
Copyright © 2018 The Software Defined Radio Forum Inc – All Rights Reserved

SCA 4.1 Test Procedures

Document WINNF-TS-4001

Version V1.0.0

18 December 2018

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc Page i

All Rights Reserved

TERMS, CONDITIONS & NOTICES
This document has been prepared by the Work Group of WInnF Project SCA-2017-001

“Verification of SCA 4.1 Applications” to assist The Software Defined Radio Forum Inc. (or its

successors or assigns, hereafter “the Forum”). It may be amended or withdrawn at a later time

and it is not binding on any member of the Forum or of the SCA Test and Evaluation Work

Group.

Contributors to this document that have submitted copyrighted materials (the Submission) to the

Forum for use in this document retain copyright ownership of their original work, while at the

same time granting the Forum a non-exclusive, irrevocable, worldwide, perpetual, royalty-free

license under the Submitter’s copyrights in the Submission to reproduce, distribute, publish,

display, perform, and create derivative works of the Submission based on that original work for

the purpose of developing this document under the Forum's own copyright.

Permission is granted to the Forum’s participants to copy any portion of this document for

legitimate purposes of the Forum. Copying for monetary gain or for other non-Forum related

purposes is prohibited.

THIS DOCUMENT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER,

AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY

DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT

THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR ANY OF ITS

MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY

IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE

WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS

DOCUMENT.

Recipients of this document are requested to submit, with their comments, notification of any

relevant patent claims or other intellectual property rights of which they may be aware that might

be infringed by any implementation of the specification set forth in this document, and to provide

supporting documentation.

This document was developed following the Forum's policy on restricted or controlled

information (Policy 009) to ensure that that the document can be shared openly with other

member organizations around the world. Additional Information on this policy can be found

here: http://www.wirelessinnovation.org/page/Policies_and_Procedures

Although this document contains no restricted or controlled information, the specific

implementation of concepts contain herein may be controlled under the laws of the country of

origin for that implementation. Readers are encouraged, therefore, to consult with a cognizant

authority prior to any further development.

Wireless Innovation Forum ™ and SDR Forum ™ are trademarks of the Software Defined Radio

Forum Inc.

http://www.wirelessinnovation.org/page/Policies_and_Procedures

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc Page ii

All Rights Reserved

Table of Contents

TERMS, CONDITIONS & NOTICES .. i
Contributors .. vii
1 Introduction ...1
2 Verification Definitions and Rules..2

2.1 Terms and definitions ..2

2.2 Common rules for the execution of the test procedures ..3
3 Common Context Groups ...4

3.1 Common Context for SCA 4.1 Test Platform ..4
3.2 Common Context related to the validation of an application component4

3.3 Common Context for requirements associated with BaseComponent (including a sub-

application) ..4

3.4 Common Context for requirements associated with BaseComponent (not including a

sub-application) ...4

3.5 Common Context for requirements associated with ManageableApplicationComponent5
3.6 Common Context for requirements associated with ApplicationControllerComponent .5
3.7 Common Context for requirements associated with BaseFactoryComponent6

3.8 Common Context for requirements associated with an

ApplicationComponentFactoryComponent ..6

3.9 Common Context for requirements associated with a component which implements the

ComponentFactory interface ...6
4 Common Precondition Groups ..6

4.1 Common Precondition for test procedures involving XML ..6

4.2 Common Precondition for test procedures involving parsing of XML files7

4.3 Common Precondition for test procedures requiring an application to be created7
4.4 Common Precondition for test procedures involving execution of a

ManageableApplicationComponent ..7
4.5 Common Precondition for test procedures involving execution of a

BaseFactoryComponent ..7

5 Test Procedures ...8
5.1 ApplicationControllerComponent Test Procedures ...9

5.1.1 Mandatory ..9
5.1.1.1 Requirement under Test: SCA175.. 9
5.1.1.2 Requirement under Test: SCA176.. 10
5.1.1.3 Requirement under Test: SCA496.. 11

5.1.2 Channel Extension UoF ...11
5.1.2.1 Requirement under Test: SCA500.. 11

5.2 ManageableApplicationComponent Test Procedures ..11

5.2.1 Mandatory ..11
5.2.1.1 Requirement under Test: SCA166.. 11
5.2.1.2 Requirement under Test: SCA167.. 14
5.2.1.3 Requirement under Test: SCA169.. 17
5.2.1.4 Requirement under Test: SCA455, SCA82 .. 17
5.2.1.5 Requirement under Test: SCA456.. 18
5.2.1.6 Requirement under Test: SCA520.. 21
5.2.1.7 Requirement under Test: SCA550.. 21

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc Page iii

All Rights Reserved

5.2.2 Interrogable UoF ..24
5.2.2.1 Requirement under Test: SCA168.. 24

5.2.3 Component Registration UoF ..25
5.2.3.1 Requirement under Test: SCA82.. 25

5.3 ApplicationComponentFactoryComponent Test Procedures ..26

5.3.1 Mandatory ..26
5.3.1.1 Requirement under Test: SCA415.. 26
5.3.1.2 Requirement under Test: SCA521.. 26
5.3.1.3 Requirement under Test: SCA522.. 26

5.4 ApplicationComponent Test Procedures ...27
5.4.1 Mandatory ..27

5.4.1.1 Requirement under Test: SCA551.. 27
5.4.2 AEP Compliant UoF ..28

5.4.2.1 Requirement under Test: SCA173.. 28
5.5 AssemblyComponent Test Procedures ..31

5.5.1 Mandatory ..31
5.5.1.1 Requirement under Test: SCA155.. 31
5.5.1.2 Requirement under Test: SCA156.. 31
5.5.1.3 Requirement under Test: SCA457.. 32

5.6 BaseComponent Test Procedures ..34

5.6.1 Mandatory ..34
5.6.1.1 Requirement under Test: SCA155, SCA503, SCA494, SCA495, SCA496, SCA500 34
5.6.1.2 Requirement under Test: SCA427.. 35
5.6.1.3 Requirement under Test: SCA430.. 36
5.6.1.4 Requirement under Test: SCA463.. 36
5.6.1.5 Requirement under Test: SCA501.. 37
5.6.1.6 Requirement under Test: SCA502.. 37
5.6.1.7 Requirement under Test: SCA548.. 38

5.6.2 Connectable UoF ...40
5.6.2.1 Requirement under Test: SCA7 ... 40
5.6.2.2 Requirement under Test: SCA8 ... 41
5.6.2.3 Requirement under Test: SCA10.. 44
5.6.2.4 Requirement under Test: SCA11.. 44
5.6.2.5 Requirement under Test: SCA12.. 45
5.6.2.6 Requirement under Test: SCA13, SCA14, SCA430 .. 48
5.6.2.7 Requirement under Test: SCA519.. 51
5.6.2.8 Requirement under Test: SCA547.. 53

5.6.3 LifeCycle UoF ...56
5.6.3.1 Requirement under Test: SCA15.. 56
5.6.3.2 Requirement under Test: SCA432.. 56

5.6.4 Releaseable UoF ..59
5.6.4.1 Requirement under Test: SCA16.. 59
5.6.4.2 Requirement under Test: SCA17.. 59
5.6.4.3 Requirement under Test: SCA18.. 62
5.6.4.4 Requirement under Test: SCA518.. 62

5.6.5 Configurable UoF ..63
5.6.5.1 Requirement under Test: SCA26, SCA27, SCA28 .. 63
5.6.5.2 Requirement under Test: SCA29, SCA30, SCA31 .. 67
5.6.5.3 Requirement under Test: SCA429.. 69
5.6.5.4 Requirement under Test: SCA545.. 70

5.6.6 Controllable UoF ...72

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc Page iv

All Rights Reserved

5.6.6.1 Requirement under Test: SCA34.. 72
5.6.6.2 Requirement under Test: SCA37.. 72
5.6.6.3 Requirement under Test: SCA433, SCA32, SCA33, SCA36... 73

5.6.7 LogProducer and Configurable UoFs ..75
5.6.7.1 Requirement under Test: SCA420.. 75

5.6.8 Log Producer UoF..78
5.6.8.1 Requirement under Test: SCA421.. 78
5.6.8.2 Requirement under Test: SCA423.. 79

5.6.9 Event Producer UoF ...82
5.6.9.1 Requirement under Test: SCA424.. 82
5.6.9.2 Requirement under Test: SCA425.. 83

5.6.10 Interrogable UoF ..85
5.6.10.1 Requirement under Test: SCA426, SCA6 .. 85

5.6.11 Testable UoF ..87
5.6.11.1 Requirement under Test: SCA428, SCA19, SCA21, SCA23, SCA24, SCA25 87
5.6.11.2 Requirement under Test: SCA546.. 90

5.6.12 Event Consumer UoF ...93
5.6.12.1 Requirement under Test: SCA444.. 93

5.6.13 CORBA Compliant UoF ..94
5.6.13.1 Requirement under Test: SCA506.. 94

5.7 BaseFactoryComponent Test Procedures ..102

5.7.1 Mandatory ..102
5.7.1.1 Requirement under Test: SCA386, SCA387, SCA388, SCA415 ... 102
5.7.1.2 Requirement under Test: SCA389.. 104
5.7.1.3 Requirement under Test: SCA413, SCA549 .. 106
5.7.1.4 Requirement under Test: SCA414.. 108
5.7.1.5 Requirement under Test: SCA540.. 109

5.7.2 Interrogable UoF ..111
5.7.2.1 Requirement under Test: SCA541.. 111

5.7.3 Releaseable UoF ..114
5.7.3.1 Requirement under Test: SCA574.. 114

6 Reusable Verification Sub-procedures ..116
6.1 Locate next component or assembly ..116

6.2 Find Component Type of a component instance ...116
6.3 Obtain type of a component placement ...117
6.4 Obtain factoryparam properties for a component created by a component factory118
6.5 Obtain supported interface list ...119
6.6 Ensure an operation raises a specific exception ...119

6.7 Obtain component configure properties...120
6.8 Obtain component test properties ..121

7 References ...121
Appendix A ..122

List of Figures
Figure 1: SCA application model 8
Figure 2: ApplicationComponent, ApplicationComponentFactoryComponent,

ManageableApplicationComponent, and ApplicationControllerComponent relationships 8

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc Page v

All Rights Reserved

List of Tables
Table 1: Steps to execute Test Procedure for SCA175 ... 10

Table 2: Steps to execute Test Procedure for SCA176 ... 11
Table 3: Steps to execute Test Procedure for SCA166 ... 14
Table 4: Steps to execute Test Procedure for SCA167 ... 16
Table 5: Steps to execute Test Procedure for SCA455, SCA82 ... 18
Table 6: Steps to execute Test Procedure for SCA456 ... 19

Table 7: Steps to execute Test Procedure for SCA520 ... 21
Table 8: Steps to execute Test Procedure for SCA550 ... 23
Table 9: Steps to execute Test Procedure for SCA168 ... 24
Table 10: Steps to execute Test Procedure for SCA521 ... 26

Table 11: Steps to execute Test Procedure for SCA522 ... 27
Table 12: Steps to execute Test Procedure for SCA551 ... 28

Table 13: Steps to execute Test Procedure for SCA173 ... 30
Table 14: Steps to execute Test Procedure for SCA156 ... 31

Table 15: Steps to execute Test Procedure for SCA457 ... 33
Table 16: Steps to execute Test Procedure for SCA503, SCA494, SCA495, SCA496, SCA500 35
Table 17: Steps to execute Test Procedure for SCA427 ... 36

Table 18: Steps to execute Test Procedure for SCA463 ... 37
Table 19: Steps to execute Test Procedure for SCA502 ... 38

Table 20: Steps to execute Test Procedure for SCA548 ... 39
Table 21: Steps to execute Test Procedure for SCA7 ... 40
Table 22: Steps to execute Test Procedure for SCA8 ... 42

Table 23: Steps to execute Test Procedure for SCA10 ... 44

Table 24: Steps to execute Test Procedure for SCA11 ... 45

Table 25: Steps to execute Test Procedure for SCA12 ... 46
Table 26: Steps to execute Test Procedure for SCA13, SCA14, SCA430 49

Table 27: Steps to execute Test Procedure for SCA519 ... 52
Table 28: Steps to execute Test Procedure for SCA547 ... 55
Table 29: Steps to execute Test Procedure for SCA15 ... 56

Table 30: Steps to execute Test Procedure for SCA432 ... 58
Table 31: Steps to execute Test Procedure for SCA17 ... 61

Table 32: Steps to execute Test Procedure for SCA18 ... 62
Table 33: Steps to execute Test Procedure for SCA518 ... 63
Table 34: Steps to execute Test Procedure for SCA26, SCA27, SCA28 64
Table 35: Steps to execute Test Procedure for SCA29, SCA30, SCA31 67

Table 36: Steps to execute Test Procedure for SCA545 ... 71
Table 37: Steps to execute Test Procedure for SCA34 ... 72
Table 38: Steps to execute Test Procedure for SCA34 ... 73

Table 39: Steps to execute Test Procedure for SCA433, SCA32, SCA33, SCA36 74
Table 40: Steps to execute Test Procedure for SCA420 ... 77
Table 41: Demonstration steps for SCA421 ... 79
Table 42: Demonstration steps for SCA423 ... 81
Table 43: Steps to execute Test Procedure for SCA424 ... 83
Table 44: Steps to execute Test Procedure for SCA425 ... 84

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc Page vi

All Rights Reserved

Table 45: Steps to execute Test Procedure for SCA426 ... 85
Table 46: Steps to execute Test Procedure for SCA428, SCA19, SCA21, SCA23, SCA24,

SCA25 ... 88
Table 47: Steps to execute Test Procedure for SCA546 ... 92
Table 48: Steps to execute Test Procedure for SCA444 ... 94

Table 49: Steps to execute Test Procedure for SCA506 ... 101
Table 50: Steps to execute Test Procedure for SCA386, SCA387, SCA388, SCA415 103
Table 51: Steps to execute Test Procedure for SCA389 ... 105
Table 52: Steps to execute Test Procedure for SCA413 and SCA549 108
Table 53: Steps to execute Test Procedure for SCA414 ... 109

Table 54: Steps to execute Test Procedure for SCA540 ... 111
Table 55: Steps to execute Test Procedure for SCA541 ... 113

Table 56: Steps to execute Test Procedure for SCA574 ... 114
Table 57: Steps to execute Sub-procedure 6.1 Locate next component or assembly 116
Table 58: Steps to execute Sub-procedure 6.2 Find Component Type of a component instance116
Table 59: Steps to execute Sub-procedure 6.3 Obtain type of a component placement 117

Table 60: Steps to execute Sub-procedure 6.4 Obtain factoryparam properties for a component

created by a component factory .. 118
Table 61: Steps to execute Sub-procedure 6.5 Obtain supported interface list 119

Table 62: Steps to execute Sub-procedure 6.6 Ensure an operation raises a specific exception 119
Table 63: Steps to execute Sub-procedure 6.7 Obtain component configure properties 120

Table 64: Steps to execute Sub-procedure 6.8 Obtain component test properties 121
Table 65: Overview of when a requirement is applicable. ... 122

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc Page vii

All Rights Reserved

Contributors

The following individuals and their organization of affiliation are credited as Contributors to

development of the specification, for having been involved in the work group that developed the

draft then approved by WInnF member organizations:

• Ed Brabant, JTEL

• Huan Dao, JTEL

• James Evangelos, JTNC Standards

• Chris Hagen, Rockwell Collins

• Olivier Kirsch, Kereval

• Frédéric Le Roy, ENSTA Bretagne

• François Lévesque, NordiaSoft

• Charles Linn, Harris

• Eric Nicollet, Thales Communication & Security

• Kevin Richardson, JTNC Standards

• Sarvpreet Singh, Fraunhofer FKIE

• Jonathan Springer, Reservoir Labs

• James Ezick, Reservoir Labs

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 1

All Rights Reserved

SCA 4.1 Test Procedures

1 Introduction

This document contains test procedures that may be used to verify that application

implementations are compliant with the SCA 4.1 specification [Ref0]. The SCA requirements

that are verified by these procedures are those listed in Table 1 and Table 2 of the Application

Verification Plan (AVP) document [Ref1]. Verification approaches were selected for each

requirement to satisfy the objective of minimizing the duration and expense of SCA 4.1

verification as described in the AVP. Therefore, the preferred methods of verification, unless

otherwise specified, are Test and Analysis since they allow for full or partial automation. If

neither of those methods can be used, Demonstration is preferred over the Inspection. The

Inspection method should only be used when no other automated or semi-automated approach

can be applied to verify a requirement under test.

The remainder of the document is structured as follows. Section 2 presents common rules to be

applied during the execution of the test procedures, along with supplemental terms and

definitions. Sections 3 and 4 contain contextual information and preconditions that are used

across multiple test procedures. Section 5 contains the SCA application requirements and their

associated test procedures. Lastly, section 6 contains generic sub-procedures that are utilized

within many of the test procedures.

The following terms are used within this document and should be interpreted as described in

RFC-2119:

• SHALL is a mandatory requirement (negative is SHALL NOT)

• SHOULD is recommended requirement/best practice (negative is SHOULD NOT)

• MAY is an optional requirement, i.e., something that is allowed (negative is NEED NOT)

https://tools.ietf.org/html/rfc2119

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 2

All Rights Reserved

2 Verification Definitions and Rules

2.1 Terms and definitions

Abstract Components: SCA 4.1 [Ref0] abstract component (i.e. BaseComponent,

BaseFactoryComponent) requirements are written as if they are implemented, packaged and

deployed by the abstract component. For example, requirement SCA430 is written as follows:

“A BaseComponent shall supply ports for all the ports defined in its domain profile.”

Within the SCA 4.1 Test Procedures, such requirements are allocated to the component that

inherits the abstract component, thus the one that implements (realizes) the inherited interfaces.

Given that an SCA 4.1 ManageableApplicationComponent inherits from BaseComponent,

SCA430 can be interpreted in the following manner:

“A ManageableApplicationComponent shall supply ports for all the ports defined in its

domain profile.”

This interpretation is contingent upon the deployed ManageableApplicationComponent

implementing the Connectable Unit of Functionality (UoF). The particulars of the

implementation (e.g. does the component inherit that CF::PortAccessor interface directly) are

implementation dependent and not prescribed by the test procedures.

Component: When a test procedure references a "component", it is a concrete application

component, i.e. an application component defined in SCA 4.1 [Ref0] section 3.1.3.2.2,

“Components".

Instantiation Reference: A reference to an instance of a component or nested application

defined within the SAD. An instantiation reference is designated by a componentinstantiationref

or assemblyinstantiationref element and points to the definition of a component instance or a

nested application within the application.

SAD File: The SAD file is the software profile of an application. A SAD may contain references

to other SAD files when nested applications are used (thus forming a hierarchy of applications).

The root SAD is defined as the descriptor file referenced by the profileFileName input parameter

of the CF::DomainInstallation::installApplication() operation. The root SAD contains an

assemblyplacement element for each instance of a nested application, if nested applications are

implemented. A nested SAD may also contain nested applications.

If the application under test contains nested application(s):

• When a test procedure references a SAD file without explicitly specifying "root SAD",

the term applies to any SAD file referenced by the application.

• When a test procedure refers to the SAD file of an application component, the SAD file is

the one which references the application component’s SPD file.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 3

All Rights Reserved

Class(es) used to implement a component: A component is implemented through one or more

source files using one or more classes. When a test procedure analyzes or inspects source code to

validate a requirement, the term “for each class” means that the procedure will consider all

source files (and classes) provided, no matter where they are used in the implementation of the

component.

2.2 Common rules for the execution of the test procedures

1. A test procedure is applicable to a product if the product is an applicable SCA component

for the requirement (as listed in Table 1 or 2 of the AVP document) and

a. the associated requirement is listed in Table 1 of the AVP document

b. or the associated requirement is listed in Table 2 of the AVP document and the

component claims to be conform to the applicable UoF for the requirement.

2. Each test procedure is an independent entity that provides any contextual information,

facts, assumptions, dependencies, or interpretations which are necessary to understand or

execute the procedure.

3. A test procedure may have preconditions, which identify conditions that must be satisfied

before a procedure can be executed. When any of a procedure’s preconditions cannot be

satisfied, the procedure should not be executed and the result of the test procedure will be

considered “unverified” (i.e. applicable but unverified).

4. A test procedure may be written to verify more than one requirement. In those instances,

each step identified within the procedure must be performed as part of verification unless

a requirement number, specified within parenthesis, is provided at the end of the step

action. A verification step containing a requirement number indicates that the step should

only be executed when the test procedure is used to verify that requirement. When the

procedure is used to verify a different requirement, such a step must be omitted.

5. Unless otherwise stated, the steps within a test procedure are executed sequentially. After

a test step is successful, the execution continues with the next step, until all test steps are

performed or as directed. If a test step fails, the verification result for the requirement

under test will be a failure, and no further test steps need be performed. If all executed

test steps are successful, then the verification result of the requirement under test

procedure will be a pass.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 4

All Rights Reserved

3 Common Context Groups

3.1 Common Context for SCA 4.1 Test Platform

The following assertions apply to the "Context" section of all test procedures involving runtime

execution of an application and/or its components.

1. The SCA 4.1 Test Platform:

1.1. conforms to the SCA 4.1 specification with all UoFs an OE may support, i.e.

equivalent functionality to the SCA 4.1 "Full" OE profile, when interfacing with the

application and/or its components.

1.2. implements the SCA 4.1 "Full" CORBA/e and RT CORBA profiles

1.3. implements the SCA 4.1 "Full" AEP profile

1.4. supports loading and executing the application under test

3.2 Common Context related to the validation of an application component

The following assertions apply to the "Context" section of all test procedures for requirements

associated with an application component.

1. This test procedure will start with the root SAD of the application.

3.3 Common Context for requirements associated with BaseComponent (including a sub-

application)

The following assertions apply to the "Context" section of all test procedures for requirements

associated with BaseComponent.

1. The BaseComponent is a component part of an application under test.

2. A component is identified by the <componentplacement> or <assemblyplacement>

element in the SAD of the application under test.

3. The domain profile for the component is the file referenced by an element stated in item 2

and the SPD, SCD and PRF(s) it references.

3.4 Common Context for requirements associated with BaseComponent (not including a

sub-application)

The following assertions apply to the "Context" section of all test procedures for requirements

associated with BaseComponent.

1. The BaseComponent is a component part of an application under test.

2. A component is identified by the <componentplacement> element in the SAD of the

application under test.

3. The domain profile for the component is the file referenced by an element stated in item 2

and the SPD, SCD and PRF(s) it references.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 5

All Rights Reserved

3.5 Common Context for requirements associated with

ManageableApplicationComponent

The following assertions apply to the "Context" section of all test procedures for requirements

associated with ManageableApplicationComponent.

1. The ManageableApplicationComponent is a component part of an application under test.

2. A ManageableApplicationComponent is identified by the <componentplacement>

element in the SAD of the application under test.

3. The SCD file for the component contains a <componenttype> element value of

MANAGEABLE_APPLICATION_COMPONENT.

4. The domain profile for the ManageableApplicationComponent is the file referenced by an

element stated in item 2 and the SPD, SCD and PRF(s) it references.

3.6 Common Context for requirements associated with ApplicationControllerComponent

The following assertions apply to the "Context" section of all test procedures for requirements

associated with ApplicationControllerComponent.

1. The ApplicationControllerComponent is a component part of an application under test.

2. An application controller component is identified by the <assemblycontroller> element in

the SAD of the application under test.

3. The <assemblycontroller> element stated in item 2 references a <componentplacement>

in the SAD.

4. The domain profile for the ApplicationControllerComponent is the file referenced by an

element stated in item 3 and the SPD, SCD and PRF(s) it references.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 6

All Rights Reserved

3.7 Common Context for requirements associated with BaseFactoryComponent

The following assertions apply to the "Context" section of all test procedures for requirements

associated with BaseFactoryComponent.

1. The BaseFactoryComponent is a component part of an application under test.

2. A component is identified by the <componentplacement> element in the SAD of the

application under test.

3. The SCD file for the component contains a <componenttype> element value of

APPLICATION_COMPONENT_FACTORY_COMPONENT.

4. The domain profile for the component is the file referenced by an element stated in item 2

and the SPD, SCD and PRF(s) it references.

