
Copyright © 2020-2022 The Software Defined Radio Forum Inc – All Rights Reserved

Time Service Facility PIM Specification

Document WINNF-TS-3004

Version V1.1.1

18 January 2022

Copyright © 2020-2022 The Software Defined Radio Forum Inc Page i
All Rights Reserved

TERMS, CONDITIONS & NOTICES

This document has been prepared by the Software Defined Systems (SDS) Harmonized Timing
Service Task Group to assist The Software Defined Radio Forum Inc. (or its successors or assigns,
hereafter “the Forum”). It may be amended or withdrawn at a later time and it is not binding on
any member of the Forum or of the Harmonized Timing Service Task Group.

Contributors to this document that have submitted copyrighted materials (the Submission) to the
Forum for use in this document retain copyright ownership of their original work, while at the
same time granting the Forum a non-exclusive, irrevocable, worldwide, perpetual, royalty-free
license under the Submitter’s copyrights in the Submission to reproduce, distribute, publish,
display, perform, and create derivative works of the Submission based on that original work for
the purpose of developing this document under the Forum's own copyright.

Permission is granted to the Forum’s participants to copy any portion of this document for
legitimate purposes of the Forum. Copying for monetary gain or for other non-Forum related
purposes is prohibited.

THIS DOCUMENT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER,
AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT
THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR ANY OF ITS
MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE
WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS
DOCUMENT.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the specification set forth in this document, and to provide
supporting documentation.

This document was developed following the Forum's policy on restricted or controlled information
(Policy 009) to ensure that that the document can be shared openly with other member
organizations around the world. Additional Information on this policy can be found here:
http://www.wirelessinnovation.org/page/Policies_and_Procedures

Although this document contains no restricted or controlled information, the specific
implementation of concepts contain herein may be controlled under the laws of the country of
origin for that implementation. Readers are encouraged, therefore, to consult with a cognizant
authority prior to any further development.

Wireless Innovation Forum ™ and SDR Forum ™ are trademarks of the Software Defined Radio
Forum Inc.

http://www.wirelessinnovation.org/page/Policies_and_Procedures

Copyright © 2020-2022 The Software Defined Radio Forum Inc Page ii
All Rights Reserved

Table of Contents

TERMS, CONDITIONS & NOTICES .. i
Table of Contents .. ii
List of Figures .. iv
List of Tables ... vi
Contributors .. vii
Standard history .. vii
Time Service Facility PIM Specification ...1
1 Introduction ...1

1.1. The Time service facility ...1
1.1.1 Purpose ...1
1.1.2 Formal positioning ...1
1.1.3 Composition ...2
1.1.4 Origin ...2

1.2. The PIM specification ..2
1.2.1 Purpose ...2
1.2.2 Reference definitions ...3
1.2.3 Writing conventions ...3

1.3. Conformance ..3
1.3.1 Conformance principles ...3
1.3.2 Definitions usage ...3

1.4. Implementations and usages ..4
1.4.1 Multiple time services ..4
1.4.2 Multiple radio applications ..4
1.4.3 Services distribution...5

1.5. Time concepts ..6
1.5.1 Base notions ...6
1.5.2 Standard times ..6
1.5.3 Implemented times ...8

1.6. Time handling ..17
1.6.1 Time stamps ...17
1.6.2 Estimation uncertainty ...18
1.6.3 Time uncertainty ..20
1.6.4 Time references ..20

2 Services ...22
2.1. Provide services ...22
2.2. Use services ...22
2.3. Service-level conformance...22

2.3.1 Services scope ..22
2.3.2 selectedOptionalServices capability ..23
2.3.3 Services implementation conformance ..23

2.4. States machines ..23
2.5. Services groups description ...24

2.5.1 TimeService::TerminalTime ..24
2.5.2 TimeService::SystemTime ...24

Copyright © 2020-2022 The Software Defined Radio Forum Inc Page iii
All Rights Reserved

2.5.3 TimeService::StandardTimes ...25
2.5.4 TimeService::SpecificTimes ..26

3 Service primitives and attributes ...27
3.1. Service primitives ..27

3.1.1 Specification approach ...27
3.1.2 TimeService::TerminalTime::TerminalTimeAccess ...28
3.1.3 TimeService::SystemTime::SystemTimeAccess ...32
3.1.4 TimeService::SystemTime::StandardTimeProvision ..40
3.1.5 TimeService::StandardTimes::ReferencesNotification ...45
3.1.6 TimeService::SpecificTimes::SpecificTimeHandling ...48
3.1.7 TimeService::SpecificTimes::SettingsNotification ...52

3.2. Exceptions ..55
3.2.1 Specification ..55
3.2.2 Associated capabilities ...56

3.3. Attributes..56
3.3.1 Overview ..56
3.3.2 Attributes conformance ..56
3.3.3 Capabilities ..57
3.3.4 Properties ...57
3.3.5 Variables ..57

3.4. Types ..58
3.4.1 TimeValue..58
3.4.2 TimeUncertainty ..59
3.4.3 RateUncertainty ...60

4 References ...61
4.1. Referenced documents ...61

5 Acronyms list ..62
6 Reference tables ..63

6.1. Definitions..63
6.2. Notations ..65
6.3. Equations..65
6.4. Requirements ...66

END OF THE DOCUMENT ...67

Copyright © 2020-2022 The Software Defined Radio Forum Inc Page iv
All Rights Reserved

