008-V1.0.0 Common Concepts

 Page 125 of 130 Common Concepts

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

 Domain type “Basband Power” C++ definition Tuning Properties Definition C++

55 Domain type “Analogue Power” C++ definition Tuning Properties Definition C++

 Domain type “Latency” C++ definition Tuning Properties Definition C++

 Domain type “Gain” C++ definition Tuning Properties Definition C++

 Domain type “Event-based Time” C++ definition Tuning Properties Definition C++

 Domain type “Absolute Time” C++ definition Tuning Properties Definition C++

60 Domain type “Time” C++ definition Tuning Properties Definition C++

 DomainTypes.h C++ header file Tuning Properties Definition C++

 Definition of “Tuning Preset” Preset Properties

 Composition of a “Tuning Preset” Preset Properties

 List of properties in a “Tuning Preset” Preset Properties

65 Concept “Baseband Packet” Baseband Packets

 Concept “Baseband Sample” Baseband Packets

 BBSample C++ definition Baseband Packets C++

 BBSample.h C++ header file Baseband Packets C++

 BBPacket C++ definition Baseband Packets C++

70 BBPacket.h C++ header file Baseband Packets C++

Table 26: Overview of Common Concepts requirements

SDRF-08-S-0008-V1.0.0 Annexes

 Page 126 of 130 Annexes

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

5 - Annexes

5.1 - Using implementation standards

5.1.1 JTRS radios with MHAL RF Chain Coordinator

This figure illustrates a typical case of the defense radio industry:

RF/IF Board

FPGA

Façade

MHAL RF
Chain

Coordinator

FPGA

Baseband Board

WF

Component
(BB

processing)

WF

Component
(BB

processing)

DSP
Façade

DSP

Tra nsceiv er Sub-sys tem

MHAL Com

MHAL Com

Figure 30: JTRS radios with MHAL RF Chain Coordinator

5.1.2 OBSAI/CPRI compliant Base-stations

This figure illustrates a typical case of the cellular base-stations industry:

RF Head

RF Head

Transceiver

Façade

BB Processor

Transceiver Sub-system

BB Board

WF

Component

(BB

processing)

OBSAI/CPRI-

compliant

interconnect

Figure 31: Transceiver Subsystem in OBSAI / CPRI compliant Base stations

SDRF-08-S-0008-V1.0.0 Annexes

 Page 127 of 130 Annexes

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

5.1.3 DigRF-compliant Handsets

This figure illustrates a typical case of the cellular phones industry:

RF Head

RF IC

Transceiver
Façade

BB Processor Core

Tra nsceiv er Sub-sys tem

Radio SoC

WF

Component
(BB

processing)

DigRF-compliant
interconnect

Figure 32: Transceiver Subsystem in DigRF-comploant Handsets

5.2 - Implementation Language Reference Source Code

5.2.1 C++ Implementation

Inclusion rules

The following sources are organized in header files, and correspond to the content of these header files. Note

that for a C++ implementation, it is required to include header files in the following strict order:

#include “BaseTypes.h”

#include “DefaultSetting.h”

#include “DomainTypes.h”

Next, use of interfaces specified in core features requires the Common Concepts header files to be included.

The extract below shows the right order of inclusion:

#include “BBSample.h”

#include “BBPacket.h”

BaseTypes.h

typedef bool Boolean

typedef short Short

typedef long Long

typedef unsigned short UShort

typedef unsigned long ULong

DefaultSetting.h

typedef ULong typeFrequency

typedef Short typeBasebandPower

typedef Short typeAnaloguePower

typedef ULong typeLatency

typedef Short typeGain

typedef Short typeGainSlope

SDRF-08-S-0008-V1.0.0 Annexes

 Page 128 of 130 Annexes

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

typedef Short typeIQ

DomainTypes.h

// Domain type Frequency

typedef typeFrequency Frequency;

// Domain type BasebandPower

typedef typeBasebandPower BasebandPower;

// Domain type AnaloguePower

typedef typeAnaloguePower AnaloguePower;

// Domain type Latency

typedef typeLatency Latency;

// Domain type Gain

typedef typeGain Gain;

// Domain type Gain Slope

typedef typeGainSlope GainSlope;

// Domain type AbsoluteTime

typedef struct AbsoluteTimeStruct

{

 ULong secondCount;

 ULong nanosecondCount;

}AbsoluteTime;

// Domain type EventBasedTime

typedef struct EventBasedTimeStruct

{

 UShort eventSourceId;

 enum{ Beginning, Previous, Next } eventCountOrigin;

 ULong eventCount;

 Latency timeShift;

}EventBasedTime;

// Domain type Time

class C_Time

{

public:

 AbsoluteTime absolute;

SDRF-08-S-0008-V1.0.0 Annexes

 Page 129 of 130 Annexes

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

 EventBasedTime eventBased;

 // Instances of this class will be either AbsoluteTime, or

 // EventBasedTime, depending on the kind of time provided

 // in the constructor

 Time(AbsoluteTime);

 Time(EventBasedTime);

 ~Time();

};

BBSample.h

typedef struct BBSampleStruct

{

 typeIQ valueI;

 typeIQ valueQ;

}BBSample;

BBPacket.h

class C_BBPacket

{

private:

 ULong SamplesNumber;

 BBSample * packet;

public:

 BBPacket(ULong, BBSample *);

 ~BBPacket();

};

TransmitControl.h

class I_TransmitControl

{

public :

 virtual void createTransmitCycleProfile(

 Time requestedTransmitStartTime,

 Time requestedTransmitStopTime,

 UShort requestedPresetId,

 Frequency requestedCarrierFrequency,

 AnaloguePower requestedNominalRFPower) = 0;

 virtual void configureTransmitCycle(

 ULong targetCycleId,

 Time requestedTransmitStartTime,

 Time requestedTransmitStopTime,

 Frequency requestedCarrierFrequency,

 AnaloguePower requestedNominalRFPower) = 0;

 virtual void setTransmitStopTime(

 ULong targetCycleId,

 Time requestedTransmitStopTime) = 0;

};

SDRF-08-S-0008-V1.0.0 Annexes

 Page 130 of 130 Annexes

Copyright © 2008-2009 The Software Defined Radio Forum Inc. – All Rights Reserved

TransmitDataPush.h

class I_TransmitDataPush

{

public :

 virtual void pushBBSamplesTx(

 BBPacket * thePushedPacket,

 Boolean endOfBurst) = 0;

};

ReceiveControl.h

class I_ReceiveControl

{

public :

 virtual void createReceiveCycleProfile(

 Time requestedReceiveStartTime,

 Time requestedReceiveStopTime,

 ULong requestedPacketSize,

 UShort requestedPresetId,

 Frequency requestedCarrierFrequency) = 0;

 virtual void configureReceiveCycle(

 ULong targetCycleId,

 Time requestedReceiveStartTime,

 Time requestedReceiveStopTime,

 ULong requestedPacketSize,

 Frequency requestedCarrierFrequency) = 0;

 virtual void setReceiveStopTime(

 ULong targetCycleId,

 Time requestedTransmitStopTime) = 0;

};

ReceiveDataPush.h

class I_ReceiveDataPush

{

public :

 virtual void pushBBSamplesRx(

 BBPacket * thePushedPacket,

 Boolean endOfBurst) = 0;

};