3.8 Common Context for requirements associated with an

ApplicationComponentFactoryComponent

The following assertions apply to the "Context" section of all test procedures for requirements

associated with ApplicationComponentFactoryComponent.

1. The ApplicationComponentFactoryComponent is a component part of an application

under test.

2. The ApplicationComponentFactoryComponent is a BaseFactoryComponent.

3. Context Group 3.7: Common Context for requirements associated with

BaseFactoryComponent.

3.9 Common Context for requirements associated with a component which implements

the ComponentFactory interface

The following assertions apply to the "Context" section of all test procedures for requirements

associated with components implementing the ComponentFactory IDL interface.

1. The ApplicationComponentFactoryComponent implementing the ComponentFactory

interface is a component part of an application under test.

2. Context Group 3.8: Common Context for requirements associated with an

ApplicationComponentFactoryComponent.

4 Common Precondition Groups

4.1 Common Precondition for test procedures involving XML

The following statements apply to the "Preconditions" section of all test procedures for which

XML files must be read.

1. The XML files should be in their final state and not require further modifications other

than those needed to port the application to the target operating environment.

2. The domain profile files should reside (either on the target or an offline directory) in the

same relative directory structure as defined in the XML.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 7

All Rights Reserved

4.2 Common Precondition for test procedures involving parsing of XML files

The following statements apply to the "Preconditions" section of all test procedures for which

XML files must be parsed.

1. Precondition Group 4.1: Common Precondition for test procedures involving XML.

2. Requirement SCA463 was verified with the domain profile file (SPD/SAD and the XML

files that it references).

4.3 Common Precondition for test procedures requiring an application to be created

The following statements apply to the “Preconditions” section of all test procedures for which an

instance of an application must have been created.

1. The application under test has been installed on the test platform.

2. An instance of the application under test can be created and a reference to the created

application is available to the test procedure.

4.4 Common Precondition for test procedures involving execution of a

ManageableApplicationComponent

The following statements apply to the “Preconditions” section of all test procedures for which a

ManageableApplicationComponent instance is created.

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. This test procedure requires that a ManageableApplicationComponent implements the

Component Registration UoF and that requirement SCA82 was verified.

4.5 Common Precondition for test procedures involving execution of a

BaseFactoryComponent

The following statements apply to the “Preconditions” section of all test procedures for which a

BaseFactoryComponent instance is created.

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. This test procedure requires that a BaseFactoryComponent implements the Component

Registration UoF and that requirement SCA82 was verified.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 8

All Rights Reserved

5 Test Procedures

The model representation of an SCA application (waveform) is provided in Figure 1.

Figure 1: SCA application model

ApplicationComponents, ManageableApplicationComponents, and

ApplicationControllerComponents have additional relationships, which are shown in Figure 2.

Figure 2: ApplicationComponent, ApplicationComponentFactoryComponent,

ManageableApplicationComponent, and ApplicationControllerComponent relationships

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 9

All Rights Reserved

As a result, a waveform that is submitted for SCA verification will be composed of some

combination of the following components:

• ApplicationControllerComponent

• ManageableApplicationComponent

• ApplicationComponentFactoryComponent

• ApplicationComponent

• AssemblyComponent

The following subsections specify the applicable requirements for each type of component

contained within the waveform and their test procedures. Test procedures for the mandatory

requirements are grouped together while those for other requirements are grouped by Unit of

Functionality. Test procedures may reference other test procedures (e.g. Execute the test

procedures of the following requirements: SCA173, SCA457, SCA551, SCA506 of the

application under test relative to its incorporated Units of Functionality). The BaseComponent

Test Procedures subsection contains test procedures for requirements that are used also by other,

non-application, SCA components.

The majority of the time, the test procedures within this specification are written such that they

can be used to verify all implementations contained within an application component. The

determination regarding whether all of a component’s implementations or only those applicable

to the target execution platform should be subject to verification is left to the discretion of the

testing authority.

5.1 ApplicationControllerComponent Test Procedures

5.1.1 Mandatory

5.1.1.1 Requirement under Test: SCA175

Requirement Text: An ApplicationControllerComponent shall fulfill the

ManageableApplicationComponent requirements.

Test Plan Objective/Summary: Ensure that an ApplicationControllerComponent fulfills all

requirements of a ManageableApplicationComponent by invoking all test procedures associated

with ManageableApplicationComponent for that ApplicationControllerComponent.

Context:

1. Context Group 3.6: Common Context for requirements associated with

ApplicationControllerComponent.

Preconditions: N/A

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 10

All Rights Reserved

Test Procedure:

Table 1: Steps to execute Test Procedure for SCA175

Step Action Expected Result

1 Execute the test procedures of the

following requirements: SCA455,

SCA456, SCA520, SCA166, SCA167,

SCA550 and SCA168 of the application

under test relative to its incorporated

Units of Functionality.

The application is validated to have an

implementation that complies with the set of

ManageableApplicationComponent requirements

identified by its Units of Functionality.

Postconditions: N/A

Test Plan Verification Method: N/A (The verification method of individual test procedures will

apply)

Test Plan Result Category: N/A (The result category of individual test procedures will apply)

5.1.1.2 Requirement under Test: SCA176

Requirement Text: An ApplicationControllerComponent shall realize the ControllableInterface

interface.

Test Plan Objective/Summary: Ensure an ApplicationControllerComponent inherits the

ControllableInterface as per realization of the ControllableInterface IDL interface. The test

procedures obtain an instance of the component and narrow it to CF::ControllableInterface to

validate the requirement.

Context:

1. Context Group 3.6: Common Context for requirements associated with

ApplicationControllerComponent.

2. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

3. Context Group 3.2: Common Context related to the validation of an application

component.

4. For a nested application, only the parent app/root app will be addressed by this procedure.

The procedure will have to be seperately enforced for each.

Preconditions:

1. Precondition Group 4.4: Common Precondition for test procedures involving execution

of a ManageableApplicationComponent (an ApplicationControllerComponent is a

ManageableApplicationComponent).

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 11

All Rights Reserved

Test Procedure:

Table 2: Steps to execute Test Procedure for SCA176

Step Action Expected Result

1 Obtain the ComponentType struct of the

ApplicationManager instance of the application

under test.

The ComponentType struct is obtained.

2 Locate the <assemblycontroller> element

within the SAD.

The <assemblycontroller> element is

found within the SAD.

3 Retrieve the id of the next instantiation

reference within the <assemblycontroller>

element.

The id of the next instantiation reference

is obtained or the verification will

terminate.

4 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2.

5 Narrow the componentObject field of the

ComponentType reference to the

CF:Controllable interface.

The result of the CORBA::is_nil

operation on the narrowed

componentObject field is false.

6 Repeat steps 3-5 until no more

instantiations are found within the

<assemblycontroller> element.

The next instantiation will be evaluated

or the verification will end.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.1.1.3 Requirement under Test: SCA496

The test procedure for SCA496 is included within the procedure in section “5.6.1.1 Requirement

under Test: SCA155, SCA503, SCA494, SCA495, SCA496, SCA500”.

5.1.2 Channel Extension UoF

5.1.2.1 Requirement under Test: SCA500

The test procedure for SCA500 is included within the procedure in section “5.6.1.1 Requirement

under Test: SCA155, SCA503, SCA494, SCA495, SCA496, SCA500”.

5.2 ManageableApplicationComponent Test Procedures

5.2.1 Mandatory

5.2.1.1 Requirement under Test: SCA166

Requirement Text: A ManageableApplicationComponent shall perform file access through the

FileSystem and File interfaces.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 12

All Rights Reserved

Test Plan Objective/Summary: Ensure a ManageableApplicationComponent does not invoke

any of the POSIX file access functions stated in the context of the test procedure.

Context:

1. Context Group 3.5: Common Context for requirements associated with

ManageableApplicationComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. This test procedure precludes the use of POSIX functions, RTOS-specific functions, or

any other non-SCA functions which perform file or directory I/O.

4. This test procedure will not preclude I/O function calls if they apply to other types of I/O

than files (Sockets, Serial Port, Shared Memory, etc).

5. The following POSIX file / directory functions are not allowed by SCA166. This also

includes the reentrant variants of these functions, that is, one of the following function

names appended with “_r”, for example readdir_r(), if applicable.

a. File System

i. mount(), umount()

b. Common File / Directory Functions

i. mknod(), mknodat()

ii. ftruncate(), truncate()

iii. rename(), renameat()

iv. remove()

v. umask()

vi. fseek(), fseeko(), lseek(), seek(), fgetpos(), ftell(), ftello(), tell(), fsetpos(),

rewind()

vii. fstat(), fstatat(), stat(), lstat()

viii. fchmod(), chmod()

ix. fchown(), fchownat(), chown()

x. ferror(), clearer()

xi. fflush()

xii. feof()

xiii. flock(), lock(), flockfile(), ftrylockfile(), funlockfile()

xiv. fcntl(), dup(), dup2()

xv. fsync(), sync(), fdatasync(), aio_fsync()

xvi. lio_listio()

xvii. fileno()

xviii. aio_error(), aio_return(), aio_suspend(), aio_cancel()

xix. tempnam(),tmpnam(), tmpfile(), mkstemp(), mkostemp(), mkstemps(),

mkostemps()

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 13

All Rights Reserved

c. File Specific Functions

i. fopen(), fdopen(), freopen(), open(), openat(), creat()

ii. fread(), read(), readv(), fgetc(), aio_read(),getline(), getdelim()

iii. fscanf(), scanf(), vfscanf(), and the wide-character code variants (for

example, fwscanf())

iv. fgetc(), getc(), getchar(), ungetc() and the wide-character code variants

(for example fgetwc())

v. fgets(), gets() and the wide-character code variants (for example fgetws())

vi. fwrite(), write(), fwritev(), aio_write()

vii. fputc(), putc(), putc_unlocked(), putchar(), putchar_unlocked()

viii. fputs(), puts()

ix. fprintf(), printf(), dprintf(), vdprintf(), vfprintf(), vprintf(), vsprintf(),

vsnprintf()

x. fclose(), close()

d. Directory File Functions

i. fchdir(), chdir()

ii. mkdir(), mkdirat()

iii. opendir(), fdopendir()

iv. closedir()

v. rmdir()

vi. rmtree()

e. Directory Entry Functions

i. readdir()

ii. flink(), link(), linkat(), readlink(), readlinkat(), symlink(), symlinkat()

iii. unlink(), unlinkat()

Preconditions:

1. The application developer provides the source file name for the

ManageableApplicationComponent as identified by item 2 in Context Group 3.5 to the

verifier. This is an unnecessary precondition if the verifier is able to determine the source

file of the ManageableApplicationComponent.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 14

All Rights Reserved

Test Procedure:

Table 3: Steps to execute Test Procedure for SCA166

Step Action Expected Result

1 Locate the SAD file of the application and open

it.

The SAD file of the application is

found and is opened.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

4 Go to step 4 if the element being evaluated is a

<componentplacement> or return to step 1 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure “Obtain

type of a component placement”

See sub-procedure 6.3.

6 Verify that the value of the <componenttype>

element is

MANAGEABLE_APPLICATION_COMPONE

NT.

The value of <componenttype>

element is

MANAGEABLE_APPLICATION_C

OMPONENT or go back to step 3.

7 Determine the source file names associated with

the SCD for the

ManageableApplicationComponent (see

Preconditions for this information).

The source file names associated with

the SCD for the

ManageableApplicationComponent is

determined.

8 Search the source files of the

ManageableApplicationComponent for non-

SCA functions which perform file or directory

I/O. See “Content” for non-SCA function

names. Go to step 3.

No non-SCA functions are located

which perform file or directory I/O.

Go to step 3.

Postconditions: N/A

Test Plan Verification Method: Inspection [Ref1]

Test Plan Result Category: N/A

5.2.1.2 Requirement under Test: SCA167

Requirement Text: All ManageableApplicationComponent processes shall have a handler

registered for the AEP SIGQUIT signal.

Test Plan Objective/Summary: Ensure a ManageableApplicationComponent configures a

function to handle the SIGQUIT signal.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 15

All Rights Reserved

Context:

1. Context Group 3.5: Common Context for requirements associated with

ManageableApplicationComponent.

2. The function which handles the POSIX SIGQUIT signal can be configured by invoking

either the sigaction() or signal() function. Both functions are mandatory for the “AEP”

profile in SCA 4.1 Appendix B. Other profiles in SCA 4.1 Appendix B do not support

these functions.

3. The POSIX standard is maintained by http://opengroup.org/. Per the “Application Usage”

section in the sigaction() manual page on the opengroup.org website, "The sigaction()

function supersedes the signal() function, and should be used in preference."

4. This test procedure assumes the sigaction() function is invoked to configure a function to

handle the SIGQUIT signal.

5. The sigaction function signature is “int sigaction(int sig, const struct sigaction *restrict

act, struct sigaction *restrict oact)”. sigaction() parameters and fields in the “struct

sigaction act” parameter not referenced by the test procedure are outside the scope of

requirement SCA167.

Preconditions:

1. The application developer provides the source file name for the

ManageableApplicationComponent as identified by item 2 in Context Group 3.5 to the

verifier. This is an unnecessary precondition if the verifier is able to determine the source

file of the ManageableApplicationComponent.

http://opengroup.org/

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 16

All Rights Reserved

Test Procedure:

Table 4: Steps to execute Test Procedure for SCA167

Step Action Expected Result

1 Locate the SAD file of the application and open

it.

The SAD file of the application is

found and is opened.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

4 Go to step 4 if the element being evaluated is a

<componentplacement> or return to step 1 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure “Obtain

type of a component placement”

See sub-procedure 6.3.

6 Verify that the value of the <componenttype>

element is

MANAGEABLE_APPLICATION_COMPONE

NT.

The value of <componenttype>

element is

MANAGEABLE_APPLICATION_C

OMPONENT or go back to step 3.

7 Determine the source file names associated with

the SCD for the

ManageableApplicationComponent (see

Preconditions for this information).

The source file names associated with

the SCD for the

ManageableApplicationComponent is

determined.

8 Search the source files of the

ManageableApplicationComponent for non-

SCA functions which perform file or directory

I/O. See “Content” for non-SCA function

names. Go to step 3.

No non-SCA functions are located

which perform file or directory I/O.

Go to step 3.

9 In the source files which implement the

ManageableApplicationComponent, locate the

invocation of the sigaction() function.

The invocation of the sigaction()

function is located.

10 Verify the “sig” parameter value passed to

sigaction() is SIGQUIT and the SIGQUIT

definition used is from signal.h.

The “sig” parameter value passed to

sigaction() is SIGQUIT and the

SIGQUIT definition used is from

signal.h.

11 Verify the “act” parameter value passed to

sigaction() is a variable of data type “struct

sigaction”.

The “act” parameter value passed to

sigaction() is a variable of data type

“struct sigaction”.

12 Verify the “sa_handler” field of the “act”

parameter contains the name of a defined

function.

The “sa_handler” field of the “act”

parameter contains the name of a

defined function.

13 Go to step 3 Go to step 3.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 17

All Rights Reserved

Postconditions: N/A

Test Plan Verification Method: Inspection [Ref1]

Test Plan Result Category: N/A

5.2.1.3 Requirement under Test: SCA169

Requirement Text: Each ApplicationComponent shall be accompanied by an SPD file per

section 3.1.3.6.

No test is provided since the test procedure for SCA427 addresses this requirement. #

5.2.1.4 Requirement under Test: SCA455, SCA82

Requirement Text:

SCA455: Each ManageableApplicationComponent shall support the mandatory Component

Identifier execute parameter as described in section 3.1.3.3.1.3.5.1, in addition to their user-

defined execute properties in the component's SPD.

SCA82: A ManageableApplicationComponent shall register via the

ComponentRegistry::registerComponent operation when a COMPONENT_REGISTRY_IOR

parameter is supplied.

Test Plan Objective/Summary: Ensure a ManageableApplicationComponent supplies the

component identifier provided by a mandatory executable parameter into its ComponentType

structure (SCA455). Ensure a ManageableApplicationComponent registers to the

ComponentRegistry interface supplied through the COMPONENT_REGISTRY_IOR parameter

(SCA82). The ComponentType structure returned by an application contains a specializedInfo

field identified by an id of COMPONENTS_ID and a type CF::Components. One element of the

CF::Components must have an identifier equal to the value of the COMPONENT_IDENTIFIER

execute parameter received by the component.

Context:

1. Context Group 3.5: Common Context for requirements associated with

ManageableApplicationComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

4. The portion of the requirement "in addition to their user-defined execute properties in the

component's SPD" will be addressed in the validation of SCA456.

Preconditions:

1. Precondition Group 4.4: Common Precondition for test procedures involving execution

of a ManageableApplicationComponent.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 18

All Rights Reserved

Test Procedure:

Table 5: Steps to execute Test Procedure for SCA455, SCA82

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found within

the SAD.

3 Identify the next <componentplacement>

element within the <partitioning> element.

The location of the

<componentplacement> element is

identified or the verification will terminate.

4 Perform steps defined in sub-procedure

“Obtain type of a component placement”

See sub-procedure 6.3.

5 Verify that the value of the <componenttype>

element is

MANAGEABLE_APPLICATION_COMPON

ENT.

The value of <componenttype> element is

MANAGEABLE_APPLICATION_COMP

ONENT or go back to step 3.

6 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

7 Determine that the ComponentType returned

by the application contains a specializedInfo

field identified by an id of

COMPONENTS_ID, which in turn contain a

ComponentType for which the identifier field

is equal to the value of the

COMPONENT_IDENTIFIER execute

parameter received by the component.

The ApplicationManager’s

ComponentType has within the

ComponentType sequence contained in the

value of its specializedInfo field identified

with an ID COMPONENTS_ID a

ComponentType for which the identifier

field is equal to the value of the

<componentinstantiation> element’s id

attribute followed by “:” and the

ApplicationManager name.

8 Repeat steps 6-7 until no more

<componentinstantiation> elements are found

within the <componentplacement> element,

otherwise go to step 3.

The next componentinstantiation will be

evaluated or the verification will go to step

3.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.2.1.5 Requirement under Test: SCA456

Requirement Text: Each executable ManageableApplicationComponent shall accept executable

parameters as specified in section 3.1.3.4.1.6.5.1.3 (ExecutableInterface::execute).

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 19

All Rights Reserved

Test Plan Objective/Summary: Ensure the executable file of a

ManageableApplicationComponent supports all executable parameters specified in the various

PRF files associated with the component. The test procedure verifies that the source code of the

component performs a search in the input parameter of the entry point function (e.g. argv

argument of the main() function) for each executable parameter property id specified in a PRF

file for the component and stores the property value associated with each executable parameter.

Context:

1. Context Group 3.5: Common Context for requirements associated with

ManageableApplicationComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. The property ID for an executable parameter is defined in one of the PRF files for the

ManageableApplicationComponent as a <simple> element with a <kind> subelement

having a “type” attribute value of “execparam”.

4. When the application is created, a ManageableApplicationComponent may be deployed

as a process (executable file) or as an execution thread, depending on the value of the

type attribute of the code element of the SPD

a. process: When the ExecutableInterface::execute() operation is invoked to load

and execute the component, it passes the executable parameters to the component

as a set of property ID / value pairs via the POSIX “argv” interface, starting in

elements argv[1] and argv[2] for the first pair and sequential argv indices for

subsequent pairs.

b. execution thread: When the ExecutableInterface::execute() operation is invoked to

load and execute the component, it passes the executable parameters to the

component as a set of property ID / value pairs via the POSIX “argv” interface,

starting in elements argv[1] and argv[2] for the first pair and sequential argv

indices for subsequent pairs.. The executable parameters are passed via the “void

*arg” parameter in the pthread_create() function.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. The application developer provides the source file name for the

ManageableApplicationComponent as identified by item 2 in Context Group 3.5 to the

verifier. This is an unnecessary precondition if the verifier is able to determine the source

file of the ManageableApplicationComponent.

Test Procedure: Perform the following for each ManageableApplicationComponent

Table 6: Steps to execute Test Procedure for SCA456

Step Action Expected Result

1 Locate the SPD file for the

ManageableApplicationComponent (see

Context).

The SPD file for the

ManageableApplicationComponent is

found.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 20

All Rights Reserved

Step Action Expected Result

2 Locate the SCD file for the

ManageableApplicationComponent, which is

defined in the <descriptor> element in the SPD.

The SCD file for the

ManageableApplicationComponent is

found.

3 Locate all the PRF files for the

ManageableApplicationComponent which may

be referenced by one or more of the following:

1. In the SPD, in the <propertyfile> in the

<softpkg> .

2. In the SPD, in the <propertyfile> in the

<implementation>.

3. In the SCD, in the <propertyfile> in the

<softwarecomponent>.

All the PRF files for the

ManageableApplicationComponent

are found.

4 Compile a list of all property IDs of “kindtype”

= “execparam” (see Context) from all PRFs for

the ManageableApplicationComponent

A list of all property IDs of “kindtype”

= “execparam” for the

ManageableApplicationComponent is

compiled.

5 If the ManageableApplicationComponent is

implemented as an execution thread (see

Context).

The

ManageableApplicationComponent is

implemented as an

(a) execution thread (continue with

step 6) or

(b) executable file (go to step 9).

6 Locate the source file containing the main()

function (or a function it invokes) or the entry

point function definition, which instantiates the

ManageableApplicationComponent.

The source file containing the main()

function or the entry point function

definition, which instantiates the

ManageableApplicationComponent is

found.

7 Verify the “argv” value is parsed as a sequence

of character arrays, with the first property ID /

value pair in argv[1] and argv[2], and

subsequent property ID / value pairs in

sequentially higher indices of argv.

The function parses the “argv” value

as a sequence of character arrays, with

the first property ID / value pair in

argv[1] and argv[2], and subsequent

property ID / value pairs in

sequentially higher indices of argv.

8 Verify the function it invokes, for each property

ID / pair passed in compares each property ID to

a string literal for each a <simple> element with

“kindtype” = “execparam” in a PRF for the

ManageableApplication Component and when a

match is found.

The function it invokes, for each

property ID / pair passed in compares

each property ID to a string literal for

each a <simple> element with

“kindtype” = “execparam” in a PRF

for the ManageableApplication

Component and when a match is

found.

Postconditions: N/A

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 21

All Rights Reserved

Test Plan Verification Method: Inspection [Ref1]

Test Plan Result Category: N/A

5.2.1.6 Requirement under Test: SCA520

Requirement Text: A ManageableApplicationComponent shall fulfill the

ApplicationComponent requirements.

Test Plan Objective/Summary: Ensure that a ManageableApplicationComponent fulfills all

requirements of an ApplicationComponent by invoking all test procedures associated with an

ApplicationComponent for that ManageableApplicationComponent.

Context:

1. Context Group 3.5: Common Context for requirements associated with

ManageableApplicationComponent.

Preconditions: N/A

Test Procedure:

Table 7: Steps to execute Test Procedure for SCA520

Step Action Expected Result

1 Execute the test procedures of the following

requirements: SCA551, SCA173, SCA457 and

SCA506 of the application under test relative

to its incorporated Units of Functionality.

The application is validated to have an

implementation that complies with the set

of ApplicationComponent requirements

identified by its Units of Functionality.

Postconditions: N/A

Test Plan Verification Method: N/A (The verification method of individual test procedures will

apply).

Test Plan Result Category: N/A (The result category of individual test procedures will apply).

5.2.1.7 Requirement under Test: SCA550

Requirement Text: A ManageableApplicationComponent shall realize the LifeCycle interface.

Test Plan Objective/Summary: Ensure a ManageableApplicationComponent inherits the

LifeCycle interface as per realization of the LifeCycle IDL interface. The test procedure obtains

an instance of the component and narrows it to CF::LifeCycle to validate the requirement.

Context:

1. Context Group 3.5: Common Context for requirements associated with

ManageableApplicationComponent.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 22

All Rights Reserved

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.4: Common Precondition for test procedures involving execution

of a ManageableApplicationComponent.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 23

All Rights Reserved

Test Procedure:

Table 8: Steps to execute Test Procedure for SCA550

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found within

the SAD.

3 Perform steps defined in sub-procedure

“Locate next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure

“Obtain type of a component placement”

See sub-procedure 6.3.

6 Verify that the value of the <componenttype>

element is

MANAGEABLE_APPLICATION_COMPON

ENT.