List of Figures
Figure 1 Overview of time service facility ... 1
Figure 2 Usage configurations of multiple time services... 4
Figure 3 Usage configurations of multiple radio applications .. 5
Figure 4 Notion of services distribution .. 5
Figure 5 Time function of the TAI ... 7
Figure 6 Time function of the UTC depicting leap seconds .. 7
Figure 7 Time functions of terminal time .. 10
Figure 8 Notion of terminal time rate error (TTRE) ... 11
Figure 9 Time functions of system time.. 13
Figure 10 Principle of a system time update .. 14
Figure 11 Typical system time in case of GNSS interruption .. 14
Figure 12 Time functions of a specific time ... 16
Figure 13 Possible specific time discontinuities .. 16
Figure 14 Notion of stamping uncertainty ... 18
Figure 15 Typical system time uncertainty evolution in case of GNSS interruption 20
Figure 16 TimeService statechart .. 23
Figure 17 TerminalTime services group.. 24
Figure 18 SystemTime services group .. 24
Figure 19 Principle of SystemTime and StandardTimes services groups 25
Figure 20 StandardTimes services group .. 25
Figure 21 SpecificTimes services group.. 26
Figure 22 Principle of SpecificTimes services group .. 26
Figure 23 TerminalTime::TerminalTimeAccess service interface .. 28
Figure 24 getTerminalTime() overview ... 29
Figure 25 getTerminalTime() real-time capabilities .. 30
Figure 26 getTerminalTimeRateUncertainty() overview... 31
Figure 27 SystemTime::SystemTimeAccess service interface .. 32
Figure 28 getCurrentTAI() overview ... 32
Figure 29 getCurrentTAI() real-time capabilities .. 34
Figure 30 getCurrentUTC() overview ... 34
Figure 31 getCurrentUTC() real-time capabilities .. 36
Figure 32 Principle of getLastUpdateTAI() ... 36
Figure 33 getLastUpdateTAI() capabilities .. 38
Figure 34 Principle of getLastUpdateUTC() ... 38
Figure 35 Meaning of getLastUpdateUTC() capabilities .. 40
Figure 36 SystemTime::StandardTimeProvision service interface ... 40
Figure 37 provideTAI() overview .. 40
Figure 38 provideTAI() real-time capabilities.. 42
Figure 39 Principle of provideUTC() ... 43
Figure 40 provideUTC() real-time capabilities .. 45
Figure 41 StandardTimes::ReferencesNotification service interface .. 45
Figure 42 notifyStandardTimeReference() overview ... 46
Figure 43 notifyStandardTimeReference() real-time capabilities .. 48
Figure 44 SystemTimes::SpecificTimeHandling service interface ... 48

Copyright © 2020-2022 The Software Defined Radio Forum Inc Page v
All Rights Reserved

Figure 45 setSpecificTime() overview ... 48
Figure 46 setSpecificTime () real-time capabilities ... 50
Figure 47 getSpecificTime() overview ... 50
Figure 48 getSpecificTime() real-time capabilities .. 52
Figure 49 SpecificTimes::SettingsNotification service interface .. 52
Figure 50 notifySpecificTimeSetting() overview .. 53
Figure 51 notifySpecificTimeSetting() real-time capabilities ... 55

Copyright © 2020-2022 The Software Defined Radio Forum Inc Page vi
All Rights Reserved

List of Tables
Table 1 Definitions used from “Principles for WInnForum Facility Standards” 3
Table 2 Provide services .. 22
Table 3 Use services .. 22
Table 4 getTerminalTime() parameters .. 29
Table 5 getTerminalTime() real-time capabilities .. 30
Table 6 getTerminalTimeRateUncertainty() parameters ... 31
Table 7 getTerminalTimeRateUncertainty() real-time capabilities ... 31
Table 8 getCurrentTAI() parameters .. 33
Table 9 getCurrentTAI() real-time capabilities .. 33
Table 10 getCurrentUTC() parameters .. 35
Table 11 getCurrentUTC() real-time capabilities .. 35
Table 12 getLastUpdateTAI() parameters .. 37
Table 13 getLastUpdateTAI() real-time capabilities.. 37
Table 14 getLastUpdateUTC() parameters .. 39
Table 15 getLastUpdateUTC() real-time capabilities .. 39
Table 16 provideTAI() parameters ... 41
Table 17 provideTAI() real-time capabilities ... 42
Table 18 provideUTC() parameters ... 44
Table 19 provideUTC() real-time capabilities ... 45
Table 20 notifyStandardTimeReference() parameters ... 47
Table 21 notifyStandardTimeReference() real-time capabilities ... 47
Table 22 setSpecificTime() parameters .. 49
Table 23 setSpecificTime() real-time capabilities .. 50
Table 24 getSpecificTime() parameters .. 51
Table 25 getSpecificTime() real-time capabilities .. 52
Table 26 notifySpecificTimeSetting() parameters .. 54
Table 27 notifySpecificTimeSetting() real-time capabilities .. 54
Table 28 Specification of general exceptions .. 55
Table 29 Specification of range exceptions ... 55
Table 30 Time service general capabilities .. 57
Table 31 Variables ... 57
Table 32 Variables access primitives ... 57
Table 33 Possible values for TimeUncertainty .. 59
Table 34 Acronyms list .. 62
Table 35 Specified definitions ... 64
Table 36 Specified notations .. 65
Table 37 Specified equations ... 65
Table 38 Specified requirements ... 66

Copyright © 2020-2022 The Software Defined Radio Forum Inc