The value of <componenttype> element is

MANAGEABLE_APPLICATION_COMP

ONENT or go back to step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Determine that the ComponentType returned

by the application contains a specializedInfo

field identified by an id of

COMPONENTS_ID, which in turn contain a

ComponentType for which the identifier field

is equal to the value of the

COMPONENT_IDENTIFIER execute

parameter received by the component.

The ApplicationManager’s

ComponentType has within the

ComponentType sequence contained in the

value of its specializedInfo field identified

with an ID COMPONENTS_ID a

ComponentType for which the identifier

field is equal to the value of the

<componentinstantiation> element’s id

attribute followed by “:” and the

ApplicationManager name.

9 Obtain the componentObject field of the

ComponentType.

The result of the CORBA::is_nil operation

on componentObject field is false.

10 Narrow the componentObject to the

CF::LifeCycle interface.

The componentObject can be narrowed to

CF::LifeCycle interface.

11 Return to step 3. The next componentwill be evaluated.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 24

All Rights Reserved

5.2.2 Interrogable UoF

5.2.2.1 Requirement under Test: SCA168

Requirement Text: Each executable ManageableApplicationComponent shall set its identifier

attribute using the Component Identifier execute parameter.

Test Plan Objective/Summary: Ensure a ManageableApplicationComponent has a component

identifier attribute value that is equivalent to that stored within the component’s ComponentType

structure. The ComponentType structure returned by an application contains a specializedInfo

field identified by an id of COMPONENTS_ID and a type CF::Components. One element of the

CF::Components must have an identifier equal to the value of the COMPONENT_IDENTIFIER

execute parameter received by the component. The test procedure obtains an instance of the

component and narrows it to CF::ComponentIdentifier to validate the requirement.

Context:

1. Context Group 3.5: Common Context for requirements associated with

ManageableApplicationComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.4: Common Precondition for test procedures involving execution

of a ManageableApplicationComponent.

2. This test procedure requires that the requirement SCA455 has been verified prior.

Test Procedure:

Table 9: Steps to execute Test Procedure for SCA168

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ApplicationManager reference is

obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found within

the SAD.

3 Perform steps defined in sub-procedure

“Locate next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure

“Obtain type of a component placement”

See sub-procedure 6.3.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 25

All Rights Reserved

Step Action Expected Result

6 Verify that the value of the <componenttype>

element is

MANAGEABLE_APPLICATION_COMPON

ENT.

The value of <componenttype> element is

MANAGEABLE_APPLICATION_COMP

ONENT or go back to step 3.

7 Perform steps defined in sub-procedure

“Obtain supported interface list”

See sub-procedure 6.5.

8 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the

ComponentIdentifier interface IDL repository

ID.

The <componentfeatures> contains a

<supportsinterface> element with a repid

attribute equals to the ComponentIdentifier

interface IDL repository ID or go back to

step 3.

9 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

10 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2.

11 Obtain the componentObject field of the

ComponentType.

The result of the CORBA::is_nil operation

on componentObject field is false.

12 Narrow the componentObject to the

CF::ComponentIdentifier interface.

The componentObject can be narrowed to

CF::ComponentIdentifier interface.

13 Retrieve the identifier attribute from the

CF::ComponentIdentifier interface and

compare it against the value that corresponds to

the COMPONENTS_ID id within the

specializedInfo field of the application’s

ComponentType.

The compared values will be equal or the

verification procedure will fail.

14 Repeat steps 9-13 until no more

<componentinstantiation> elements are found

within the <componentplacement> element,

otherwise go to step 3.

The next componentinstantiation will be

evaluated or the verification will go to step

3.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.2.3 Component Registration UoF

5.2.3.1 Requirement under Test: SCA82

The test procedure for SCA82 is included within the procedure in section “5.2.1.4 Requirement

under Test: SCA455, SCA82”.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 26

All Rights Reserved

5.3 ApplicationComponentFactoryComponent Test Procedures

5.3.1 Mandatory

5.3.1.1 Requirement under Test: SCA415

The test procedure for SCA415 is included within the procedure in section “5.7.1.1 Requirement

under Test: SCA386, SCA387, SCA388, SCA415”.

5.3.1.2 Requirement under Test: SCA521

Requirement Text: An ApplicationComponentFactoryComponent shall fulfill the

BaseFactoryComponent requirements.

Test Plan Objective/Summary: Ensure that an ApplicationComponentFactoryComponent

fulfills all requirements of a BaseFactoryComponent by invoking all test procedures associated

with BaseFactoryComponent for that ApplicationComponentFactoryComponent.

Context:

1. Context Group 3.8: Common Context for requirements associated with an

ApplicationComponentFactoryComponent.

Preconditions: N/A

Test Procedure:

Table 10: Steps to execute Test Procedure for SCA521

Step Action Expected Result

1 Execute the test procedures of the

following requirements: SCA386,

SCA387, SCA388, SCA389,

SCA540, SCA541, SCA574,

SCA413, SCA414, SCA549 of the

application under test relative to its

incorporated Units of Functionality.

The application is validated to have an

implementation that complies with the set of

BaseFactoryComponent requirements identified by

its Units of Functionality.

Postconditions: N/A

Test Plan Verification Method: N/A (The verification method of individual test procedures will

apply)

Test Plan Result Category: N/A (The result category of individual test procedures will apply)

5.3.1.3 Requirement under Test: SCA522

Requirement Text: An ApplicationComponentFactoryComponent shall fulfill the

ApplicationComponent requirements.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 27

All Rights Reserved

Test Plan Objective/Summary: Ensure that an ApplicationComponentFactoryComponent

fulfills all requirements of an ApplicationComponent by invoking all test procedures associated

with ApplicationComponent for that ApplicationComponentFactoryComponent.

Context:

1. Context Group 3.8: Common Context for requirements associated with an

ApplicationComponentFactoryComponent.

Preconditions: N/A

Test Procedure:

Table 11: Steps to execute Test Procedure for SCA522

Step Action Expected Result

1 Execute the test procedures of the

following requirements: SCA173,

SCA457, SCA551, SCA506 of the

application under test relative to its

incorporated Units of Functionality.

The application is validated to have an

implementation that complies with the set of

ApplicationComponent requirements identified by

its Units of Functionality.

Postconditions: N/A

Test Plan Verification Method: N/A (The verification method of individual test procedures will

apply)

Test Plan Result Category: N/A (The result category of individual test procedures will apply)

5.4 ApplicationComponent Test Procedures

5.4.1 Mandatory

5.4.1.1 Requirement under Test: SCA551

Requirement Text: An ApplicationComponent shall fulfill the BaseComponent requirements.

Test Plan Objective/Summary: Ensure that an ApplicationComponent fulfills all requirements

of a BaseComponent by invoking all test procedures associated with BaseComponent for that

ApplicationComponent.

Context:

1. The ApplicationComponent is a part of an application under test.

2. A component is identified by the <componentplacement> element in the SAD of the

application under test.

Preconditions: N/A

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 28

All Rights Reserved

Test Procedure:

Table 12: Steps to execute Test Procedure for SCA551

Step Action Expected Result

1 Execute the test procedures of the following

requirements: SCA427, SCA430, SCA548,

SCA463, SCA501, SCA502, SCA503,

SCA494, SCA495, SCA420, SCA421,

SCA423, SCA429, SCA545, SCA26, SCA28,

SCA29, SCA30, SCA31, SCA432, SCA15,

SCA518, SCA16, SCA17, SCA18, SCA433,

SCA32, SCA33, SCA34, SCA36, SCA37,

SCA547, SCA7, SCA519, SCA8, SCA10,

SCA11, SCA12, SCA13, SCA14, SCA424,

SCA425, SCA444, SCA426, SCA6, SCA428,

SCA546, SCA19, SCA21, SCA23, SCA24,

SCA25 of the application under test relative to

its incorporated Units of Functionality.

The application is validated to have an

implementation that complies with the set

of BaseComponent requirements identified

by its Units of Functionality.

Postconditions: N/A

Test Plan Verification Method: N/A (The verification method of individual test procedures will

apply)

Test Plan Result Category: N/A (The result category of individual test procedures will apply)

5.4.2 AEP Compliant UoF

5.4.2.1 Requirement under Test: SCA173

Requirement Text: An ApplicationComponent shall be limited to using the mandatory OS services

designated in Appendix B as specified in the SPD.

Test Plan Objective/Summary: Ensure the ApplicationComponent does not invoke any of the

non-required AEP functions as stated in the context of the test procedure.

Context:

1. The SPD and “source files” referenced in this test case apply to each implemented
ApplicationComponent.

2. A “mandatory OS service” is a POSIX function referenced in an Appendix B table with

“MAN” under the “AEP”, “LwAEP” or “ULwAEP” columns.

3. Each SPD implementation element “aepcompliance” attribute specifies which AEP

profile the ApplicationComponent conforms with. The possible values of the

“aepcompliance” attribute are “aep_compliant”, “lw_aep_compliant”, “ulw_aep_compliant
“ or “aep_non_compliant” with a default value of “aep_compliant”. There may be multiple

implementation elements and each element may specify a different AEP profile.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 29

All Rights Reserved

4. This requirement does not apply to an ApplicationComponent which supports the

“aep_non_compliant” AEP profile.

5. For an ApplicationComponent to comply with this requirement, its source files may only

invoke mandatory OS services for its declared AEP profile.

6. A source file which invokes OS services may be conformant with an AEP profile via

conditional compilation or by implementing each AEP profile in a separate source file

without using conditional compilation.

7. If this requirement is verified by Source code inspection the following must occur:

7.1. Each source file which invokes OS services is inspected to ensure only the

mandatory OS services defined by the declared AEP profile are used.

7.2. When a source file can be used to conform with multiple AEP profiles via conditional

compilation controlled by preprocessor directives, verification is performed in

accordance with each profile, only evaluating the code that is available for compilation

after preprocessing the directives associated with that profile.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. The developer specifies the source file names used to build the ApplicationComponent

executable.

3. If the SPD contains multiple implementation elements such that more than one AEP

profile is realized by the source file(s)

3.1. The developer identifies which AEP profile(s) is (are) to be evaluated for AEP

compliance

3.2. If multiple AEP profiles are implemented via:

3.2.1. a single source file using conditional compilation, the developer identifies the

C preprocessor symbol(s) that control conditional compilation that determines

which AEP profile is implemented.

3.2.2. a separate source file implementing each profile without using conditional

compilation, the developer identifies which source file supports which AEP

profile.

4. An RTOS symbol resolution object file exists on the test platform for each AEP profile.

This may be a fully functional implementation of the mandatory OS services for a

specific AEP profile or may only be the AEP constants and function signatures, and if

applicable, a default return value in the function body, for each of the mandatory OS

services.

5. An SCA CF function and symbol resolution object file may exist on the test platform.

This may be a fully functional SCA CF implementation generated by a CORBA IDL to

CPP compiler or only the SCA constants and function signatures, and if applicable, a

default return value in the function body, for each of the CF interfaces.

6. A CORBA ORB function and symbol resolution object file may exist on the test

platform. This may be a fully functional CORBA ORB implementation or only the

CORBA constants and function signatures, and if applicable, a default return value in the

function body, for each of the CORBA interfaces.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 30

All Rights Reserved

Test Procedure:

Table 13: Steps to execute Test Procedure for SCA173

Step Action Expected Result

1 Locate all the ApplicationComponents

to which the test procedure applies.

A list of ApplicationComponents to which the

test procedure applies is identified.

2 Compile the source files of the next

ApplicationComponent in the list.

The source files are successfully compiled and

the resulting object files are saved on the test

platform.

3 Link the ApplicationComponent’s

object files with the RTOS symbol

resolution file of the target AEP profile,

and if present, the CF and the CORBA

function symbol resolution object files.

The linker reports all external function

references that it cannot resolve, which may be

non-compliant OS services or middleware

functions. If the CF and CORBA function

symbol resolution object files are not present, the

linker will report external CF and CORBA

function references it cannot resolve.

4 Evaluate the linker output error

messages to determine if they reference

non-required OS services for the AEP

profile being evaluated for compliance.

Disregard linker error messages that do

not reference with OS services in

Appendix B, such as SCA CF

interfaces and constants, CORBA

functions and constants.

If there are no linker error messages references

non-required OS services for the AEP profile

being evaluated for compliance, the

ApplicationComponent conforms to the AEP

profile.

5 Repeat steps 2-4 until all AEP profiles

for the ApplicationComponent to be

inspected for AEP compliance have

been evaluated.

The next AEP profile for the

ApplicationComponent is evaluated or continue

with step 6.

6 Continue with step 2 for the next

ApplicationComponent to be evaluated

for AEP compliance.

The next ApplicationComponent for AEP

compliance is evaluated or the test terminates.

Postconditions: N/A

Test Plan Verification Method: Analysis [Ref1]

Test Plan Result Category: Necessary [Ref1]

If the test passes, the ApplicationComponent does not invoke any of the non-required AEP

functions stated in the test procedure. The test does not confirm the ApplicationComponent

invokes only mandatory AEP functions.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 31

All Rights Reserved

5.5 AssemblyComponent Test Procedures

5.5.1 Mandatory

5.5.1.1 Requirement under Test: SCA155

The test procedure for SCA155 is included within the procedure in section “5.6.1.1 Requirement

under Test: SCA155, SCA503, SCA494, SCA495, SCA496, SCA500”.

5.5.1.2 Requirement under Test: SCA156

Requirement Text: An AssemblyComponent shall have at least one

ApplicationControllerComponent.

Test Plan Objective/Summary: Ensure that the SAD contains an <assemblycontroller> element

with an instantiation reference defined in the SAD.

Context:

1. Context Group 3.6: Common Context for requirements associated with

ApplicationControllerComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

4. For a nested application, only the parent app/root app need be addressed by this

procedure. The procedure may be performed for each nested SAD file submitted with an

application.

Preconditions:

1. Precondition Group 4.4: Common Precondition for test procedures involving execution

of a ManageableApplicationComponent (an ApplicationControllerComponent is a

ManageableApplicationComponent).

Test Procedure:

Table 14: Steps to execute Test Procedure for SCA156

Step Action Expected Result

1 Locate the <assemblycontroller> element within

the SAD.

The <assemblycontroller> element is

found within the SAD.

2 Retrieve the id of the next componentinstantion

or assemblyinstantiation reference within the

<assemblycontroller> element.

The id of the next instantiation

reference is obtained or the

verification will terminate.

3 Locate in the SAD a <componentinstantiation>

element or an <assemblyinstantiation> element

with a value of the ID attribute equal to the id

retrieved in step 2.

A matching <componentinstantiation>

element or <assemblyinstantiation>

element is found and go to step 2.

Postconditions: N/A

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 32

All Rights Reserved

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.5.1.3 Requirement under Test: SCA457

Requirement Text: An ApplicationComponent shall be limited to using transfer mechanisms

features specified in Appendix E for the specific platform technology implemented.

Context:

1. An ApplicationComponent is part of an application under test.

2. An ApplicationComponent is a BaseComponent.

3. Context Group 3.2: Common Context related to the validation of an application

component.

4. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

5. This procedure is focused on CORBA as the transport mechanism. If additional transport

mechanisms are added to the SCA, this procedure would need to be adapted accordingly.

Preconditions:

1. The application developer provides the source file name for the ApplicationComponent

as identified by item 2 in Context Group 3.4 to the verifier. This is an unnecessary

precondition if the verifier is able to determine the source file of the

ApplicationComponent.

2. The application developer indicates the CORBA profile for the verification.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 33

All Rights Reserved

Test Procedure:

Table 15: Steps to execute Test Procedure for SCA457

Step Action Expected Result

1 Locate the SAD file of the application and open

it.

The SAD file of the application is

found and is opened.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

4 1. Go to step 4 if the element being evaluated

is a <componentplacement> or return to step

1 and proceed with the file identified in the

<assemblyplacement>.

1. The next child element of the

current element will be evaluated

or the verification terminate.

5 Perform steps defined in sub-procedure “Obtain

type of a component placement”

See sub-procedure 6.3.

6 Verify that the value of the <componenttype>

element is

MANAGEABLE_APPLICATION_COMPONE

NT.

The value of <componenttype>

element is

MANAGEABLE_APPLICATION_C

OMPONENT or go back to step 3.

7 Determine the source file names associated with

the SCD for the

ManageableApplicationComponent (see

Preconditions for this information).

The source file names associated with

the SCD for the

ManageableApplicationComponent is

determined.

8 Search the ApplicationComponent’s source

code for uses of CORBA. Note the most

restrictive CORBA profile (Full, Lightweight,

or Ultralightweight) that the source code

adheres to.

The ApplicationComponent does not

declare using a CORBA profile more

restrictive than the one found to be

used (e.g. declared Lightweight and

found Full).

9 Search the ApplicationComponent’s source

code for other transfer mechanisms. Go to step

3.

No other transfer mechanism is found.

Go to step 3.

Postconditions: N/A

Test Plan Verification Method: Inspection [Ref1]

Test Plan Verification Status: N/A

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 34

All Rights Reserved

5.6 BaseComponent Test Procedures

5.6.1 Mandatory

5.6.1.1 Requirement under Test: SCA155, SCA503, SCA494, SCA495, SCA496, SCA500

Requirement Text:

SCA155: An AssemblyComponent shall be accompanied by the appropriate Domain Profile files

per section 3.1.3.6.

SCA503: A Software Package Descriptor file shall have a ".spd.xml" extension.

SCA494: A Properties Descriptor shall have a ".prf.xml" extension.

SCA495: A Software Component Descriptor file shall have a ".scd.xml" extension.

SCA496: A Software Assembly Descriptor file shall have a ".sad.xml" extension.

SCA500: An Application Deployment Descriptor file shall have an ".add.xml" extension.

Test Plan Objective/Summary: Ensure a Domain Profile file name has a file extension as

specified by the associated requirement.

Context:

1. The SAD, SPD, SCD or PRF file is one in the domain file of an application component of

an application under test.

2. Context Group 3.2: Common Context related to the validation of an application

component.

Preconditions:

1. Precondition Group 4.1: Common Precondition for test procedures involving XML.

2. Requirement 502 should be verified with the domain profile files of the application under

test.

3. The application developer provides the source file name for the AssemblyComponent

SAD. This is an unnecessary precondition if the verifier can determine the name of the

SAD.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 35

All Rights Reserved

Test Procedure:

Table 16: Steps to execute Test Procedure for SCA503, SCA494, SCA495, SCA496, SCA500

Step Action Expected Result

1 Locate the identified SAD file of the

AssemblyComponent (SCA155).

The SAD file of the application is

found and can be open.

2 Identify the document type by reading the

!DOCTYPE element.

The document type is identified.

3 Recursively traverse the domain profile files

starting from the root SAD and construct a list of

the unique domain profile files referenced by the

application.

All the application’s referenced

domain profile files have been

collected.

4 For each file collected in Step 3, open the file

and identify the document type and verify the

extension as follows:

a. If the document type is

“softwareassembly”, verify that the file

extension is “.sad.xml”. (SCA496)

b. If the document type is “softpkg”, verify

that the file extension is “.spd.xml”.

(SCA503)

c. If the document type is

“softwarecomponent”, verify that the file

extension is “.scd.xml”. (SCA495)

d. If the document type is “properties”,

verify that the file extension is

“.prf.xml”. (SCA494)

e. If the document type is

“deploymentprecedence”, verify that the

file extension is “.add.xml”. (SCA500)

The referenced domain profile file

extension is validated.

Postconditions: N/A

Test Plan Verification Method: Analysis [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.1.2 Requirement under Test: SCA427

Requirement Text: A BaseComponent shall be associated with a domain profile file.

Test Plan Objective/Summary: Ensure that an application component, which is a

BaseComponent, is really associated with an SPD file since the refid attribute of a

componentfileref element used to do the association shall have a valid file path as value. A valid

file path is one for which the existence of the file can be verified.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 36

All Rights Reserved

Context:

1. Context Group 3.2: Common Context related to the validation of an application

component.

2. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

Test Procedure:

Table 17: Steps to execute Test Procedure for SCA427

Step Action Expected Result

1 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

2 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

3 Return to step 2 if the element being evaluated is

a <componentplacement> element or return to

step 1 and proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

Postconditions: N/A

Test Plan Verification Method: Analysis [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.1.3 Requirement under Test: SCA430

The test procedure for SCA155 is included within the procedure in section “5.6.2.6 Requirement

under Test: SCA13, SCA14, SCA430”.

5.6.1.4 Requirement under Test: SCA463

Requirement Text: Domain Profile files shall be compliant to the descriptor files provided in

Appendix D.

Test Plan Objective/Summary: Ensure that Domain Profile files are valid with respect to the

SCA 4.1 XML descriptor files.

Context:

1. Context Group 3.2: Common Context related to the validation of an application

component.

Preconditions:

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 37

All Rights Reserved

1. Precondition Group 4.1: Common Precondition for test procedures involving XML.

Test Procedure:

Table 18: Steps to execute Test Procedure for SCA463

Step Action Expected Result

1 Read the domain profile files to which this

requirement applies with a standard XML parser

or tool that has the capability to perform DTD

validation (the DTD validation will be enabled).

The domain profile file being read is

valid with respect to the applicable DTD.

2 Identify all domain profile files referenced in the

current domain profile file not already analyzed.

All referenced domain profile files that

have not been analyzed are identified.

3 Perform steps 1-2 for each of the identified files

that have not already been analyzed.

N/A

Postconditions: N/A

Test Plan Verification Method: Analysis [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.1.5 Requirement under Test: SCA501

Requirement Text: DTD files are installed in the domain and shall have ".dtd" as their filename

extension.

No test is provided since the DTDs shall be installed on the platform with the OE and this

should be an OR requirement. #

5.6.1.6 Requirement under Test: SCA502

Requirement Text: All XML files shall have as the first two lines as an XML declaration (?xml)

and a document type declaration (!DOCTYPE).

Test Plan Objective/Summary: Ensure the Domain Profile files contain the first two lines as

specified by the requirement.

Context:

1. The XML files are the domain profile file of an application and its application

components.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. The first two lines are interpreted as omitting white space and comments.

Preconditions:

1. Precondition Group 4.1: Common Precondition for test procedures involving XML.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 38

All Rights Reserved

Test Procedure:

Table 19: Steps to execute Test Procedure for SCA502

Step Action Expected Result

1 Locate the SAD file of the application. The SAD file of the application is

found.

2 Open the domain profile file and read the first

non-commentary statement.

The test process has the text for the

first line of code within the domain

profile file.

3 Validate that the text “?xml” is the first string

encountered after the leading “<” character.

The required “?xml” definition in the

proper location is identified.

4 Validate that the text has a “version” definition

within the statement.

The version definition is identified

within the statement.

5 Read the second non-commentary xml

statement.

The test process has the text for the

second line of code within the domain

profile file.

6 Validate that the text “!DOCTYPE” is the first

string encountered after the leading “<”

character

The doctype definition in the proper

location is identified.

7 Validate that the text has a “SYSTEM”

definition within the statement with a reference

to a DTD file that is valid for the Operating

Environment.

The file references a DTD that is part

of the domain profile which is

identified within the statement.

8 Identify all domain profile files referenced in the

current domain profile file not already analyzed

and validate requirement SCA502 for each

identified file.

All referenced domain profile files that

have not been validated are evaluated.

Postconditions: N/A

Test Plan Verification Method: Analysis [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.1.7 Requirement under Test: SCA548

Requirement Text: A BaseComponent shall implement its optional composition relationships

via inheritance.

Test Plan Objective/Summary: Ensure that an application component, which is a

BaseComponent, inherits from CF interfaces for which it has optional composition relationships.

The optional interfaces are specified by the <supportsinterface> elements in the application

component SCD file. The test procedure will validate the inheritance relationship by evaluating

each interface specified by the <supportsinterface> elements within the SCD.

Context:

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 39

All Rights Reserved

1. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

2. All optional composition relationships are specified within the BaseComponent SCD

<supportsinterface> definition.

3. Context Group 3.2: Common Context related to the validation of an application

component.

4. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. One or more <supportsinterface> definitions must exist in the SCD file.

2. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

Test Procedure:

Table 20: Steps to execute Test Procedure for SCA548

Step Action Expected Result

1 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

2 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

3 Go to step 4 if the element being evaluated is a

<componentplacement> or return to step 1 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

4 Perform steps defined in sub-procedure “Obtain

supported interface list”.

See sub-procedure6.5.

5 Identify the next <supportsinterface> element

within <componentfeatures> element.

The location of a <supportsinterface>

element will be identified or the

verification will go back to step 2.

6 Determine if the repid attribute of the

<supportsinterface> element is one among the

BaseComponent optional composition

(CF::ControllableInterface, CF::LifeCycle,

CF::ComponentIdentifier, CF::PropertySet,

CF::PortAccessor, CF::TestableInterface) and

refers to an <interface> element within the SCD.

The repid attribute is one of the

BaseComponent optional composition

and refers to an <interface> element in

the SCD or will go to step 5 again.

7 Repeat step 5-6 until no more

<supportsinterface> elements are found within

the <componentfeatures> element.

The next supportsinterface will be

evaluated or the verification will go to

step 8.

8 Obtain an object reference for a component

instance associated with the

<componentplacement> element used in step 2.

An object reference is obtained.

9 For each interface identified in 6, the component

can be widened to the supportsinterface.

The component can be widened to the

supportsinterface.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 40

All Rights Reserved

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.2 Connectable UoF

5.6.2.1 Requirement under Test: SCA7

Requirement Text: The connectUsesPorts operation shall make the connection(s) to the

component identified by its input portConnections parameter.

Test Plan Objective/Summary: Ensure that a component uses the object provided via

connection.

Context:

1. The BaseComponent is a component part of an application under test.

2. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

3. The test procedure only tests one component and should be repeated for every component

of an application.

4. The SAD file using the component under test is used to determine the connections to be

established in the test procedure.

Preconditions:

1. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

2. All connections are expected to be already established.

Test Procedure:

Table 21: Steps to execute Test Procedure for SCA7

Step Action Expected Result

1 Demonstrate through some specific actions that

the provides port provided to the uses port of the

component are used.

Evidence that the provides port are

used is demonstrated.

2 Use some testing tools specific ways to

disconnect all connections.

Connections are successfully

disconnected.

3 Using the same actions in Step 1, demonstrate

that the provides port which were provided to

the uses port of the component are not used.

Evidence that the provides port are

disconnected.

4 Use some testing tool specific ways to re-

establish all connections.

Connections are successfully

established.

5 Using the same actions in Step 1, demonstrate

that the provides port provided to the uses port

of the component are used.

Evidence that the provides port are

used is demonstrated.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 41

All Rights Reserved

Postconditions: N/A

Test Plan Verification Method: Demonstration [Ref1]

Test Plan Result Category: N/A

5.6.2.2 Requirement under Test: SCA8

Requirement Text: The connectUsesPorts operation shall raise the InvalidPort exception when

the input portConnections parameter provides an invalid connection for the specified port.

Test Plan Objective/Summary: Ensure that an application component, which is a

BaseComponent, raises an InvalidPort exception when it is asked to connect something invalid.

There are four cases for which the InvalidPort can be raised as specified in the context of this

procedure. The test procedure parses the SCD file to determine the ports, obtain an instance of

the component, and invokes several times the connectUsesPorts operation with different input

arguments to cover the four cases described in the context.

Context:

1. Context Group 3.2: Common Context related to the validation of an application

component.

2. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

3. The ports of a BaseComponent are identified by the <ports> element in the SCD of the

component under test.

4. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

5. Section 3.1.3.2.1.2.3.6 of the SCA specification describes four cases where the

InvalidPort can be raised. The following cases apply for the connectUsesPorts operation:

a. The provides portReference is invalid (e.g. unable to narrow object reference) or

nil object reference.

b. The connectionId is invalid.

c. The uses port portName does not exist for the given connectionId.

d. The port has reached its maximum number of connections and is unable to accept

any additional connections.

6. An object implementing an IDL interface not defined in the SCA specification and that

doesn’t inherit from any SCA interface is provided by the SCA 4.1 Test Platform.

Preconditions:

1. The existence of a capability on the test platform that is able to establish connections

through the PortAccessor interface between a uses port component and provides port

component.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

4. The domain profile of the BaseComponent includes an SCD file that contains one or

more port definitions.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 42

All Rights Reserved

Test Procedure:

Table 22: Steps to execute Test Procedure for SCA8

Step Action Expected Result

1 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

2 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

3 Go to step 4 if the element being evaluated is a

<componentplacement> or return to step 1 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

4 Open the SPD file indicated by the

<componentfile> referenced by the

<componentplacement> and locate the

<descriptor> element.

The <descriptor> element will be

found or the verification will go back

to step 2.

5 Determine if the file identified by <localfile>

element referenced by the <descriptor> element

exists.

The file identified by the <localfile>

reference within the <descriptor>

subelement exists.

6 Open the SCD file indicated by the <localfile>

referenced by the <descriptor> and locate the

<componentfeatures> element within the SCD.

The <componentfeatures> element is

found within the SCD.

7 Locate the <ports> element within

<componentfeatures> element.

The location of the <ports> element is

identified.

8 Identify all the <uses> element within the

<ports> element.

The location of a <uses> element is

identified or it will go to Step 2.

9 Create a sequence of ConnectionType which

contain as many elements as found in Step 8. For

at least one <uses> element, create a

ConnectionType struct and assign the value of

the usesname attribute to the portName field

within the portConnectionId field and an object

reference to an object implementing an interface

not defined in the SCA to the portReference field

of the ConnectionType struct.

A ConnectionType sequence of the

component uses ports with a port

reference implementing an unknown

interface is created.

10 Obtain an object reference for a component

instance associated with the

<componentplacement> element used in Step 2.

An object reference is obtained.

11 Using the object reference from Step 10, invoke

the connectUsesPorts with the ConnectionType

sequence created in Step 9. (For use-case: 5a)

The connectUsesPorts operation raises

an InvalidPort exception.

12 For the same sequence of ConnectionType

created in Step 9, replace the portReference field

to assign a nil object reference.

A ConnectionType sequence of the

component uses ports with a nil port

reference is created.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 43

All Rights Reserved

Step Action Expected Result

13 Using the object reference from Step 10, invoke

the connectUsesPorts with the ConnectionType

sequence created in Step 12. (For use-case: 5a)

The connectUsesPorts operation raises

an InvalidPort exception.

14 For the same sequence of ConnectionType

created in Step 12, replace the portReference

field to assign an object reference implementing

the interface used by the uses port.

A ConnectionType sequence of the

component uses ports with valid port

reference is created.

15 Using the object reference from Step 10, invoke

the connectUsesPorts with the ConnectionType

sequence created in Step 14.

The connectUsesPorts operation

doesn’t raise an exception.

16 Using the object reference from Step 10, invoke

the connectUsesPorts with the ConnectionType

sequence created in Step 14 again. (For use-case:

5b)

The connectUsesPorts operation raises

an InvalidPort exception.

17 For the same sequence of ConnectionType

created in Step 14, replace the connectionId field

within the portConnectionId field for all the

elements to an arbitrary value (that is not already

used) and remove the elements for which the

corresponding <uses> elements have a value for

the maxconnections attribute equals to 1 or has

no value.

A ConnectionType sequence of the

component uses ports for which more

than one connection can be

established.

18 Using the object reference from Step 10, invoke

the connectUsesPorts with ConnectionType

sequence created in Step 17.

The connectUsesPorts operation

doesn’t raise an exception.

19 Repeat Steps 17-18 until the connectUsesPorts

operation raises an InvalidPort exception. (For

use-case: 5d)

The connectUsesPorts operation raise

an an InvalidPort exception.

20 Create a sequence of ConnectionType which

contain one element that as an arbitrary value for

the portName field within the portConnectionId

field.

A ConnectionType sequence uses

ports unknown to the component.

21 Using the object reference from Step 10, invoke

the connectUsesPorts with the ConnectionType

sequence created in Step 20. (For use-case: 5c)

The connectUsesPorts operation raise

an InvalidPort exception.

22 Go back to Step 2. N/A

Postconditions: This test procedure modified the operating environment by establishing

connections. In order to exercise other runtime tests, the operating environment shall be reset.

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 44

All Rights Reserved

5.6.2.3 Requirement under Test: SCA10

Requirement Text: The disconnectPorts operation shall break the connection(s) to the

component identified by the input portDisconnections parameter.

Context:

1. The BaseComponent is a component part of an application under test.

2. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

3. The test procedure only tests one component and should be repeated for every component

of an application.

4. The SAD file using the component under test is used to determine the connections to be

established in the test procedure.

Preconditions:

1. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

2. All connections are expected to be already established.

Test Procedure:

Table 23: Steps to execute Test Procedure for SCA10

Step Action Expected Result

1 Demonstrate through some specific actions that

the provides port provided to the uses port of the

component are used.

Evidence that the provides port are

used is demonstrated.

2 Use some testing tools specific ways to

disconnect specific connections using the

disconnectPorts() operations.

The specified connections are

successfully disconnected.

3 Using the same actions in Step 1, demonstrate

that the provides port which were provided to

the uses port via the connections that have been

disconnected in Step 2 of the component are not

used.

Evidence that the provides port are

disconnected.

Postconditions: N/A

Test Plan Verification Method: Demonstration [Ref1]

Test Plan Result Category: N/A

5.6.2.4 Requirement under Test: SCA11

Requirement Text: The disconnectPorts operation shall release all ports if the input

portDisconnections parameter is a zero length sequence.

Context:

1. The BaseComponent is a component part of an application under test.

2. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 45

All Rights Reserved

3. The test procedure only tests one component and should be repeated for every component

of an application.

4. The SAD file using the component under test is used to determine the connections to be

established in the test procedure.

Preconditions:

1. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

2. All connections are expected to be already established.

Test Procedure:

Table 24: Steps to execute Test Procedure for SCA11

Step Action Expected Result

1 Demonstrate through some specific actions that

the provides port provided to the uses port of the

component are used.

Evidence that the provides port are

used is demonstrated.

2 Use some testing tools specific ways to

disconnect all connections using the

disconnectPorts() operations with a zero length

sequence.

The connections are successfully

disconnected.

3 Using the same actions in Step 1, demonstrate

that all the provides port which were provided to

the uses port via the connections that have been

disconnected in Step 2 of the component are not

used.

Evidence that the provides port are

disconnected.

Postconditions: N/A

Test Plan Verification Method: Demonstration [Ref1]

Test Plan Result Category: N/A

5.6.2.5 Requirement under Test: SCA12

Requirement Text: The disconnectPorts operation shall raise the InvalidPort exception when

the input portDisconnections parameter provides an unknown connection to the PortAccessor's

component.

Test Plan Objective/Summary: Ensure that an application component, which is a

BaseComponent, raises an InvalidPort exception when it is asked to disconnect an unknown

connection. The test procedure parses the SCD file to determine the ports, obtain an instance of

the component, and invokes the disconnectPorts operation with a connection ID not known by

the component.

Context:

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 46

All Rights Reserved

1. Context Group 3.2: Common Context related to the validation of an application

component.

2. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

3. The ports of a BaseComponent are identified by the <ports> element in the SCD of the

component under test.

4. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

5. Section 3.1.3.2.1.2.3.6 of the SCA specification describes four cases where the

InvalidPort can be raised. The following cases apply for the disconnectUsesPorts

operation:

a. The connectionId is invalid.

b. The uses port portName does not exist for the given connectionId.

Preconditions:

1. The existence of a capability on the test platform that is able to establish connections

through the PortAccessor interface between a uses port component and provides port

component.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

4. The domain profile of the BaseComponent includes an SCD file that contains one or

more port definitions.

Test Procedure:

Table 25: Steps to execute Test Procedure for SCA12

Step Action Expected Result

1 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

2 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

3 Go to step 4 if the element being evaluated is a

<componentplacement> or return to step 1 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

4 Open the SPD file indicated by the

<componentfile> referenced by the

<componentplacement> and locate the

<descriptor> element.

The <descriptor> element will be

found or the verification will go back

to step 2.

5 Determine if the file identified by <localfile>

element referenced by the <descriptor> element

exists.

The file identified by the <localfile>

reference within the <descriptor>

subelement exists.

6 Open the SCD file indicated by the <localfile>

referenced by the <descriptor> and locate the

<componentfeatures> element within the SCD.

The <componentfeatures> element is

found within the SCD.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 47

All Rights Reserved

Step Action Expected Result

7 Locate the <ports> element within

<componentfeatures> element.

The location of the <ports> element is

identified.

8 Identify all the <uses> element within the

<ports> element.

The location of a <uses> element is

identified or it will go to step 2.

9 Create a sequence of ConnectionType which

contain as many elements as found in Step 8. For

at least one <uses> element, create a

ConnectionType struct and assign the value of

the usesname attribute to the portName field

within the portConnectionId field and an object

reference implementing the interface used by the

uses port to the portReference field of the

ConnectionType struct.

A ConnectionType sequence of the

component uses ports with a valid port

reference is created.

10 Obtain an object reference for a component

instance associated with the

<componentplacement> element used in Step 2.

An object reference is obtained.

11 Using the object reference from Step 10, invoke

the connectUsesPorts with the ConnectionType

sequence created in Step 9.

The connectUsesPorts operation

doesn’t raises an exception.

12 Create a sequence of ConnectionIdType which

contain one element. For that element, create a

ConnectionIdType struct and assign an arbitrary

value to the connectionId field of the

ConnectionIdType struct. (For use-case: 5a and

5b)

A ConnectionIdType sequence with

an arbitrary connection id is created.

13 Using the object reference from Step 10, invoke

the disconnectPorts with ConnectionIdType

sequence created in Step 12.

The disconnectPorts operation raises

an InvalidPort exception.

14 Create a sequence of ConnectionIdType which

contain an element that is a duplicate of each

portConnectionId field of ConnectionType

sequence created in Step 9.

A ConnectionIdType sequence is

created.

15 Using the object reference from Step 10, invoke

the disconnectPorts with ConnectionIdType

sequence created in Step 14.

The disconnectPorts operation doesn’t

raises an exception.

16 Using the object reference from Step 10, invoke

the disconnectPorts with ConnectionIdType

sequence created in Step 14 again. (For use-case:

5a and 5b)

The disconnectPorts operation raises

an InvalidPort exception.

17 Go back to Step 2.

Postconditions: N/A

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 48

All Rights Reserved

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.2.6 Requirement under Test: SCA13, SCA14, SCA430

Requirement Text:

SCA13: The getProvidesPorts operation shall return the object references that are associated

with the input port names and the connectionIds.

SCA13 (from Errata Sheet): The getProvidesPorts operation shall return the object references

that are associated with the input port names (that are stated in the SCD) within the

portConnections parameter.

SCA14: The getProvidesPorts operation shall raise an InvalidPort exception when the input

portConnections parameter requests undefined connection(s).

SCA430: A BaseComponent shall supply ports for all the ports defined in its domain profile.

Test Plan Objective/Summary: Ensure that an application component, which is a

BaseComponent, implements port objects defined in the application component SCD file. The

test procedure parses the SCD file to determine the ports, obtain an instance of the component.

For the provides ports, the getProvidesPorts operation is invoked to ensure the provides ports are

supplied or an exception is raised. For the uses ports, the connectUsesPorts operation is invoked

to ensure the uses ports are supported.

Context:

1. The BaseComponent implements the Connectable UoF.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

4. The ports of a BaseComponent are identified by the <ports> element in the SCD of the

component under test.

5. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

6. For SCA13, the requirement text from the Errata Sheet has been considered for writing of

this procedure.

7. Section 3.1.3.2.1.2.3.6 of the SCA specification describes four cases where the

InvalidPort can be raised. The following cases apply for the getProvidesPorts operation:

a. The provides port portName does not exist.

Preconditions:

1. The existence of a capability on the test platform that is able to establish connections

through the PortAccessor interface between a uses port component and provides port

component.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 49

All Rights Reserved

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

4. The domain profile of the BaseComponent includes an SCD file that contains one or

more port definitions.

Test Procedure:

Table 26: Steps to execute Test Procedure for SCA13, SCA14, SCA430

Step Action Expected Result

1 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

2 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

3 Go to step 4 if the element being evaluated is a

<componentplacement> or return to step 1 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

4 Open the SPD file indicated by the

<componentfile> referenced by the

<componentplacement> and locate the

<descriptor> element.

The <descriptor> element will be

found or the verification will go back

to step 2.

5 Determine if the file identified by <localfile>

element referenced by the <descriptor> element

exists.

The file identified by the <localfile>

reference within the <descriptor>

subelement exists.

6 Open the SCD file indicated by the <localfile>

referenced by the <descriptor> and locate the

<componentfeatures> element within the SCD.

The <componentfeatures> element is

found within the SCD.

7 Locate the <ports> element within

<componentfeatures> element.

The location of the <ports> element is

identified.

8 Identify all the <provides> element within the

<ports> element.

The location of a <provides> element

is identified or it will go to step 16.

9 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

10 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2.

11 Obtain the componentObject field of the

ComponentType.

The result of the CORBA::is_nil

operation on componentObject field is

false.

12 Obtain the providesPorts field of the

ComponentType. (SCA13)

The list of ports provided by the

component at registration is obtained.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 50

All Rights Reserved

Step Action Expected Result

13 Create a list of ports name containing all the

provides ports supported by the component as

obtained in Step 8 excluding the port names

listed in the providesPorts field obtained in Step

12. (SCA13)

A list of provides ports not provided

at component registration.

14 Create a sequence of ConnectionType which

contain as many elements as found in Step 13.

For each <provides> element, create a

ConnectionType struct and assign the value of

the providesname attribute to the portName field

within the portConnectionId field of the

ConnectionType struct. (SCA13)

A ConnectionType sequence of the

component provides ports not

provided during registration is

created.

15 Using the object reference from Step 11, invoke

the getProvidesPorts with ConnectionType

sequence created in Step 14. (SCA13)

The getProvidesPorts operation

returns without an exception.

16 Create a sequence of ConnectionType which

contain one element that as an arbitrary value for

the portName field within the portConnectionId

field. (SCA14)

A ConnectionType sequence provides

ports unknown to the component.

17 Using the object reference from Step 11, invoke

the getProvidesPorts with ConnectionType

sequence created in Step 16. (SCA14)

The getProvidesPorts operation raises

an invalid port exception.

18 Identify all the <uses> elements within the

<ports> element. (SCA430)

The location of a <uses> element is

identified or it will go to step 2.

19 Create a sequence of ConnectionType which

contain as many elements as found in Step 18.

For each <uses> element, create a

ConnectionType struct and assign the value of

the usesname attribute to the portName field

within the portConnectionId field and a non-nil

value to the portReference field of the

ConnectionType struct. (SCA430)

A ConnectionType sequence of the

component uses ports is created.

20 Using the object reference from Step 11, invoke

the connectUsesPorts with ConnectionType

sequence created in Step 19. (SCA430)

The connectUsesPorts operation

returns without an exception.

21 Go back to Step 2. N/A

Postconditions: This test procedure modified the operating environment by establishing

connections. In order to exercise other runtime tests, the operating environment shall be reset.

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 51

All Rights Reserved

5.6.2.7 Requirement under Test: SCA519

Requirement Text: The connectUsesPorts operation shall disconnect any connections it formed

if any connections in the input portConnections parameter cannot be successfully established.

Test Plan Objective/Summary: Ensure that an application component, which is a

BaseComponent, disconnects any connections if one of the specified connections is invalid. The

test procedure parses the SCD file to determine the ports, obtain an instance of the component,

and check the compliance to the requirement by invoking the disconnectPorts operation on

connections which shall not be connected.

Context:

1. Context Group 3.2: Common Context related to the validation of an application

component.

2. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

3. The ports of a BaseComponent are identified by the <ports> element in the SCD of the

component under test.

4. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. The existence of a capability on the test platform that is able to establish connections

through the PortAccessor interface between a uses port component and provides port

component.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

4. The domain profile of the BaseComponent includes an SCD file that contains one or

more port definitions.

5. This test procedure requires that the requirement SCA12 should be verified.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 52

All Rights Reserved

Test Procedure:

Table 27: Steps to execute Test Procedure for SCA519

Step Action Expected Result

1 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

2 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

3 Go to step 4 if the element being evaluated is a

<componentplacement> or return to step 1 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification will terminate.

4 Open the SPD file indicated by the

<componentfile> referenced by the

<componentplacement> and locate the

<descriptor> element.

The <descriptor> element is found or

the verification will go back to step 2.

5 Determine if the file identified by <localfile>

element referenced by the <descriptor> element

exists.

The file identified by the <localfile>

reference within the <descriptor>

subelement exists.

6 Open the SCD file indicated by the <localfile>

referenced by the <descriptor> and locate the

<componentfeatures> element within the SCD.

The <componentfeatures> element is

found within the SCD.

7 Locate the <ports> element within

<componentfeatures> element.

The location of the <ports> element is

identified.

8 Identify all the <uses> element within the

<ports> element.

The location of a <uses> element is

identified or it will go to Step 2.

9 Create a sequence of ConnectionType which

contain as many elements as found in Step 8. For

each <uses> element, create a ConnectionType

struct and assign the value of the usesname

attribute to the portName field within the

portConnectionId field and an object reference

implementing the interface used by the uses port.

A ConnectionType sequence of the

component uses ports with valid port

reference is created.

10 Obtain an object reference for a component

instance associated with the

<componentplacement> element used in Step 2.

An object reference is obtained.

11 Using the object reference from Step 10, invoke

the connectUsesPorts with the ConnectionType

sequence created in Step 9.

The connectUsesPorts operation

doesn’t raise an exception.

12 Create a sequence of ConnectionIdType which

contain as many elements as the sequence of

ConnectionType created in step 9. For each

element, duplicate the ConnectionIdType struct

of each element of the sequence of

ConnectionType created in step 9.

A ConnectionIdType sequence is

created.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 53

All Rights Reserved

Step Action Expected Result

13 Using the object reference from Step 10, invoke

the disconnectPorts with the ConnectionIdType

sequence created in Step 12.

The disconnectPorts operation doesn’t

raise an exception.

14 For the same sequence of ConnectionType

created in Step 9, add one the ConnectionType

elements with an arbitrary value for the

portName field within the portConnectionId field

to the end of the sequence.

A ConnectionType sequence of the

component uses ports with one invalid

ConnectionType element.

15 Using the object reference from Step 10, invoke

the connectUsesPorts with the ConnectionType

sequence created in Step 14.

The connectUsesPorts operation raises

an InvalidPort exception when using

the invalid element.

16 Using the sequence of ConnectionIdType created

in Step 12, create as many sequences of

ConnectionIdType of length 1, each containing

one of the elements contained in the original

sequence.

As many ConnectionIdType sequence

as the length of the ConnectionIdType

sequence created in step 12 are

created.

17 Using the object reference from Step 10, invoke

the disconnectPorts operation with each

sequence created in Step 16.

The disconnectPorts operation raises

an InvalidPort exception for each

sequence.

18 Using the ConnectionType sequence created in

step 14, switch the first and the last element of

the sequence to have the invalid ConnectionType

element at the beginning of the sequence and

repeat steps 15 to 17.

Expected result is the same at all

steps. The goal is to test the use case

where the invalid connection is the

first element of the sequence.

19 Go back to Step 2. N/A

Postconditions: This test procedure modified the operating environment by establishing

connections. In order to exercise other runtime tests, the operating environment shall be reset.

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.2.8 Requirement under Test: SCA547

Requirement Text: A BaseComponent shall realize the PortAccessor interface as a proxy for its

uses and provides ports.

Test Plan Objective/Summary: Ensure an ApplicationComponent, which is a BaseComponent,

inherits the PortAccessor interface as per realization of the PortAccessor IDL interface. The test

procedure obtains an instance of the component and narrows it to CF::PortAccessor to validate

the requirement.

Context:

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 54

All Rights Reserved

1. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. This test procedure requires that a BaseComponent implements the Component

Registration UoF and that the requirement SCA82 should be verified.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 55

All Rights Reserved

Test Procedure:

Table 28: Steps to execute Test Procedure for SCA547

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found within

the SAD.

3 Perform steps defined in sub-procedure

“Locate next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure

“Obtain supported interface list”

See sub-procedure 6.5.

6 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the PortAccessor

interface IDL repository ID.

The <componentfeatures> contains a

<supportsinterface> element with a repid

attribute equals to the PortAccessor

interface IDL repository ID or go back to

step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Determine that the ComponentType returned

by the application contains a specializedInfo

field identified by an id of

COMPONENTS_ID, which in turn contain a

ComponentType for which the identifier field

is equal to the value of the

COMPONENT_IDENTIFIER execute

parameter received by the component.

The ApplicationManager’s

ComponentType has within the

ComponentType sequence contained in the

value of its specializedInfo field identified

with an ID COMPONENTS_ID a

ComponentType for which the identifier

field is equal to the value of the

<componentinstantiation> element’s id

attribute followed by “:” and the

ApplicationManager name.

9 Obtain the componentObject field of the

ComponentType.

The result of the CORBA::is_nil operation

on componentObject field is false.

10 Narrow the componentObject to the

CF::PortAccessor interface.

The componentObject can be narrowed to

CF::PortAccessor interface.

11 Return to step 3. The next component will be evaluated.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 56

All Rights Reserved

5.6.3 LifeCycle UoF

5.6.3.1 Requirement under Test: SCA15

Requirement Text: The initialize operation shall raise an InitializeError exception when an

initialization error occurs.

Test Plan Objective/Summary: Locate the source code of the BaseComponent and search for

the initialize operation to ensure an InitializeError exception is raised when an error occurs.

Context:

1. Context Group 3.4: Common Context for requirements associated with BaseComponent

(not including a sub-application).

Preconditions:

1. The application developer provides the source file name for the BaseComponent as

identified by item 2 in Context Group 3.4 to the verifier. This is an unnecessary

precondition if the verifier is able to determine the source file of the BaseComponent.

2. The SCD of the component under test indicates that it supports the LifeCycle interface.

Test Procedure:

Table 29: Steps to execute Test Procedure for SCA15

Step Action Expected Result

1 Perform steps defined in sub-procedure “Ensure

an operation raises a specific exception” with

‘initialize()’ as SCA operation input argument

and ‘InitializeError’ as exception input

argument.

See sub-procedure 6.6.

Postconditions: N/A

Test Plan Verification Method: Inspection [Ref1]

Test Plan Result Category: N/A

5.6.3.2 Requirement under Test: SCA432

Requirement Text: A BaseComponent shall realize the LifeCycle interface.

Test Plan Objective/Summary: Ensure a BaseComponent inherits the LifeCycle interface as

per realization of the LifeCycle IDL interface. The test procedures obtain an instance of the

component and narrow it to CF::LifeCycle to validate the requirement.

Context:

1. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 57

All Rights Reserved

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. This test procedure requires that a BaseComponent implements the Component

Registration UoF and that the requirement SCA82 should be verified.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 58

All Rights Reserved

Test Procedure:

Table 30: Steps to execute Test Procedure for SCA432

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found within

the SAD.

3 Perform steps defined in sub-procedure

“Locate next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure

“Obtain supported interface list”

See sub-procedure 6.5.

6 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the LifeCycle interface

IDL repository ID.

The <componentfeatures> contains a

<supportsinterface> element with a repid

attribute equals to the LifeCycle interface

IDL repository ID or go back to step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Determine that the ComponentType returned

by the application contains a specializedInfo

field identified by an id of

COMPONENTS_ID, which in turn contain a

ComponentType for which the identifier field

is equal to the value of the

COMPONENT_IDENTIFIER execute

parameter received by the component.

The ApplicationManager’s

ComponentType has within the

ComponentType sequence contained in the

value of its specializedInfo field identified

with an ID COMPONENTS_ID a

ComponentType for which the identifier

field is equal to the value of the

<componentinstantiation> element’s id

attribute followed by “:” and the

ApplicationManager name.

9 Obtain the componentObject field of the

ComponentType.

The result of the CORBA::is_nil operation

on componentObject field is false.

10 Narrow the componentObject to the

CF::LifeCycle interface.

The componentObject can be narrowed to

CF::LifeCycle interface.

11 Return to step 3. The next component will be evaluated.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 59

All Rights Reserved

5.6.4 Releaseable UoF

5.6.4.1 Requirement under Test: SCA16

Requirement Text: The releaseObject operation shall release all internal memory allocated by

the component during the life of the component.

No test is provided to address this requirement. #

The intent of this requirement is to enhance the robustness and reliability of SCA components by

ensuring that they have a comprehensive approach to memory management that guards against

memory leaks that might compromise platform reliability. This functionality is critical to

platform operations and is a universally accepted goal of sound programming practices. The

SCA requirement reinforces that this management should be performed, but in truth, the

implementation of this principle exceeds the SCA's area of responsibility. A complete memory

management policy is not only applicable to code developed in support of SCA operations, but

also for the code that implements the application business logic, and any libraries or support

artifacts included with the deployed product. We believe that the level of effort required to

comprehensively test this requirement exceeds the reasonable bounds, and capabilities, of what

can be done within the scope of compliance verification.

Several approaches could be implemented to perform partial validation of this requirement, but

we believe that pursuing this approach would lead to a false sense of security. Therefore, we

recommend that this requirement is not assessed as part of the SCA compliance verification

process.

Our position does not advocate ignoring this objective, we believe that it should be monitored

throughout the software development process and assessed at some point within the development

cycle or as part of final qualification or acceptance testing when the product developer has access

to tools that can analyze the component artifacts. Example instrumentation tools like Memcheck

by Valgrind, Electric Fence, etc can help perform dynamic debugging. Another approach would

be to use static analysis tools like HP Fortify, Klocwork, Coverity, etc which evaluate the code to

ensure proper usage memory allocation and deallocation commands. Ideally, both techniques can

be used in conjunction to evaluate all of the component artifacts.

Since proper memory management is so important, we also recommend that a customer or

acquiring organization require proof of fulfillment of this functionality as part of their acceptance

process. The proof could be artifacts generated by the analysis tools or successful completion of

other product specific tests that measure and report memory utilization and availability.

5.6.4.2 Requirement under Test: SCA17

Requirement Text: The releaseObject operation shall tear down the component and release it

from the operating environment.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 60

All Rights Reserved

Test Plan Objective/Summary: Ensure a component is no longer usable after it has been

released. The test procedure obtains an instance of the component before it is released and try to

invoke an operation after the component is released.

Context:

1. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. This test procedure requires that a BaseComponent implements the Component

Registration UoF and that the requirement SCA82 should be verified.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 61

All Rights Reserved

Test Procedure:

Table 31: Steps to execute Test Procedure for SCA17

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure “Obtain

supported interface list”

See sub-procedure 6.5.

6 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the LifeCycle interface

IDL repository ID.

The <componentfeatures> contains a

<supportsinterface> element with a

repid attribute equals to the LifeCycle

interface IDL repository ID or go back

to step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2. The

ComponentType of the

ApplicationComponent is obtained.

9 Obtain the componentObject field of the

ComponentType of the application component

corresponding to the <componentinstantiation>

element ID.

The componentObject is found and the

result of the CORBA::is_nil operation

on componentObject field is false.

10 Narrow the componentObject to the

CF::LifeCycle interface.

The componentObject can be

narrowed to CF::LifeCycle interface.

11 Invoke the releaseObject() operation on the

narrowed componentObject.

The application component is released.

12 Invoke the releaseObject() operation again. CORBA::object_not_exist exception

is found.

13 Repeat steps 7-12 until no more

<componentinstantiation> elements are found

within the <componentplacement> element,

otherwise go to step 3.

The next componentinstantiation will

be evaluated or the verification will go

to step 3.

Postconditions: The test environment needs to be reset because the Application Manager is still

alive.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 62

All Rights Reserved

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.4.3 Requirement under Test: SCA18

Requirement Text: The releaseObject operation shall raise a ReleaseError exception when a

release error occurs.

Test Plan Objective/Summary: Locate the source code of the BaseComponent and search for

the releaseObject operation to ensure a ReleaseError exception is raised when an error occurs.

Context:

1. Context Group 3.4: Common Context for requirements associated with BaseComponent

(not including a sub-application).

Preconditions:

1. The application developer provides the source file name for the BaseComponent as

identified by item 2 in Context Group 3.4 to the verifier. This is an unnecessary

precondition if the verifier is able to determine the source file of the BaseComponent.

2. The SCD of the component under test indicates that it supports the LifeCycle interface.

Test Procedure:

Table 32: Steps to execute Test Procedure for SCA18

Step Action Expected Result

1 Perform steps defined in sub-procedure “Ensure

an operation raises a specific exception” with

‘releaseObject()’ as SCA operation input

argument and ‘ReleaseError’ as exception input

argument.

See sub-procedure 6.6.

Postconditions: N/A

Test Plan Verification Method: Inspection [Ref1]

Test Plan Result Category: N/A

5.6.4.4 Requirement under Test: SCA518

Requirement Text: The releaseObject operation shall raise a ReleaseError exception when a

release error occurs.

Test Plan Objective/Summary: Ensure that any remaining connection are disconnected when

an application component is released and that the object reference that were provided with the

connections are no longer used.

Context:

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 63

All Rights Reserved

1. Context Group 3.4: Common Context for requirements associated with BaseComponent

(not including a sub-application).

Preconditions:

1. The application developer provides the source file name for the BaseComponent as

identified by item 2 in Context Group 3.4 to the verifier. This is an unnecessary

precondition if the verifier is able to determine the source file of the BaseComponent.

2. The SCD of the component under test indicates that it supports the LifeCycle interface.

Test Procedure:

Table 33: Steps to execute Test Procedure for SCA518

Step Action Expected Result

1 Determine the source file names associated with

the SPD for the BaseComponent (see

Preconditions for this information).

The source file names associated with

the SPD for the BaseComponent is

determined.

2 Search the source files of the BaseComponent

for the releaseObject operation and ensure that it

invokes the disconnectPorts SCA operation or

any other internal port disconnection operation

for any remaining connections and ensure that

the internal association between the

connectionId/portName pair (defined as

ConnectionIdType) and the object reference

provided when a connection was established is

removed.

The releaseObject operation is found

and it calls the disconnectPorts

operation or the internal association

between the connectionId/portName

pair (defined as ConnectionIdType)

and the object reference provided

when a connection was established is

removed.

Postconditions: N/A

Test Plan Verification Method: Inspection [Ref1]

Test Plan Result Category: N/A

5.6.5 Configurable UoF

5.6.5.1 Requirement under Test: SCA26, SCA27, SCA28

Requirement Text:

SCA26: The configure operation shall assign values to the properties as indicated in the input

configProperties parameter.

SCA27: The configure operation shall raise a PartialConfiguration exception when some

configuration properties were successfully set and some configuration properties were not

successfully set.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 64

All Rights Reserved

SCA28: The configure operation shall raise an InvalidConfiguration exception when a

configuration error occurs and no configuration properties were successfully set.

Test Plan Objective/Summary: Ensure an ApplicationComponent, which is a BaseComponent,

only assigns values for the specific configurable properties (i.e. defined within the component’s

PRF files) that are provided as input parameters to the configure operation. The test procedure

extracts the set of configure properties defined within the profile, issues the configure command

and then queries the queryable properties and compares the results. Then the test procedure

repeats the same process twice, the first time with some valid and some invalid properties, the

second with all invalid properties.

Context:

1. Context Group 3.3: Common Context for requirements associated with

BaseFactoryComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. This test procedure requires that a BaseComponent implements the Component

Registration UoF and that the requirement SCA82 should be verified.

Test Procedure:

Table 34: Steps to execute Test Procedure for SCA26, SCA27, SCA28

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure “Obtain

supported interface list”

See sub-procedure 6.5.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 65

All Rights Reserved

Step Action Expected Result

6 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the PropertySet interface

IDL repository ID.

The <componentfeatures> contains a

<supportsinterface> element with a

repid attribute equals to the

PropertySet interface IDL repository

ID or go back to step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2. The

ComponentType of the

ApplicationComponent is obtained.

9 Obtain the implementation id in the

specializedInfo field of the ComponentType of

the application component corresponding to the

<componentinstantiation> element ID.

The implementation id of the

component instance is obtained.

10 Perform steps defined in sub-procedure “Obtain

component configure properties” with

implementation id obtained in step 9 as

component implementation id input argument

and with ‘writeonly and readwrite’ as the

property modes input argument.

See sub-procedure 6.7.

11 Obtain the componentObject field of the

ComponentType of the application component

corresponding to the <componentinstantiation>

element ID.

The componentObject is found and the

result of the CORBA::is_nil operation

on componentObject field is false.

12 Narrow the componentObject to the

CF::PropertySet interface.

The componentObject can be

narrowed to CF::PropertySet interface.

13 Construct a list of all the component’s

configurable properties with valid values to be

used as an input parameter.

The configure command input

parameter list has been built.

14 Invoke the configure() operation on the narrowed

componentObject with the input parameter

constructed in the previous step. (SCA26)

The component’s configure operation

is successfully invoked.

15 Invoke the query() operation on the narrowed

componentObject with an input parameter of

zero size. (SCA26)

The component’s queryable properties

are returned in the operation’s input

parameter.

16 Compare the values passed to the configure

operation against those returned with the

corresponding queryable properties. (SCA26)

The assigned values are successfully

compared against the queryable

properties.

17 Replace the values of a random number, x < n,

of the previously identified configurable

property IDs with invalid values when there is

more than 1 configure property or go to step 21.

(SCA27)

The configure command input

parameter list has been built with

invalid property value(s) or go to step

21.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 66

All Rights Reserved

Step Action Expected Result

18 Invoke the configure() operation on the narrowed

componentObject with the input parameter

constructed in the previous step. (SCA27)

The component’s configure operation

returns a PartialConfiguration

exception.

19 Invoke the query() operation on the narrowed

componentObject with an input parameter of

zero size. (SCA27)

The component’s queryable properties

are returned in the operation’s input

parameter.

20 Compare the values passed to the configure

operation against those returned with the

corresponding queryable properties. (SCA27)

The assigned values of the valid

properties are successfully compared

against the queryable properties and

the values for those properties listed in

the PartialConfiguration exception

have not changed.

21 Perform steps defined in sub-procedure “Obtain

component configure properties” with

implementation id obtained in step 9 as

component implementation id input argument

and with ‘readonly’ as the property modes input

argument. (SCA27)

See sub-procedure 6.7.

22 If the component has some properties with

‘readonly’ mode, construct a list of all the

component’s properties obtained in Step 21 to be

used as an input parameter or go to step 24.

(SCA27)

The configure command input

parameter list has been built with

‘readonly’invalid properties or go to

step 24.

23 Invoke the configure() operation on the narrowed

componentObject with the input parameter

constructed in the previous step. (SCA27)

The component’s configure()

operation returns a

PartialConfiguration exception.

24 Construct a list of a random number of the

component’s configurable properties, all with

invalid values to be used as an input parameter.

(SCA28)

The configure() command input

parameter list has been built.

25 Invoke the configure() operation on the narrowed

componentObject with the input parameter

constructed in the previous step.(SCA28)

The component’s configure()

operation returns an

InvalidConfiguration exception.

26 Invoke the query() operation on the narrowed

componentObject with an input parameter of

zero size. (SCA28)

The component’s queryable properties

are returned in the operation’s input

parameter.

27 Compare the values passed to the configure

operation against those returned with the

corresponding queryable properties. (SCA28)

The assigned values for those

properties listed in the

InvalidConfiguration exception have

not changed.

28 Return to step 3. The next component will be evaluated.

Postconditions: N/A

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 67

All Rights Reserved

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.5.2 Requirement under Test: SCA29, SCA30, SCA31

Requirement Text:

SCA29: The query operation shall return all component properties when the inout parameter

configProperties is zero size

SCA30: The query operation shall return only those id/value pairs specified in the

configProperties parameter if the parameter is not zero size.

SCA31: The query operation shall raise the CF::UnknownProperties exception when one or more

properties being requested are not known by the component.

Test Plan Objective/Summary: Ensure an ApplicationComponent, which is a BaseComponent,

only returns values for the specific queryable properties (i.e. defined within the component’s

PRF files) that are provided as input parameters to the query operation or for all properties if no

property is provided as input. The test procedure extracts the set of query properties defined

within the profile, selects a subset of the properties, issues the query command and compares the

properties returned against those that were provided or defined. Then the test procedure invokes

the query command once more with an invalid property.

Context:

1. Context Group 3.3: Common Context for requirements associated with

BaseFactoryComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. This test procedure requires that a BaseComponent implements the Component

Registration UoF and that the requirement SCA82 should be verified.

Test Procedure:

Table 35: Steps to execute Test Procedure for SCA29, SCA30, SCA31

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 68

All Rights Reserved

Step Action Expected Result

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure “Obtain

supported interface list”

See sub-procedure 6.5.

6 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the PropertySet interface

IDL repository ID.

The <componentfeatures> contains a

<supportsinterface> element with a

repid attribute equals to the

PropertySet interface IDL repository

ID or go back to step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2. The

ComponentType of the

ApplicationComponent is obtained.

9 Obtain the implementation id in the

specializedInfo field of the ComponentType of

the application component corresponding to the

<componentinstantiation> element ID.

The implementation id of the

component instance is obtained.

10 Perform steps defined in sub-procedure ““Obtain

component configure properties” with

implementation id obtained in step 9 as

component implementation id input argument

and with ‘readonly and readwrite’ as the

property modes input argument.

See sub-procedure 6.7

11 Obtain the componentObject field of the

ComponentType of the application component

corresponding to the <componentinstantiation>

element ID.

The componentObject is found and the

result of the CORBA::is_nil operation

on componentObject field is false.

12 Narrow the componentObject to the

CF::PropertySet interface.

The componentObject can be

narrowed to CF::PropertySet interface.

13 Invoke the query() operation on the narrowed

componentObject with an input parameter of

zero size. (SCA29)

The component’s queryable properties

are returned in the operation’s input

parameter.

14 Compare the returned properties against those

obtained from the component domain profile

files. (SCA29)

All the queryable properties from the

domain profile are present in the

returned value.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 69

All Rights Reserved

Step Action Expected Result

15 Construct a random sized list of at most n-1 of

the component’s queryable properties or a list of

1 if there is only 1 property to be used as an

input parameter. (SCA30 and SCA31)

The query command input parameter

list has been built.

16 Invoke the query() operation on the narrowed

componentObject with the input parameter

constructed in the previous step. (SCA30)

All properties are returned with values

in the operation’s input parameter.

17 Append the word “Invalid” to a random number,

n >= 1, of the previously identified queryable

property IDs and clear any value from the data

structure. (SCA31)

The query command input parameter

list has been built with invalid

property(ies).

18 Invoke the query() operation on the narrowed

componentObject with the input parameter

constructed in the previous step. (SCA31)

The query operation will raise the

UnknownProperties exception.

19 Perform steps defined in sub-procedure “Obtain

component configure properties” with

implementation id obtained in step 9 as

component implementation id input argument

and with ‘writeonly’ as the property modes input

argument. (SCA31)

See sub-procedure 6.7

20 If the component has some properties with

‘writeonly’ mode, construct a list of all the

component’s properties obtained in Step 19 to be

used as an input parameter or go to step 22.

(SCA31)

The query command input parameter

list has been built with ‘writeonly’

invalid properties or go to step 20.

21 Invoke the query() operation on the narrowed

componentObject with the input parameter

constructed in the previous step. (SCA31)

The component’s query() operation

returns an UnknownProperties

exception.

22 Return to step 3. The next component will be evaluated.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.5.3 Requirement under Test: SCA429

Requirement Text: A BaseComponent shall configure or retrieve query values for all properties

whose kindtype is "configure" as defined in its domain profile.

No test is provided since the test procedures for SCA26, SCA29 and SCA30 address this

requirement. #

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 70

All Rights Reserved

5.6.5.4 Requirement under Test: SCA545

Requirement Text: A BaseComponent shall realize the PropertySet interface to configure and

query its properties.

Test Plan Objective/Summary: Ensure an ApplicationComponent, which is a BaseComponent,

inherits the PropertySet interface as per realization of the PropertySet IDL interface. The test

procedure obtains an instance of the component and narrows it to CF::PropertySet to validate the

requirement.

Context:

1. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. This test procedure requires that a BaseComponent implements the Component

Registration UoF and that the requirement SCA82 should be verified.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 71

All Rights Reserved

Test Procedure:

Table 36: Steps to execute Test Procedure for SCA545

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found within

the SAD.

3 Perform steps defined in sub-procedure

“Locate next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure

“Obtain supported interface list”

See sub-procedure 6.5.

6 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the PropertySet

interface IDL repository ID.

The <componentfeatures> contains a

<supportsinterface> element with a repid

attribute equals to the PropertySet interface

IDL repository ID or go back to step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Determine that the ComponentType returned

by the application contains a specializedInfo

field identified by an id of

COMPONENTS_ID, which in turn contain a

ComponentType for which the identifier field

is equal to the value of the

COMPONENT_IDENTIFIER execute

parameter received by the component.

The ApplicationManager’s

ComponentType has within the

ComponentType sequence contained in the

value of its specializedInfo field identified

with an ID COMPONENTS_ID a

ComponentType for which the identifier

field is equal to the value of the

<componentinstantiation> element’s id

attribute followed by “:” and the

ApplicationManager name.

9 Obtain the componentObject field of the

ComponentType.

The result of the CORBA::is_nil operation

on componentObject field is false.

10 Narrow the componentObject to the

CF::PropertySet interface.

The componentObject can be narrowed to

CF::PropertySet interface.

11 Return to step 3. The next component will be evaluated.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 72

All Rights Reserved

5.6.6 Controllable UoF

5.6.6.1 Requirement under Test: SCA34

Requirement Text: The start operation shall raise the StartError exception if an error occurs

while starting the component.

Test Plan Objective/Summary: Locate the source code of the BaseComponent and search for

the start operation to ensure a StartError exception is raised when an error occurs.

Context:

1. Context Group 3.4: Common Context for requirements associated with BaseComponent

(not including a sub-application).

Preconditions:

1. The application developer provides the source file name for the BaseComponent as

identified by item 2 in Context Group 3.4 to the verifier. This is an unnecessary

precondition if the verifier is able to determine the source file of the BaseComponent.

2. The SCD of the component under test indicates that it supports the Controllable interface.

Test Procedure:

Table 37: Steps to execute Test Procedure for SCA34

Step Action Expected Result

1 Perform steps defined in sub-procedure “Ensure

an operation raises a specific exception” with

‘start()’ as SCA operation input argument and

‘StartError as exception input argument.

See sub-procedure 6.6.

Postconditions: N/A

Test Plan Verification Method: Inspection [Ref1]

Test Plan Result Category: N/A

5.6.6.2 Requirement under Test: SCA37

Requirement Text: The stop operation shall raise the StopError exception if an error occurs

while stopping the component.

Test Plan Objective/Summary: Locate the source code of the BaseComponent and search for

the start operation to ensure a StopError exception is raised when an error occurs.

Context:

1. Context Group 3.4: Common Context for requirements associated with BaseComponent

(not including a sub-application).

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 73

All Rights Reserved

Preconditions:

1. The application developer provides the source file name for the BaseComponent as

identified by item 2 in Context Group 3.4 to the verifier. This is an unnecessary

precondition if the verifier is able to determine the source file of the BaseComponent.

2. The SCD of the component under test indicates that it supports the Controllable interface.

Test Procedure:

Table 38: Steps to execute Test Procedure for SCA34

Step Action Expected Result

1 Perform steps defined in sub-procedure “Ensure

an operation raises a specific exception” with

‘stop()’ as SCA operation input argument and

‘StopError as exception input argument.

See sub-procedure 6.6.

Postconditions: N/A

Test Plan Verification Method: Inspection [Ref1]

Test Plan Result Category: N/A

5.6.6.3 Requirement under Test: SCA433, SCA32, SCA33, SCA36

Requirement Text:

SCA433: A BaseComponent shall realize the ControllableInterface interface to provide overall

management control of the component.

SCA32: The readonly started attribute shall return the component's started value.

SCA33: The start operation shall set the started attribute to a value of TRUE.

SCA36: The stop operation shall set the started attribute to a value of FALSE.

Test Plan Objective/Summary: Ensure an ApplicationComponent, which is a BaseComponent,

inherits the ControllableInterface interface as per realization of the ControllableInterface IDL

interface. The test procedure obtains an instance of the component and narrows it to that

interface to validate the requirement (SCA433). The test procedure also ensures that the started

attribute of the ControllableInterface interface returns the appropriate value after the start and

stop operations have been successfully invoked (SCA32, SCA33, SCA36).

Context:

1. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 74

All Rights Reserved

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. This test procedure requires that a BaseComponent implements the Component

Registration UoF and that the requirement SCA82 should be verified.

Test Procedure:

Table 39: Steps to execute Test Procedure for SCA433, SCA32, SCA33, SCA36

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ApplicationManager reference is

obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Perform steps defined in sub-procedure

“Locate next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure

“Obtain supported interface list”

See sub-procedure 6.5.

6 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the

ControllableInterface IDL repository ID.

The <componentfeatures> contains a

<supportsinterface> element with a

repid attribute equals to the

ControllableInterface IDL repository ID

or go back to step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Determine that the ComponentType returned

by the application contains a specializedInfo

field identified by an id of

COMPONENTS_ID, which in turn contain a

ComponentType for which the identifier field

is equal to the value of the

COMPONENT_IDENTIFIER execute

parameter received by the component.

The ApplicationManager’s

ComponentType has within the

ComponentType sequence contained in

the value of its specializedInfo field

identified with an ID

COMPONENTS_ID a ComponentType

for which the identifier field is equal to

the value of the

<componentinstantiation> element’s id

attribute followed by “:” and the

ApplicationManager name.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 75

All Rights Reserved

Step Action Expected Result

9 Obtain the componentObject field of the

ComponentType.

The result of the CORBA::is_nil

operation on componentObject field is

false.

10 Narrow the componentObject to the

CF::ControllableInterface interface. (SCA433)

The componentObject can be narrowed

to CF::ControllableInterface interface.

11 Invoke the start() operation on the narrowed

componentObject. (SCA32)(SCA33)

The start() operation is invoked

successfully.

12 Retrieve the value of the started attribute from

the CF::ControllableInterface interface.

(SCA32)(SCA33)

The value of the started attribute is

TRUE.

13 Invoke the start() operation on the narrowed

componentObject again. (SCA32)(SCA33)

The application component does not

raise an exception.

14 Retrieve the value of the started attribute from

the CF::ControllableInterface interface.

(SCA32)(SCA33)

The value of the started attribute is

TRUE.

15 Invoke the stop() operation on the narrowed

componentObject. (SCA36)

The stop() operation is invoked

successfully.

16 Retrieve the value of the started attribute from

the CF::ControllableInterface interface.

(SCA32)(SCA36)

The value of the started attribute is

FALSE.

17 Invoke the stop() operation on the narrowed

componentObject again. (SCA36)

The application component does not

raise an exception.

18 Retrieve the value of the started attribute from

the CF::ControllableInterface interface.

(SCA32)(SCA36)

The value of the started attribute is

FALSE.

19 Invoke the start() operation on the narrowed

componentObject. (SCA32)(SCA33)

The start() operation is invoked

successfully.

20 Retrieve the value of the started attribute from

the CF::ControllableInterface interface.

(SCA32)(SCA33)

The value of the started attribute is

TRUE.

21 Return to step 3. The next component will be evaluated.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.7 LogProducer and Configurable UoFs

5.6.7.1 Requirement under Test: SCA420

Requirement Text: A BaseComponent shall implement a 'configure' kind of property with a

name of PRODUCER_LOG_LEVEL.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 76

All Rights Reserved

Test Plan Objective/Summary: Ensure that an application component, which is a

BaseComponent, that implements the PropertySet interface supports a property named

PRODUCER_LOG_LEVEL. Support is determined by calling the configure and query

operations.

Context:

1. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. This test procedure requires that a BaseComponent implements the Component

Registration UoF and that the requirement SCA82 has been verified.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 77

All Rights Reserved

Test Procedure:

Table 40: Steps to execute Test Procedure for SCA420

Step Action Expected Result

1 Obtain the ComponentType struct of the

ApplicationManager instance of the application

under test.

The ComponentType struct is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found within

the SAD.

3 Perform steps defined in sub-procedure

“Locate next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure

“Obtain supported interface list”

See sub-procedure 6.5.

6 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the PropertySet

interface IDL repository ID.

The <componentfeatures> contains a

<supportsinterface> element with a repid

attribute equals to the PropertySet interface

IDL repository ID or go back to step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2.

9 Obtain the componentObject field of the

ComponentType.

The result of the CORBA::is_nil operation

on componentObject field is false.

10 Narrow the componentObject to the

CF::PropertySet interface.

The componentObject can be narrowed to

CF::PropertySet interface.

11 Invoke the configure operation with the

argument of a property with an id of

PRODUCER_LOG_LEVEL and a value of a

valid log level.

The configure operation returns without an

exception.

12 Invoke the query operation with the argument

of a property with an id of

PRODUCER_LOG_LEVEL.

The query operation returns without an

exception and the value is the same as

provided in step 11.

13 Return to step 3 The next component will be evaluated.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 78

All Rights Reserved

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.8 Log Producer UoF

5.6.8.1 Requirement under Test: SCA421

Requirement Text: A BaseComponent shall output only those log records to a log service that

correspond to enabled log level values in the PRODUCER_LOG_LEVEL attribute.

Test Plan Objective/Summary: Ensure that the ApplicationComponents, which are

BaseComponents, generate log messages in accordance with the levels identified by the value of

the PRODUCER_LOG_LEVEL configure property. Demonstrate that log messages are

produced by the application in accordance with the component’s enabled log level.

Context:

1. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

2. A BaseComponent is a component part of an application under test.

3. The log service is configured to support the number of messages logged by the

application’s components.

Preconditions: N/A

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 79

All Rights Reserved

Test Procedure:

Table 41: Demonstration steps for SCA421

Step Action Expected Result

1 Empty the system log file(s) and display their

contents.

The log file(s) are empty.

2 Enable the valid log levels for each log

producing component within the application via

the PRODUCER_LOG_LEVEL attribute.

All valid log levels are enabled for

each of the application’s components.

3 Execute a series of operations that will cause

each log producing ApplicationComponent to

generate log messages (the desired scenario is to

select a series of operations that will result in the

application’s end state being identical to the start

state so they can be executed again and produce

the same messages).

The log file(s) are populated with

messages generated by each

component.

4 Disable at least one of the valid log levels for

each component that generates log messages

stored within the log file(s).

A subset of log levels for each

component are enabled.

5 Execute the same set of operations as performed

previously in step 3.

The log file(s) will be appended with

messages generated only for the

enabled log levels.

6 Repeat steps 4-5 with a different combination of

enabled log levels (the execution of steps 4-6

should demonstrate that all of the application

components are able to constrain their generated

log messages).

The log file(s) will be appended with

messages generated only for the

enabled log levels.

7 Enable the valid log levels for each log

producing component within the application via

the PRODUCER_LOG_LEVEL attribute.

All valid log levels are enabled for

each of the application’s components.

8 Execute the same set of operations as performed

previously in step 3.

The log file(s) will be appended with

the same messages as those generated

in step 3.

Postconditions: N/A

Test Plan Verification Method: Demonstration [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.8.2 Requirement under Test: SCA423

Requirement Text: A BaseComponent shall operate normally in the case where the connections

to a log service are nil or an invalid reference.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 80

All Rights Reserved

Test Plan Objective/Summary: Ensure that the ApplicationComponents, which are

BaseComponents, operate normally even if they are not connected to a Log service or the

reference to the Log service they are using becomes invalid. Demonstrate that the components of

the application continue to perform their main work after the connections to the log service

becomes invalid.

Context:

1. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

2. A BaseComponent is a component part of an application under test.

3. The log service is configured to support the number of messages logged by the

application’s components.

Preconditions: N/A

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 81

All Rights Reserved

Test Procedure:

Table 42: Demonstration steps for SCA423

Step Action Expected Result

1 Empty the system log file(s) and display their

contents.

The log file(s) are empty.

2 Enable the valid log levels for each log

producing component within the application via

the PRODUCER_LOG_LEVEL attribute.

All valid log levels are enabled for

each of the application’s components.

3 Execute a series of operations that will cause

each log producing ApplicationComponent to

generate log messages (the desired scenario is to

select a series of operations that will result in the

application’s end state being identical to the start

state so they can be executed again and produce

the same messages).

The log file(s) are populated with

messages generated by each

component.

4 Use some testing tools specific ways to

disconnect all connections to the Log service.

Connections to Log service are

successfully disconnected.

5 Execute the same set of operations as performed

previously in step 3.

The log file(s) are not populated with

messages generated by each

component and each component

behaves properly to perform their

main work.

6 Use some testing tools specific ways to connect

the application components that are LogProducer

to the Log service.

Connections to Log service are

successfully established.

7 Execute the same set of operations as performed

previously in step 3.

The log file(s) will be appended with

the same messages as those generated

in step 3.

8 Use some platforms and/or testing tools specific

ways to invalidate the reference to the Log

service used by the application components.

The reference to the Log service used

by the application components is

invalid.

9 Execute the same set of operations as performed

previously in step 3.

The log file(s) are not populated with

messages generated by each

component and each component

behaves properly to perform their

main work.

10 Use some platforms and/or testing tools specific

ways to make valid the reference to the Log

service used by the application components.

The reference to the Log service used

by the application components is

valid.

11 Execute the same set of operations as performed

previously in step 3.

The log file(s) are not populated with

messages generated by each

component and each component

behaves properly to perform their

main work.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 82

All Rights Reserved

Postconditions: N/A

Test Plan Verification Method: Demonstration [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.9 Event Producer UoF

5.6.9.1 Requirement under Test: SCA424

Requirement Text: A BaseComponent that produces events shall implement the

CosEventComm::PushSupplier interface and use the CosEventComm::PushConsumer interface

for generating the events.

Test Plan Objective/Summary: Ensure that an application component that produces events

implements the OMG Event Service Specification CosEventComm::PushSupplier interface and

uses the CosEventComm::PushConsumer interface for generating events.

Context:

1. The CosEventComm module is used by consumers for receiving events and by producers

for generating events.

2. The CosEventComm interfaces are specified in the OMG Event Service Specification

v1.2 (October 2004). https://www.omg.org/spec/EVNT/About-EVNT/

3. It is assumed that the interfaces are implemented via inheritance and it is this inheritance

relationship that identifies application components or ports to which this requirement is

applicable.

4. An application component that produces events should inherit from

CosEventComm::PushSupplier and CosEventComm::PushConsumer defined in the OMG

Event Service Specification under the CosEventComm Module.

5. In general, it is not possible, except through deep manual code inspection, to determine

that an application component is not using some other ad hoc event interface.

6. Each source file that implements an application component class should be checked for

an inheritance relationship with an interface specified in the OMG Event Service

Specification.

7. Each source file that declares or defines an application component which inherits

(directly or transitively) from an OMG Event Service Specification interface must be

analyzed.

8. The requirement is not applicable to virtual classes. A virtual class is not realizable and

therefore cannot produce or generate events.

9. Each source file must be analyzed in the context of full execution of all preprocessor

directives.

 9.1 All preprocessor-relevant compiler flags are specified

 9.2 All included files are available

 9.3 All conditional directives are executed and excluded code is eliminated

10. This test does not check for parity between event suppliers and event consumers.

https://www.omg.org/spec/EVNT/About-EVNT/

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 83

All Rights Reserved

Preconditions:

1. The developer provides the relevant source code files declaring and defining application

components.

2. For each source code file, the developer provides all preprocessor-relevant compiler flags

and included (including transitively included) files.

Test Procedure:

Table 43: Steps to execute Test Procedure for SCA424

Step Action Expected Result

1 Identify source files in scope of SCA424

requirement test.

The source files are identified.

2 Apply preprocessor execution to source files

identified in Step 1.

The preprocessor execution directives

are applied.

3 For each non-virtual class that is used to

implement the BaseComponent, identify those

that inherit from CosEventComm::PushSupplier.

The classes that inherit from

CosEventComm::PushSupplier are

identified.

4 For each class identified in Step 3, verify that the

class implements

PushSupplier::disconnect_push_supplier().

The class implements the

PushSupplier::disconnect_push_suppli

er() method.

5 Verify that the set of classes identified in Step 3

is non-empty.

The set of classes identified in Step 3

is non-empty.

6 For each class that is used to implement the

BaseComponent identify all uses of:

PushConsumer::push() and

PushConsumer::disconnect_push_consumer().

The classes that use the

PushConsumer::push() and

PushConsumer::disconnect_push_cons

umer() method are identified.

Postconditions: N/A

Test Plan Verification Method: Analysis [Ref1]

Test Plan Result Category: Necessary [Ref1]

5.6.9.2 Requirement under Test: SCA425

Requirement Text: A producer BaseComponent shall not forward or raise any exceptions when

the connection to a CosEventComm::PushConsumer is a nil or invalid reference.

Test Plan Objective/Summary: Ensure that an application component that produces events

using the CosEventComm::PushConsumer interface doesn’t forward or raise exceptions when

the connection provides a nil or invalid object reference.

Context:

1. The CosEventComm module is used by consumers for receiving events and by producers

for generating events.

2. The CosEventComm interfaces are specified in the OMG Event Service Specification

v1.2 (October 2004). https://www.omg.org/spec/EVNT/About-EVNT/

https://www.omg.org/spec/EVNT/About-EVNT/

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 84

All Rights Reserved

3. In general, it is not possible, except through deep manual code inspection, to determine

that an application component is not using some other ad hoc event interface.

4. Each source file that implements an application component class should be checked for

an inheritance relationship with an interface specified in the OMG Event Service

Specification.

5. Each source file that declares or defines an application component which inherits

(directly or transitively) from an OMG Event Service Specification interface must be

analyzed.

6. The requirement is not applicable to virtual classes. A virtual class is not realizable and

therefore cannot produce or generate events.

7. Each source file must be analyzed in the context of full execution of all preprocessor

directives.

 7.1 All preprocessor-relevant compiler flags are specified

 7.2 All included files are available

 7.3 All conditional directives are executed and excluded code is eliminated

8. This test does not check for parity between event suppliers and event consumers.

Preconditions:

1. The developer provides the relevant source code files declaring and defining application

components.

2. For each source code file, the developer provides all preprocessor-relevant compiler flags

and included (including transitively included) files.

Test Procedure:

Table 44: Steps to execute Test Procedure for SCA425

Step Action Expected Result

1 Identify source files in scope of SCA425

requirement test.

The source files are identified.

2 Apply preprocessor execution to source files

identified in Step 1.

The preprocessor execution directives

are applied.

3 For each non-virtual class that is used to

implement the BaseComponent, identify those

that inherit from CosEventComm::PushSupplier.

The classes that inherit from

CosEventComm::PushSupplier are

identified.

4 Verify that the set of classes identified in Step 3

is non-empty.

The set of classes identified in Step 3

is non-empty.

5 For each class that is used to implement the

BaseComponent identify all uses of:

PushConsumer::push() and

PushConsumer::disconnect_push_consumer().

The classes that use the

PushConsumer::push() and

PushConsumer::disconnect_push_cons

umer() method are identified.

6 For each use of PushConsumer::push() identified

in step 5 ensure that exceptions are not

forwarded or raised if the consumer is a nil or

invalid reference.

No exception is forwarded or raised if

the consumer is a nil or invalid

reference.

Postconditions: N/A

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 85

All Rights Reserved

Test Plan Verification Method: Analysis [Ref1]

Test Plan Result Category: Necessary [Ref1]

5.6.10 Interrogable UoF

5.6.10.1 Requirement under Test: SCA426, SCA6

Requirement Text:

SCA426: A BaseComponent shall realize the ComponentIdentifier interface.

SCA6: The readonly identifier attribute shall return the instance-unique identifier for a

component.

Test Plan Objective/Summary: Ensure a BaseComponent inherits the ComponentIdentifier

interface as per realization of the ComponentIdentifier IDL interface. The test procedure obtains

an instance of the component and narrows it to that interface to validate the requirement

(SCA426). The test procedure also ensure that the identifier is returned by the attribute of the

ComponentIdentifier interface (SCA6).

Context:

1. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. This test procedure requires that a BaseComponent implements the Component

Registration UoF and that the requirement SCA82 should be verified.

Test Procedure:

Table 45: Steps to execute Test Procedure for SCA426

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ApplicationManager reference is

obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found within

the SAD.

3 Perform steps defined in sub-procedure

“Locate next component or assembly”.

See sub-procedure 6.1.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 86

All Rights Reserved

Step Action Expected Result

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure

“Obtain supported interface list”

See sub-procedure 6.5.

6 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the

ComponentIdentifier interface IDL repository

ID.

The <componentfeatures> contains a

<supportsinterface> element with a repid

attribute equals to the ComponentIdentifier

interface IDL repository ID or go back to

step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Determine that the ComponentType returned

by the application contains a specializedInfo

field identified by an id of

COMPONENTS_ID, which in turn contain a

ComponentType for which the identifier field

is equal to the value of the

COMPONENT_IDENTIFIER execute

parameter received by the component.

The ApplicationManager’s

ComponentType has within the

ComponentType sequence contained in the

value of its specializedInfo field identified

with an ID COMPONENTS_ID a

ComponentType for which the identifier

field is equal to the value of the

<componentinstantiation> element’s id

attribute followed by “:” and the

ApplicationManager name.

9 Obtain the componentObject field of the

ComponentType.

The result of the CORBA::is_nil operation

on componentObject field is false.

10 Narrow the componentObject to the

CF::ComponentIdentifier interface. (SCA426)

The componentObject can be narrowed to

CF::ComponentIdentifier interface.

11 Retrieve the identifier attribute from the

CF::ComponentIdentifier interface and

compare it against the value that corresponds to

the COMPONENTS_ID id within the

specializedInfo field of the application’s

ComponentType. (SCA6)

The compared values will be equal.

12 Repeat steps 7-11 until no more

<componentinstantiation> elements are found

within the <componentplacement> element,

otherwise go to step 3.

The next componentinstantiation will be

evaluated or the verification will go to step

3.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 87

All Rights Reserved

5.6.11 Testable UoF

5.6.11.1 Requirement under Test: SCA428, SCA19, SCA21, SCA23, SCA24, SCA25

Requirement Text:

SCA428: A BaseComponent shall provide a test implementation for all properties whose

kindtype is "test" as defined in its descriptor files.

SCA19: The runTest operation shall use the input testId parameter to determine which of its

predefined test implementations should be performed.

SCA21: The runTest operation shall return the result(s) of the test in the testValues parameter.

SCA23: The runTest operation shall raise the UnknownTest exception when there is no

underlying test implementation that is associated with the input testId given.

SCA24: The runTest operation shall raise the CF::UnknownProperties exception when the input

parameter testValues contains any CF::DataTypes that are not known by the component's test

implementation or any values that are out of range for the requested test.

SCA25: The exception parameter invalidProperties shall contain the invalid testValues properties

id(s) that are not known by the component or the value(s) are out of range.

Test Plan Objective/Summary: Ensure an ApplicationComponent, which is a BaseComponent,

provides a test implementation for each test property defined within the component’s PRF files.

The test procedure extracts the set of test properties defined within the profile and issues the

runTest() operation to ensure the component implement those tests. A test is considered

implemented (i.e. the runTest uses the testId input parameter to determine the test) if the

runTest() operation doesn’t raise an UnknownTest exception (SCA428, SCA19, SCA23) . The

procedure ensures that resultValues are provided by the test implementation (SCA21). The

procedure also checks that a test implementation raises exceptions when invalid properties or

values are provided as input values (SCA24, SCA25).

Context:

1. Context Group 3.3: Common Context for requirements associated with

BaseFactoryComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 88

All Rights Reserved

3. This test procedure requires that a BaseComponent implements the Component

Registration UoF and that the requirement SCA82 should be verified.

Test Procedure:

Table 46: Steps to execute Test Procedure for SCA428, SCA19, SCA21, SCA23, SCA24, SCA25

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure “Obtain

supported interface list”

See sub-procedure 6.5.

6 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the TestableInterface

interface IDL repository ID.

The <componentfeatures> contains a

<supportsinterface> element with a

repid attribute equals to the

TestableInterface interface IDL

repository ID or go back to step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2. The

ComponentType of the

ApplicationComponent is obtained.

9 Obtain the implementation id in the

specializedInfo field of the ComponentType of

the application component corresponding to the

<componentinstantiation> element ID.

The implementation id of the

component instance is obtained.

10 Perform steps defined in sub-procedure “Obtain

component test properties” with implementation

id obtained in step 9 as component

implementation id input argument.

See sub-procedure 6.8

11 Obtain the componentObject field of the

ComponentType of the application component

corresponding to the <componentinstantiation>

element ID.

The componentObject is found and the

result of the CORBA::is_nil operation

on componentObject field is false.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 89

All Rights Reserved

Step Action Expected Result

12 Narrow the componentObject to the

CF::TestableInterface interface.

The componentObject can be

narrowed to CF::TestableInterface

interface.

13 Identify the next test from the list of properties

obtained in step 10 or go to step 26 when no

more test.

The next test to invoke is found or go

to step 26.

14 Construct a sequence of properties containing the

input values for the testValues inout parameter

of the runTest operation using the properties of

kind test that are children of the inputvalue

specified for the test identified in previous step.

The runTest operation testValues

parameter has been constructed.

15 Invoke the runTest() operation on the narrowed

componentObject with a testId parameter

corresponding to the id attribute of the test

property identified in step 13 and the testValues

parameter constructed in previous step.

(SCA428)(SCA19)(SCA21)(SCA23)

The component recognize the test and

the runTest() operation doesn’t raise

an UnknownTest exception

(SCA428)(SCA19) nor an

UnknownProperties exception

(SCA23).

16 Iterate over the list of properties in the testValues

parameter provided by the runTest() operation

and compare there ids against the properties of

kind test that are children of the resultvalue

specified for the test identified in step 13.

(SCA21)

The runTest() operation testValues

parameter contains all properties

specified as child of the resultvalue for

the test.

17 Change the value of a property to specify a value

outside the range (min – 1 or max + 1) when the

sequence of properties constructed in step 14 has

a property that support a range, or go to step 20.

(SCA24)(SCA25)

A sequence with a valid property but

an out of range value is constructed for

the runTest() operation testValues

parameter or go to step 20.

18 Invoke the runTest() operation on the narrowed

componentObject with a testId parameter

corresponding to the id attribute of the test

property identified in step 13 and the testValues

parameter constructed in previous step.

(SCA24)(SCA25)

The runtTest() operation raises an

UnknownProperties exception.

(SCA24)

19 Check the invalidProperties parameter of the

UnknownProperties caught in previous step

contains the id of the property for which an out

of range value has been specified in step 17.

(SCA25)

The invalidProperties parameter of the

UnknownProperties contains the id of

the property for which an out of range

value has been specified in step 17.

20 Append the word “Invalid” to a random number,

n >= 1, of the properties in the sequence

constructed in step 14. (SCA24)(SCA25)

A sequence containing invalid

properties is constructed.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 90

All Rights Reserved

Step Action Expected Result

21 Invoke the runTest() operation on the narrowed

componentObject with a testId parameter

corresponding to the id attribute of the test

property identified in step 13 and the testValues

parameter constructed in previous step.

(SCA24)(SCA25)

The runtTest() operation raises an

UnknownProperties exception.

(SCA24)

22 Check the invalidProperties parameter of the

UnknownProperties caught in previous step

contains the id of the invalid property(ies)

created in step 20. (SCA25)

The invalidProperties parameter of the

UnknownProperties contains the id of

the property(ies) created in step 20.

23 Repeat steps 13-22 until no more test properties

are found within the list.

The next test will be evaluated.

24 Generate a testId that is not present in the list

obtained in step 10. (SCA19)(SCA23)

A testId unknown to the component is

generated.

25 Invoke the runTest() operation on the narrowed

componentObject with the testId generated in

previous step. (SCA19)(SCA23)

An UnknownTest exception is raised.

26 Return to step 3. The next component will be evaluated.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.11.2 Requirement under Test: SCA546

Requirement Text: A BaseComponent shall realize the TestableInterface interface to define and

utilize its test properties.

Test Plan Objective/Summary: Ensure an ApplicationComponent, which is a BaseComponent,

inherits the TestableInterface interface as per realization of the TestableInterface IDL interface.

The test procedure obtains an instance of the component and narrows it to CF::TestableInterface

to validate the requirement.

Context:

1. Context Group 3.3: Common Context for requirements associated with BaseComponent

(including a sub-application).

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 91

All Rights Reserved

2. Precondition Group 4.3: Common Precondition for test procedures requiring an

application to be created.

3. This test procedure requires that a BaseComponent implements the Component

Registration UoF and that the requirement SCA82 should be verified.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 92

All Rights Reserved

Test Procedure:

Table 47: Steps to execute Test Procedure for SCA546

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Perform steps defined in sub-procedure

“Locate next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps defined in sub-procedure

“Obtain supported interface list”

See sub-procedure 6.5.

6 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the TestableInterface

interface IDL repository ID.

The <componentfeatures> contains a

<supportsinterface> element with a

repid attribute equals to the

TestableInterface interface IDL

repository ID or go back to step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Determine that the ComponentType returned

by the application contains a specializedInfo

field identified by an id of

COMPONENTS_ID, which in turn contain a

ComponentType for which the identifier field

is equal to the value of the

COMPONENT_IDENTIFIER execute

parameter received by the component.

The ApplicationManager’s

ComponentType has within the

ComponentType sequence contained in

the value of its specializedInfo field

identified with an ID

COMPONENTS_ID a ComponentType

for which the identifier field is equal to

the value of the

<componentinstantiation> element’s id

attribute followed by “:” and the

ApplicationManager name.

9 Obtain the componentObject field of the

ComponentType.

The result of the CORBA::is_nil

operation on componentObject field is

false.

10 Narrow the componentObject to the

CF::TestableInterface interface.

The componentObject can be narrowed

to CF::TestableInterface interface.

11 Return to step 3. The next component will be evaluated.

Postconditions: N/A

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 93

All Rights Reserved

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.6.12 Event Consumer UoF

5.6.12.1 Requirement under Test: SCA444

Requirement Text: A BaseComponent (e.g., ManageableApplicationComponent,

DomainManagerComponent, etc.) that consumes events shall implement the

CosEventComm::PushConsumer interface.

Test Plan Objective/Summary: Ensure that an application component that consumes events

implements the OMG Event Service Specification CosEventComm::PushConsumer interface.

Context:

1. The CosEventComm module is used by consumers for receiving events and by producers

for generating events.

2. The CosEventComm interfaces are specified in the OMG Event Service Specification

v1.2 (October 2004). https://www.omg.org/spec/EVNT/About-EVNT/

3. It is assumed that the interfaces are implemented via inheritance and it is this inheritance

relationship that identifies application components or ports to which this requirement is

applicable.

4. An application component that consumes should at least inherit from

CosEventComm::PushConsumer defined in the OMG Event Service Specification under

the CosEventComm Module.

5. Each source file that implements an application component class should be checked for

an inheritance relationship with an interface specified in the OMG Event Service

Specification.

6. Each source file that declares or defines an application component which inherits

(directly or transitively) from an OMG Event Service Specification interface must be

analyzed.

7. The requirement is not applicable to virtual classes. A virtual class is not realizable and

therefore cannot produce or generate events.

8. Each source file must be analyzed in the context of full execution of all preprocessor

directives.

 8.1 All preprocessor-relevant compiler flags are specified

 8.2 All included files are available

 8.3 All conditional directives are executed and excluded code is eliminated

9. This test does not check for parity between event suppliers and event consumers.

Preconditions:

1. The developer provides the relevant source code files declaring and defining application

components.

2. For each source code file, the developer provides all preprocessor-relevant compiler flags

and included (including transitively included) files.

https://www.omg.org/spec/EVNT/About-EVNT/

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 94

All Rights Reserved

Test Procedure:

Table 48: Steps to execute Test Procedure for SCA444

Step Action Expected Result

1 Identify source files in scope of SCA444

requirement test.

The source files are identified.

2 Apply preprocessor execution to source files

identified in Step 1.

The preprocessor execution directives

are applied.

3 For each non-virtual class that is used to

implement the BaseComponent, identify those

that inherit from

CosEventComm::PushConsumer.

The classes that inherit from

CosEventComm::PushConsumer are

identified.

4 For each class identified in Step 3, verify that the

class implements PushConsumer::push() and

PushConsumer::disconnect_push_consumer().

The class implements the

PushConsumer::push() and

PushConsumer::disconnect_push_cons

umer() methods.

5 Verify that the set of classes identified in Step 3

is non-empty.

The set of classes identified in Step 3

is non-empty.

Postconditions: N/A

Test Plan Verification Method: Analysis [Ref1]

Test Plan Result Category: Necessary [Ref1]

5.6.13 CORBA Compliant UoF

5.6.13.1 Requirement under Test: SCA506

Requirement Text: Applications shall be limited to using the features designated as mandatory,

as specified in E-2.7, for the implemented CORBA profile.

Test Plan Objective/Summary: Ensure an ApplicationComponent does not invoke any of the

CORBA functions specified as not required for the SCA CORBA profile the application

implements.

Context:

1. The SPD and “source files” referenced in this test case apply to each implemented
ApplicationComponent.

2. A “mandatory feature for the SCA CORBA profile the application implements is a

CORBA feature or operation listed as MAN under the “Full”, “Lightweight” or “Ultra-

Lightweight” columns in the tables of document SCA_4.1_App_E-2_Att1_Corba-e.pdf

and SCA_4.1_App_E-2_Att2_RT-Corba.pdf.

3. This requirement applies when an ApplicationComponent supports the “sca_compliant”

type in its SPD and implements CORBA transport.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 95

All Rights Reserved

4. For an ApplicationComponent to comply with this requirement, its source files may only

invoke mandatory features/operations for its declared CORBA profile.

5. A source file which invokes CORBA operations may be conformant with a CORBA

profile via conditional compilation or by implementing each CORBA profile in a separate

source file without using conditional compilation.

6. If this requirement is verified by source code inspection the following must occur:

 6.1 Each source file which invokes CORBA operations is inspected to ensure only the

mandatory CORBA operations defined by the declared CORBA profile are used.

 6.2 When a source file can be used to conform with multiple CORBA profiles via

conditional compilation controlled by preprocessor directives, verification is performed

in accordance with each profile, only evaluating the code that is available for

compilation after preprocessing the directives associated with that profile.

7. If this requirement is verified by compiling application source code and linking with object

libraries, the object libraries for the CORBA ORB, SCA Core Framework interfaces and the

SCA POSIX AEP functions are provided as described in the “Preconditions” section.

8. The SCA Full CORBA profile does not allow an application to implement the

features/operations, designated as not required (NRQ) in SCA_4.1_App_E-

2_Att1_Corba-e.pdf and SCA_4.1_App_E-2_Att2_RT-Corba.pdf, listed in the following

table.

CORBA Features / Operations Not Allowed in SCA Full CORBA Profile

Module Interface Feature/Operation

The following are from file SCA_4.1_App_E-2_Att1_Corba-e.pdf.

CORBA IDL Abstract Interfaces

Value Type

operation context clauses

wide character/string

import

ORB id

get_service_information

list_initial_services

register_value_factory

unregister_value_factory

lookup_value_factory

register_initial_reference

Object get_interface

repository_id

get_component

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 96

All Rights Reserved

CORBA Features / Operations Not Allowed in SCA Full CORBA Profile

Module Interface Feature/Operation

Messaging Rebind Policy rebind_mode

Request End Time Policy end_time

Reply End Time Policy end_time

Relative Request Timeout Policy relative_expiry

Relative Roundtrip Timeout Policy relative_expiry

Portable

Server

Id Uniqueness Policy value

POA Manager get_state

RTCORBA Mutex lock

unlock

try_lock

RTORB create_mutex

destroy_mutex

CosNaming NamingContext [2]

BindingIterator [1]

NamingContextExt [1]

CosEvent

Comm

PullConsumer [1]

PullSupplier [1]

CosEvent

Channel

Admin

ProxyPushConsumer [1]

ProxyPushSupplier [1]

ProxyPullConsumer [1]

ProxyPullSupplier [1]

ConsumerAdmin [1]

SupplierAdmin [1]

[1] No CORBA operations for the interface allowed.

[2] No CORBA operations for the interface allowed unless SCA 4.1 Backward

Compatibility supported.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 97

All Rights Reserved

9. The SCA Lightweight CORBA profile does not allow an application to implement

CORBA features/operations, designated as not required (NRQ) in SCA_4.1_App_E-

2_Att1_Corba-e.pdf and SCA_4.1_App_E-2_Att2_RT-Corba.pdf, listed in the following

table.

CORBA Features / Operations Not Allowed in SCA Lightweight CORBA Profile

Module Interface Feature/Operation

All CORBA features / operations not allowed in the SCA Full CORBA profile.

The following are from file SCA_4.1_App_E-2_Att1_Corba-e.pdf.

CORBA IDL any

ORB resolve_initial_references

create_policy

Object is_nil

duplicate

release

non_existent

is_equivalent

get_policy

set_policy_overrides

get_client_policy

get_policy_overrides

get_orb

Policy policy_type

copy

destroy

PolicyManager get_policy_overrides

set_policy_overrides

PolicyManager [1]

Type Code [1]

Policy Current [1]

Sync Scope Policy [1]

The following are from file SCA_4.1_App_E-2_Att2_RT-Corba.pdf.

RTCORBA Priority Mode Policy SERVER_DECLARED

Thread Pools create_threadpool

create_threadpool_with_lanes

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 98

All Rights Reserved

CORBA Features / Operations Not Allowed in SCA Lightweight CORBA Profile

Module Interface Feature/Operation

POA activate_object_with_priority

[1] No CORBA operations for the interface allowed.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 99

All Rights Reserved

10. The SCA Ultra-Lightweight CORBA profile does not allow an application to implement

CORBA features/operations, designated as not required (NRQ) in SCA_4.1_App_E-

2_Att1_Corba-e.pdf, listed in the following table.

CORBA Features / Operations Not Allowed in SCA Ultra-Lightweight CORBA Profile

Module Interface Feature/Operation

All CORBA features / operations not allowed in the SCA Full and Lightweight CORBA

profiles.

The following are from file SCA_4.1_App_E-2_Att1_Corba-e.pdf.

CORBA IDL float, double, long double, long

long, unsigned long long, char,

string

unions

arrays

IDL basic data types other than

boolean, octet, short, unsigned

short, long, unsigned long and

enum are not allowed

IDL keywords other than module,

interface, in, out, inout, void,

typedef, oneway are not allowed

ORB orb_init

object_to_string

string_to_object

work_pending

perform_work

run

shutdown

destroy

Object is_a

validate_connection

POA the_POAManager

activate_object

activate_object_with_id

deactivate_object

CosNaming NamingContext [1]

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 100

All Rights Reserved

[1] No CORBA operations for the interface allowed. SCA 4.1 Backwards Compatibility not

supported.

Preconditions:

1. Precondition Group 4.2: Common Precondition for test procedures involving parsing of

XML files.

2. The developer specifies the source file names used to build each ApplicationComponent

executable.

3. A CORBA ORB function and symbol resolution object file exists on the test platform for

each CORBA profile. This may be a fully functional implementation of the mandatory

CORBA functions and symbols for a specific CORBA profile or may only be the

CORBA constants and function signatures, and if applicable, a default return value in the

function body, for each of the mandatory CORBA functions and symbols.

4. An SCA CF function and symbol resolution object file may exist on the test platform.

This may be a fully functional SCA CF implementation generated by a CORBA IDL to

CPP compiler or only the SCA constants and function signatures, and if applicable, a

default return value in the function body, for each of the CF interfaces.

5. An RTOS symbol resolution object file exists on the test platform for each SCA POSIX

AEP profile. This may be a fully functional implementation of the mandatory OS services

for a specific AEP profile or may only be the AEP constants and function signatures, and

if applicable, a default return value in the function body, for each of the mandatory OS

services.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 101

All Rights Reserved

Test Procedure:

Table 49: Steps to execute Test Procedure for SCA506

Step Action Expected Result

1 Locate all the

ApplicationComponents to which

the test procedure applies.

A list of ApplicationComponents to which the test

procedure applies is identified.

2 Compile the source files of the next

ApplicationComponent in the list.

The source files are successfully compiled and the

resulting object files are saved on the test

platform.

3 Link the ApplicationComponent’s

object files with the CORBA

symbol resolution object file for the

target CORBA profile, and if

present, the CF and the OS services

symbol resolution object files.

The linker reports all external function references

that it cannot resolve, which may be non-

compliant CORBA symbols (functions,

exceptions, constants). If the CF and OS services

symbol resolution object files are not present, the

linker will report external CF and OS service

function and constant references it cannot resolve.

4 Evaluate the linker output error

messages to determine if they

reference non-required CORBA

symbols (functions, exceptions,

constants) for the CORBA profile

being evaluated for compliance.

Disregard linker error messages

that do not reference CORBA

symbols, such as SCA CF

interfaces and constants, OS service

functions and constants.

If there are no linker error messages referencing

non-required CORBA symbols for the CORBA

profile being evaluated for compliance, the

ApplicationComponent conforms to the CORBA

profile.

5 Repeat steps 2-4 until all CORBA

profiles for the

ApplicationComponent to be

inspected for CORBA compliance

have been evaluated.

The next CORBA profile for the

ApplicationComponent is evaluated or continue

with step 6.

6 Continue with step 2 for the next

ApplicationComponent to be

evaluated for CORBA compliance.

The next ApplicationComponent is evaluated for

CORBA compliance or the test terminates.

Postconditions: N/A

Test Plan Verification Method: Analysis [Ref1]

Test Plan Result Category: Necessary [Ref1]

If the test passes, the ApplicationComponent does not invoke any of the non-required CORBA

functions stated in the test procedure. The test does not confirm the ApplicationComponent

invokes only mandatory CORBA functions.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 102

All Rights Reserved

5.7 BaseFactoryComponent Test Procedures

5.7.1 Mandatory

5.7.1.1 Requirement under Test: SCA386, SCA387, SCA388, SCA415

Requirement Text:

SCA386: The createComponent operation shall create a component if no component exists for

the given componentId.

SCA387: The createComponent operation shall assign the given componentId to a new

component.

SCA388: The createComponent operation shall return a CF::ComponentType structure.

SCA415: The ApplicationComponentFactoryComponent shall only deploy

ApplicationComponents.

Test Plan Objective/Summary: Ensure an ApplicationComponentFactoryComponent, which is

a BaseFactoryComponent, can create a component for which a given componentId has not

already been used to create a component. The returned ComponentType structure is inspected to

verify it contains the appropriate information to satisfy each requirement. The test procedure

attempts to create a component by using a componentId that does not exist, in conjunction with

valid factoryparam property IDs and values.

Context:

1. Context Group 3.9: Common Context for requirements associated with a component

which implements the ComponentFactory interface.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

4. The SCD of a component created by a ComponentFactory can be found by parsing the

SPD file associated with the component that referenced the factory in its

<componentfactoryref> child element (SCA415).

Preconditions:

1. Precondition Group 4.5: Common Precondition for test procedures involving execution

of a BaseFactoryComponent (an ApplicationComponentFactoryComponent is a

BaseFactoryComponent).

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 103

All Rights Reserved

Test Procedure:

Table 50: Steps to execute Test Procedure for SCA386, SCA387, SCA388, SCA415

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Identify the next <componentplacement>

element within the <partitioning> element.

The location of the

<componentplacement> element is

identified or the verification will

terminate.

4 Perform steps in sub-procedure “Obtain type of

a component placement”.

See sub-procedure 6.3.

5 Verify that the value of the <componenttype>

element is

APPLICATION_COMPONENT_FACTORY_

COMPONENT.

The value of <componenttype> element

is

APPLICATION_COMPONENT_FACT

ORY_COMPONENT or go back to step

3.

6 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

7 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2.

8 Perform steps in sub-procedure “Obtain

factoryparam properties for a component

created by a component factory”.

See sub-procedure 6.4

9 Generate a random string value for the

componentId and ensure that it is not

referenced in the ApplicationManager’s

ComponentType.

The identifier is not defined within the

application.

10 Invoke the createComponent operation on the

componentObject (narrowed into

CF::ComponentFactory) obtained in step 7

with the componentId parameter and the

Properties sequence containing the

factoryparam properties obtained in step 8 for

the qualifiers parameter.(SCA386) (SCA388)

The createComponent operation returns a

ComponentType structure for which the

result of the CORBA::is_nil operation

returns false.

11 Verify that the identifier field of the

ComponentType structure returned by the

createComponent operation is equal to the

componentId value provided in step 9.

(SCA387) (SCA388)

The identifier field of the Component

structure is equal to the componentId

provided in step 9.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 104

All Rights Reserved

Step Action Expected Result

12 Verify that the profile field of the

ComponentType structure returned by the

createComponent operation indicates the

component's profile filename or the profile

itself (can be verified checking against the

value of the <componentfile> associated with

the <componentplacement> element that is the

parent of the <componentinstantiation>

element found in step 6). (SCA388)

The profile field of the Component

structure indicates the component's

profile filename or the profile itself.

13 Verify that the type field of the

ComponentType structure returned by the

createComponent operation is a value mapping

to the of the component’s SCD

<componenttype> element as described in

Appendix D-1. (SCA388)

The type field of the Component

structure maps to the value of the

<componenttype> element of the

component's SCD.

14 Verify that the type field of the

ComponentType structure returned by the

createComponent operation is either an

APPLICATION_COMPONENT,

MANAGEABLE_APPLICATION_COMPON

ENT or

APPLICATION_COMPONENT_FACTORY_

COMPONENT (SCA415)

The type field of the Component

structure maps to a component type that

is APPLICATION_COMPONENT,

MANAGEABLE_APPLICATION_CO

MPONENT or

APPLICATION_COMPONENT_FACT

ORY_COMPONENT.

15 Verify that the result of the CORBA::is_nil

operation returns false for the

componentObject field of the ComponentType

structure returned by the createComponent.

(SCA388)

The result of the CORBA::is_nil

operation returns false for the

componentObject field Component

structure.

16 Return to step 3. The next component will be evaluated.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.7.1.2 Requirement under Test: SCA389

Requirement Text: The createComponent operation shall raise the CreateComponentFailure

exception when it cannot create the component or the component already exists.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 105

All Rights Reserved

Test Plan Objective/Summary: Ensure an ApplicationComponentFactoryComponent, which is

a BaseFactoryComponent, raises the CreateComponentFailure exception when it cannot create a

component or when the component to create already exists. For the first part of the requirement,

the test procedure attempts to create component by using a componentId that does not exist, in

conjunction with invalid factoryparam property IDs and values. For the second part of the

requirement, the test procedure attempts to create a component using an existing componentId.

Context:

1. Context Group 3.9: Common Context for requirements associated with a component

which implements the ComponentFactory interface.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

4. It is assumed that a ComponentFactory doesn’t ignore a factoryparam property that it

doesn’t know and raises an exception when one is provided when it is asked to create a

component.

Preconditions:

1. Precondition Group 4.5: Common Precondition for test procedures involving execution

of a BaseFactoryComponent (an ApplicationComponentFactoryComponent is a

BaseFactoryComponent).

Test Procedure:

Table 51: Steps to execute Test Procedure for SCA389

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Identify the next <componentplacement>

element within the <partitioning> element.

The location of the

<componentplacement> element is

identified or the verification will

terminate.

4 Perform steps in sub-procedure “Obtain type of

a component placement”.

See sub-procedure 6.3.

5 Verify that the value of the <componenttype>

element is

APPLICATION_COMPONENT_FACTORY_

COMPONENT.

The value of <componenttype> element

is

APPLICATION_COMPONENT_FAC

TORY_COMPONENT or go back to

step 3.

6 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 106

All Rights Reserved

Step Action Expected Result

7 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2.

8 Generate a random string value for the

componentId and ensure that it is not

referenced in the ApplicationManager’s

ComponentType.

The identifier is not defined within the

application.

9 Create a Properties sequence containing

factoryparam properties that have arbitrary id

and value such that the id is unknown to the

ApplicationFactoryComponentFactory.

A sequence of factoryparam parameters

unknown to the

ApplicationFactoryComponentFactory

is created.

10 Invoke the createComponent operation on the

componentObject (narrowed into

CF::ComponentFactory) obtained in step 7

with the componentId parameter created in step

8 and the Properties sequence containing the

factoryparam properties created in step 9.

The createComponent operation raises a

CreateComponentFailure exception.

11 Perform steps in sub-procedure “Obtain

factoryparam properties for a component

created by a component factory”.

See sub-procedure 6.4

12 Invoke the createComponent operation on the

componentObject (narrowed into

CF::ComponentFactory) obtained in step 7

with the id of the <componentinstantiation>

element found in step 11 for the componentId

parameter and the Properties sequence

containing the factoryparam properties

obtained in step 11 for the qualifiers parameter.

The createComponent operation raises a

CreateComponentFailure exception.

13 Return to step 3. The next component will be evaluated.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Necessary [Ref1]

The test may return a false positive for an undefined factoryparam property. In that case, source

code inspection should be done.

5.7.1.3 Requirement under Test: SCA413, SCA549

Requirement Text:

SCA413: A BaseFactoryComponent shall realize the ComponentFactory interface.

SCA549: A BaseFactoryComponent shall realize the LifeCycle interface.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 107

All Rights Reserved

Test Plan Objective/Summary: Ensure an ApplicationComponentFactoryComponent, which is

a BaseFactoryComponent, inherits the ComponentFactory interface and the LifeCycle interface

as per realization of the ComponentFactory and LifeCycle IDL interfaces. The test procedures

obtain an instance of the component and narrow it to the appropriate interface depending on the

requirement (SCA413 or SCA549).

Context:

1. Context Group 3.7: Common Context for requirements associated with

BaseFactoryComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.5: Common Precondition for test procedures involving execution

of a BaseFactoryComponent.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 108

All Rights Reserved

Test Procedure:

Table 52: Steps to execute Test Procedure for SCA413 and SCA549

Step Action Expected Result

1 Obtain the ComponentType struct of the

ApplicationManager instance of the application

under test.

The ComponentType struct is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Identify the next <componentplacement>

element within the <partitioning> element.

The location of the

<componentplacement> element is

identified or the verification will

terminate.

4 Perform steps defined in sub-procedure

“Obtain type of a component placement”

See sub-procedure 6.3.

5 Verify that the value of the <componenttype>

element is

APPLICATION_COMPONENT_FACTORY_

COMPONENT.

The value of <componenttype> element

is

APPLICATION_COMPONENT_FACT

ORY_COMPONENT or go back to step

3.

6 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

7 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2.

8 Obtain the componentObject field of the

ComponentType.

The result of the CORBA::is_nil

operation on componentObject field is

false.

9 Narrow the componentObject field of the

ComponentType reference to the

CF:ComponentFactory interface. (SCA413)

The result of the CORBA::is_nil

operation on the narrowed

componentObject field is false.

10 Narrow the componentObject field of the

ComponentType reference to the CF:LifeCycle

interface. (SCA549)

The result of the CORBA::is_nil

operation on the narrowed

componentObject field is false.

11 Return to step 3. The next component will be evaluated.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.7.1.4 Requirement under Test: SCA414

Requirement Text: A BaseFactoryComponent shall fulfill the BaseComponent requirements.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 109

All Rights Reserved

Test Plan Objective/Summary: Ensure that a BaseFactoryComponent fulfills all requirements

of a BaseComponent by invoking all test procedures associated with BaseComponent for that

BaseFactoryComponent.

Context:

1. Context Group 3.7: Common Context for requirements associated with

BaseFactoryComponent.

Preconditions: N/A

Test Procedure:

Table 53: Steps to execute Test Procedure for SCA414

Step Action Expected Result

1 Execute the test procedures of the

following requirements: SCA427,

SCA430, SCA548, SCA463,

SCA501, SCA502, SCA503,

SCA494, SCA495, SCA420,

SCA421, SCA423, SCA429,

SCA545, SCA26, SCA28, SCA29,

SCA30, SCA31, SCA432, SCA15,

SCA518, SCA16, SCA17, SCA18,

SCA433, SCA32, SCA33, SCA34,

SCA36, SCA37, SCA547, SCA7,

SCA519, SCA8, SCA10, SCA11,

SCA12, SCA13, SCA14, SCA424,

SCA425, SCA444, SCA426, SCA6,

SCA428, SCA546, SCA19, SCA21,

SCA23, SCA24, SCA25 of the

application under test relative to its

incorporated Units of Functionality.

The application is validated to have an

implementation that complies with the set of

BaseComponent requirements identified by its

Units of Functionality.

Postconditions: N/A

Test Plan Verification Method: N/A (The verification method of individual test procedures will

apply)

Test Plan Result Category: N/A (The result category of individual test procedures will apply)

5.7.1.5 Requirement under Test: SCA540

Requirement Text: Each BaseFactoryComponent shall support the mandatory Component

Identifier execute parameter as described in section 3.1.3.3.1.3.5.1, in addition to their user-

defined execute properties in the component's SPD.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 110

All Rights Reserved

Test Plan Objective/Summary: Ensure an ApplicationComponentFactoryComponent, which is

a BaseFactoryComponent, supplies the component identifier provided by a mandatory

executable parameter into its ComponentType structure. The ComponentType structure returned

by an application contains a specializedInfo field identified by an id of COMPONENTS_ID and

a type CF::Components. One element of the CF::Components must have an identifier equal to

the value of the COMPONENT_IDENTIFIER execute parameter received by the component.

Context:

1. Context Group 3.7: Common Context for requirements associated with

BaseFactoryComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.5: Common Precondition for test procedures involving execution

of a BaseFactoryComponent.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 111

All Rights Reserved

Test Procedure:

Table 54: Steps to execute Test Procedure for SCA540

Step Action Expected Result

1 Obtain the ComponentType struct of the

ApplicationManager instance of the application

under test.

The ComponentType struct is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found within

the SAD.

3 Perform steps defined in sub-procedure

“Locate next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps in sub-procedure “Obtain type of

a component placement”.

See sub-procedure 6.3.

6 Verify that the value of the <componenttype>

element is

APPLICATION_COMPONENT_FACTORY_

COMPONENT.

The value of <componenttype> element is

APPLICATION_COMPONENT_FACTO

RY_COMPONENT or go back to step 3.

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2.

9 Repeat steps 7-8 until no more

<componentinstantiation> elements are found

within the <componentplacement> element,

otherwise go to step 3.

The next componentinstantiation will be

evaluated or the verification will go to step

3.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

5.7.2 Interrogable UoF

5.7.2.1 Requirement under Test: SCA541

Requirement Text: Each executable BaseFactoryComponent shall set its identifier attribute

using the Component Identifier execute parameter.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 112

All Rights Reserved

Test Plan Objective/Summary: Ensure an ApplicationComponentFactoryComponent, which is

a BaseFactoryComponent, has a component identifier attribute value that is equivalent to that

stored within the component’s ComponentType structure. The ComponentType structure

returned by an application contains a specializedInfo field identified by an id of

COMPONENTS_ID and a type CF::Components. One element of the CF::Components must

have an identifier equal to the value of the COMPONENT_IDENTIFIER execute parameter

received by the component. The test procedure obtains an instance of the component and

narrows it to CF::ComponentIdentifier to validate the requirement.

Context:

1. Context Group 3.7: Common Context for requirements associated with

BaseFactoryComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.5: Common Precondition for test procedures involving execution

of a BaseFactoryComponent.

2. This test procedure requires that an ApplicationComponentFactoryComponent

implements the Component Registration UoF and that the requirement SCA540 has been

verified.

3. This test procedure requires that the requirement SCA540 has been verified prior.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 113

All Rights Reserved

Test Procedure:

Table 55: Steps to execute Test Procedure for SCA541

Step Action Expected Result

1 Obtain the ComponentType struct of the

ApplicationManager instance of the application

under test.

The ComponentType struct is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Perform steps defined in sub-procedure

“Locate next component or assembly”.

See sub-procedure 6.1.

4 Perform steps defined in sub-procedure

“Obtain type of a component placement”.

See sub-procedure 6.3.

5 Verify that the value of the <componenttype>

element is

APPLICATION_COMPONENT_FACTORY_

COMPONENT.

The value of <componenttype> element

is

APPLICATION_COMPONENT_FAC

TORY_COMPONENT or go back to

step 3.

6 Perform steps defined in sub-procedure

“Obtain supported interface list”.

See sub-procedure 6.5.

7 Verify that the <componentfeatures> element

contains a <supportsinterface> element with a

repid attribute equals to the

ComponentIdentifier interface IDL repository

ID.

The <componentfeatures> contains a

<supportsinterface> element with a

repid attribute equals to the

ComponentIdentifier interface IDL

repository ID or go back to step 3.

8 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

9 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2.

10 Retrieve the identifier attribute from the factory

component’s ComponentIdentifier interface

and compare it against the value that

corresponds to the COMPONENTS_ID id

within the specializedInfo field of the

application’s ComponentType.

The compared values will be equal or

the verification procedure will fail.

13 Repeat steps 8-10 until no more

<componentinstantiation> elements are found

within the <componentplacement> element,

otherwise go to step 3.

The next componentinstantiation will be

evaluated or the verification will go to

step 3.

Postconditions: N/A

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 114

All Rights Reserved

5.7.3 Releaseable UoF

5.7.3.1 Requirement under Test: SCA574

Requirement Text: The releaseObject operation shall release all component instances created

by the BaseFactoryComponent.

Test Plan Objective/Summary: Ensure all components created by a BaseFactoryComponent are

no longer usable after the BaseFactoryComponent has been released. The test procedure obtains

the instances of the components before the BaseFactoryComponent is released and try to invoke

an operation after the BaseFactoryComponent is released.

Context:

1. Context Group 3.7: Common Context for requirements associated with

BaseFactoryComponent.

2. Context Group 3.2: Common Context related to the validation of an application

component.

3. Context Group 3.1: Common Context for SCA 4.1 Test Platform.

Preconditions:

1. Precondition Group 4.5: Common Precondition for test procedures involving execution

of a BaseFactoryComponent.

Test Procedure:

Table 56: Steps to execute Test Procedure for SCA574

Step Action Expected Result

1 Obtain the ComponentType reference of the

ApplicationManager instance of the application

under test.

The ComponentType reference of the

ApplicationManager is obtained.

2 Locate the <partitioning> element within the

SAD.

The <partitioning> element is found

within the SAD.

3 Perform steps defined in sub-procedure “Locate

next component or assembly”.

See sub-procedure 6.1.

4 Go to step 5 if the element being evaluated is a

<componentplacement> or return to step 2 and

proceed with the file identified in the

<assemblyplacement>.

The next child element of the current

element will be evaluated or the

verification terminate.

5 Perform steps in sub-procedure “Obtain type of a

component placement”.

See sub-procedure 6.3.

6 Verify that the value of the <componenttype>

element is

APPLICATION_COMPONENT_FACTORY_C

OMPONENT.

The value of <componenttype>

element is

APPLICATION_COMPONENT_FA

CTORY_COMPONENT or go back to

step 3.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 115

All Rights Reserved

Step Action Expected Result

7 Identify in the SAD the next

<componentinstantiation> element within the

current <componentplacement> element.

The location of the

<componentinstantiation> element is

identified.

8 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2. The

ComponentType of the

BaseFactoryComponent is obtained.

9 Obtain the componentObject field of the

ComponentType of the application component

factory component corresponding to the

<componentinstantiation> element ID.

The componentObject is found and the

result of the CORBA::is_nil operation

on componentObject field is false.

10 Narrow the componentObject to the

CF::ComponentFactory interface.

The componentObject can be

narrowed to CF::ComponentFactory

interface.

11 Invoke the releaseObject() operation on the

narrowed componentObject.

The BaseFactoryComponent is

released.

12 Parse the SAD to find the next

<componentinstantiation> element that has a

<componentfactoryref> child element with the

value of its refid attribute equal to the id of

<componentinstantiation> element being

processed.

A <componentinstantiation> is found

within the assembly that corresponds

to the factory reference being

processed.

13 Perform steps in sub-procedure “Find

Component Type of a component instance”.

See sub-procedure 6.2. The

ComponentType of an application

component created by the

BaseFactoryComponent is obtained.

14 Obtain the componentObject field of the

ComponentType of the application component

corresponding to the <componentinstantiation>

element ID.

The componentObject is found and the

result of the CORBA::is_nil operation

on componentObject field is false.

15 Using the componentObject for the component,

invoke CORBA::is_a("IDL:CF/LifeCycle:1.0").

CORBA::is_a() throws a

OBJECT_NOT_EXIST CORBA

system exception.

16 Repeat steps 12-15 until no more

<componentinstantiation> elements that has a

<componentfactoryref> child element with the

value of its refid attribute equal to the id of

<componentinstantiation> element of the

BaseFactoryComponent being processed are

found.

The next componentinstantiation of an

application component created by the

BaseFactoryComponent will be

evaluated or the verification will go to

step 17.

17 Return to step 3. The next component will be evaluated.

Postconditions: The test environment needs to be reset because the

ApplicationManagerComponent is still executing.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 116

All Rights Reserved

Test Plan Verification Method: Test [Ref1]

Test Plan Result Category: Sufficient and Necessary [Ref1]

6 Reusable Verification Sub-procedures

6.1 Locate next component or assembly

Sub-procedure Objective/Summary: Traverse the SAD to find the next componentplacement

or assemblyplacement sub-element in the partitioning element that describes a component or

nested application. In the sub-element found, find the <componentfile> element and verify that

the file it references exists on the test platform.

Table 57: Steps to execute Sub-procedure 6.1 Locate next component or assembly

Step Action Expected Result

1 Identify the next <componentplacement> or

<assemblyplacement> element within the

<partitioning> element.

The location of the

<componentplacement> or

<assemblyplacement> element is

identified.

2 Determine if the file identified by

<componentfile> element referenced by the

<componentplacement> or

<assemblyplacement> element exists.

The file identified by the

<componentfile> reference within the

<partitioning> subelement exists.

6.2 Find Component Type of a component instance

Sub-procedure Objective/Summary: Validate that the deployed application that is processed

and evaluated by the test procedure contains a component with an identifier equal to the

identifier passed to the application component as an executable parameter.

Table 58: Steps to execute Sub-procedure 6.2 Find Component Type of a component instance

Step Action Expected Result

1 Determine if the ComponentType returned by

the application contains a specializedInfo field

identified by an id of COMPONENTS_ID,

which in turn contains a ComponentType for

which the identifier field is equal to the value of

the COMPONENT_IDENTIFIER execute

parameter received by the component.

The ApplicationManager’s

ComponentType has within the

ComponentType sequence contained

in the value of its specializedInfo field

identified with an ID

COMPONENTS_ID a

ComponentType for which the

identifier field is equal to the value of

the <componentinstantiation>

element’s id attribute followed by “:”

and the ApplicationManager name.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 117

All Rights Reserved

6.3 Obtain type of a component placement

Sub-procedure Objective/Summary: Identify the type of component referenced by a

component (identified by a componentplacement element) being evaluated. The type is obtained

by extracting the componenttype element value from the SCD file associated with the referenced

SPD.

Table 59: Steps to execute Sub-procedure 6.3 Obtain type of a component placement

Step Action Expected Result

1 Determine if the file identified by

<componentfile> element referenced by the

<componentplacement> element exists.

The file identified by the

<componentfile> reference within the

<componentplacement> element

exists.

2 Open the SPD file indicated by the

<componentfile> referenced by the

<componentplacement> and locate the

<descriptor> element.

The <descriptor> element is located or

verification will go back to the step

prior to the invocation of this

subprocedure.

3 Determine if the file identified by <localfile>

element referenced by the <descriptor> element

exists.

The file identified by the <localfile>

reference within the <descriptor>

subelement exists.

4 Open the SCD file indicated by the <descriptor>

element and locate the <componenttype>

element.

The SCD file can be opened and

<componenttype> element is found.

5 Obtain the value of the <componenttype>

element.

The value of the <componenttype>

element is obtained.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 118

All Rights Reserved

6.4 Obtain factoryparam properties for a component created by a component factory

Sub-procedure Objective/Summary: Locate an application component within the SAD which

is instantiated by the application component factory component which is being evaluated.

Retrieve the factory properties for that component instantiation and their values in accordance

with the property location precedence strategy defined within SCA appendix D.

Table 60: Steps to execute Sub-procedure 6.4 Obtain factoryparam properties for a component created by a

component factory

Step Action Expected Result

1 Parse the SAD to find a

<componentinstantiation> element that has a

<componentfactoryref> child element with the

value of its refid attribute equal to the id of

<componentinstantiation> element being

processed.

A <componentinstantiation> is found

within the assembly that corresponds

to the factory reference being

processed.

2 Obtain the <factoryparam> property IDs and

their final values for the component associated

with the <componentinstantiation> element

found in step 1 by parsing the Domain Profile

and applying the precedence order defined in

section D-1.10.1.3.1.2.1 of Appendix D-1.

The factoryparam property IDs and

their values are obtained.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 119

All Rights Reserved

6.5 Obtain supported interface list

Sub-procedure Objective/Summary: Identify the supported interfaces associated with the

component (identified by a componentplacement element) being evaluated. The supported

interfaces are obtained by extracting the values contained within the supportsinterface element(s)

from the SCD file associated with the referenced SPD.

Table 61: Steps to execute Sub-procedure 6.5 Obtain supported interface list

Step Action Expected Result

1 Determine if the file identified by the

<componentfile> element referenced by the

<componentplacement> element exists.

The file identified by the

<componentfile> reference within the

<componentplacement> element

exists.

2 Open the SPD file indicated by the

<componentfile> referenced by the

<componentplacement> and locate the

<descriptor> element.

The <descriptor> element is located or

verification will go back to the step

prior to the invocation of this

subprocedure.

3 Determine if the file identified by the <localfile>

element referenced by the <descriptor> element

exists.

The file identified by the <localfile>

reference within the <descriptor>

subelement exists.

4 Open the SCD file indicated by the <descriptor>

element and locate the <componentfeatures>

element.

The SCD file can be opened and the

<componentfeatures> element is

found.

5 Obtain the value of the list of

<supportsinterface> elements.

The list of <supportsinterface>

element is obtained.

6.6 Ensure an operation raises a specific exception

Sub-procedure Objective/Summary: Locate and open the source code file associated with the

component under evaluation. Search the code to confirm that the code for the operation

identified by the operation name input parameter raises the exception identified by the exception

name input parameter for the set of error conditions associated with the operation name and

exception name input parameters.

Sub-procedure input parameters: SCA operation name and exception name.

Table 62: Steps to execute Sub-procedure 6.6 Ensure an operation raises a specific exception

Step Action Expected Result

1 Determine the source file names associated with

the SPD for the BaseComponent (see

Preconditions for this information).

The source file names associated with

the SPD for the BaseComponent are

determined.

2 Search the source files of the BaseComponent

for the specified input SCA operation name and

verify the operation raises the specified input

exception name if an error occurs.

The input SCA operation is found and

the fact that the operation raises the

specified input exception if an error

occurs is verified

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 120

All Rights Reserved

6.7 Obtain component configure properties

Sub-procedure Objective/Summary: Locate and open all of the property files referenced

within the application’s domain profile for the implementation specified by the input

implementation id parameter. Construct a union of the application component’s configure

properties which match the property modes identified by the input property mode parameter.

Sub-procedure input parameters: Component implementation id and valid property modes

(readonly and readwrite, writeonly and readwrite).

Table 63: Steps to execute Sub-procedure 6.7 Obtain component configure properties

Step Action Expected Result

1 Locate the SPD file for the

ApplicationComponent.

The SPD file for the

ApplicationComponent is found.

2 Locate the SCD file for the

ApplicationComponent, which is defined in the

<descriptor> element in the SPD.

The SCD file for the

ApplicationComponent is found.

3 Locate all the PRF files for the

ApplicationComponent which may be referenced

by one or more of the following:

1. In the SPD, in the <propertyfile> in the

<softpkg>.

2. In the SPD, in the <propertyfile> in the

<implementation> deployed on the

verification platform (the one that matches

the component implementation id input

parameter).

3. In the SCD, in the <propertyfile> in the

<softwarecomponent>.

All the PRF files for the

ApplicationComponent are found.

4 Compile a list of all unique properties with kind

configure and mode constrained by the valid

property modes input parameter for the

implementation specified by the component

implementation id input parameter.

A list of all property information for

the ApplicationComponent is

constructed.

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 121

All Rights Reserved

6.8 Obtain component test properties

Sub-procedure Objective/Summary: Locate and open all of the property files referenced

within the application’s domain profile for the implementation specified by the input

implementation id parameter. Construct a union of the application component’s test properties.

Sub-procedure input parameters: Component implementation id.

Table 64: Steps to execute Sub-procedure 6.8 Obtain component test properties

Step Action Expected Result

1 Locate the SPD file for the

ApplicationComponent.

The SPD file for the

ApplicationComponent is found.

2 Locate the SCD file for the

ApplicationComponent, which is defined in the

<descriptor> element in the SPD.

The SCD file for the

ApplicationComponent is found.

3 Locate all the PRF files for the

ApplicationComponent which may be referenced

by one or more of the following:

1. In the SPD, in the <propertyfile> in the

<softpkg>.

2. In the SPD, in the <propertyfile> in the

<implementation> deployed on the

verification platform (the one that matches

the component implementation id input

parameter).

3. In the SCD, in the <propertyfile> in the

<softwarecomponent>.

All PRF files of the

ApplicationComponent are found.

4 Compile a list of all unique test properties (test

element) for the implementation specified by the

component implementation id input parameter.

A list of all property information for

the ApplicationComponent, including

the input and result values, is

constructed.

7 References

[Ref0] : Software Communications Architecture Specification, Version 4.1, 20 August 2015

[Ref1] : SCA4.1 Applications Verification Plan, WINNF-TR-4001, 21 February 2018

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 122

All Rights Reserved

Appendix A

Table 65 provides an overview of when requirements are applicable to a component under test. The table is separated by a thick black vertical line. The left part indicates the

application component type(s) for which a requirement applies. The requirement is applicable to any type of component marked with an X. The right part indicates the unit of

functionality (UoF) implementations that are necessary for a requirement to be applicable. When no UoF is indicated, it means the requirement is mandatory for the type of

component. When requirement applicability depends on component implementation of a UoF, the UoF(s) are marked with an X.

Table 65: Overview of when a requirement is applicable.

Requirement

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

M
a
n

a
g
ea

b
le

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

A
p

p
li

ca
ti

o
n

C
o
n

tr
o
ll

er

C
o
m

p
o
n

en
t

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

F
a
ct

o
ry

C
o
m

p
o
n

en
t

A
ss

em
b

ly

C
o
m

p
o
n

en
t

In
te

rr
o
g
a
b

le

L
if

eC
y
cl

e

R
el

ea
se

a
b

le

C
o
n

fi
g
u

ra
b

le

C
o
n

tr
o
ll

a
b

le

C
o
m

p
o
n

en
t

R
eg

is
tr

a
ti

o
n

C
o
n

n
ec

ta
b

le

L
o
g
 P

ro
d

u
ce

r

E
v
en

t

P
ro

d
u

ce
r

E
v
en

t

C
o
n

su
m

er

T
es

ta
b

le

C
h

a
n

n
el

E
x
te

n
si

o
n

C
O

R
B

A

C
o
m

p
li

a
n

t

SCA386 X

SCA387 X

SCA388 X

SCA389 X

SCA427 X X X X X

SCA430 X X X X

SCA548 X X X X

SCA540 X

SCA413 X

SCA414 X

SCA549 X

SCA169 X

SCA173 X X X X

SCA457 X X X X

SCA551 X X X X

SCA455 X

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 123

All Rights Reserved

Requirement

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

M
a
n

a
g
ea

b
le

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

A
p

p
li

ca
ti

o
n

C
o
n

tr
o
ll

er

C
o
m

p
o
n

en
t

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

F
a
ct

o
ry

C
o
m

p
o
n

en
t

A
ss

em
b

ly

C
o
m

p
o
n

en
t

In
te

rr
o
g
a
b

le

L
if

eC
y
cl

e

R
el

ea
se

a
b

le

C
o
n

fi
g
u

ra
b

le

C
o
n

tr
o
ll

a
b

le

C
o
m

p
o
n

en
t

R
eg

is
tr

a
ti

o
n

C
o
n

n
ec

ta
b

le

L
o
g
 P

ro
d

u
ce

r

E
v
en

t

P
ro

d
u

ce
r

E
v
en

t

C
o
n

su
m

er

T
es

ta
b

le

C
h

a
n

n
el

E
x
te

n
si

o
n

C
O

R
B

A

C
o
m

p
li

a
n

t

SCA456 X

SCA520 X

SCA166 X

SCA167 X

SCA550 X

SCA175 X

SCA176 X

SCA415 X

SCA521 X

SCA522 X

SCA155 X

SCA156 X

SCA463 X X X X X

SCA471 - - - - -

SCA501 X X X X X

SCA502 X X X X X

SCA496 X

SCA503 X X X X

SCA494 X X X X

SCA495 X X X X

SCA420 X X X X X X

SCA421 X X X X X

SCA423 X X X X X

SCA429 X X X X X

SCA545 X X X X X

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 124

All Rights Reserved

Requirement

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

M
a
n

a
g
ea

b
le

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

A
p

p
li

ca
ti

o
n

C
o
n

tr
o
ll

er

C
o
m

p
o
n

en
t

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

F
a
ct

o
ry

C
o
m

p
o
n

en
t

A
ss

em
b

ly

C
o
m

p
o
n

en
t

In
te

rr
o
g
a
b

le

L
if

eC
y
cl

e

R
el

ea
se

a
b

le

C
o
n

fi
g
u

ra
b

le

C
o
n

tr
o
ll

a
b

le

C
o
m

p
o
n

en
t

R
eg

is
tr

a
ti

o
n

C
o
n

n
ec

ta
b

le

L
o
g
 P

ro
d

u
ce

r

E
v
en

t

P
ro

d
u

ce
r

E
v
en

t

C
o
n

su
m

er

T
es

ta
b

le

C
h

a
n

n
el

E
x
te

n
si

o
n

C
O

R
B

A

C
o
m

p
li

a
n

t

SCA26 X X X X X

SCA27 X X X X X

SCA28 X X X X X

SCA29 X X X X X

SCA30 X X X X X

SCA31 X X X X X

SCA432 X X X X X

SCA15 X X X X X

SCA518 X X X X X

SCA574 X X

SCA16 X X X X X

SCA17 X X X X X

SCA18 X X X X X

SCA433 X X X X X

SCA32 X X X X X

SCA33 X X X X X

SCA34 X X X X X

SCA36 X X X X X

SCA37 X X X X X

SCA547 X X X X X

SCA7 X X X X X

SCA519 X X X X X

SCA8 X X X X X

SCA10 X X X X X

SCA11 X X X X X

SCA 4.1 Applications Verification Task Group
SCA 4.1 TP

WINNF-TS-4001-V1.0.0

Copyright © 2018 The Software Defined Radio Forum Inc. Page 125

All Rights Reserved

Requirement

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

M
a
n

a
g
ea

b
le

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

A
p

p
li

ca
ti

o
n

C
o
n

tr
o
ll

er

C
o
m

p
o
n

en
t

A
p

p
li

ca
ti

o
n

C
o
m

p
o
n

en
t

F
a
ct

o
ry

C
o
m

p
o
n

en
t

A
ss

em
b

ly

C
o
m

p
o
n

en
t

In
te

rr
o
g
a
b

le

L
if

eC
y
cl

e

R
el

ea
se

a
b

le

C
o
n

fi
g
u

ra
b

le

C
o
n

tr
o
ll

a
b

le

C
o
m

p
o
n

en
t

R
eg

is
tr

a
ti

o
n

C
o
n

n
ec

ta
b

le

L
o
g
 P

ro
d

u
ce

r

E
v
en

t

P
ro

d
u

ce
r

E
v
en

t

C
o
n

su
m

er

T
es

ta
b

le

C
h

a
n

n
el

E
x
te

n
si

o
n

C
O

R
B

A

C
o
m

p
li

a
n

t

SCA12 X X X X X

SCA13 X X X X X

SCA14 X X X X X

SCA82 X X X X X

SCA424 X X X X X

SCA425 X X X X X

SCA444 X X X X X

SCA426 X X X X X

SCA541 X X

SCA6 X X X X X

SCA168 X X X

SCA428 X X X X X

SCA546 X X X X X

SCA19 X X X X X

SCA21 X X X X X

SCA23 X X X X X

SCA24 X X X X X

SCA25 X X X X X

SCA500 X X

SCA506 X X X X X

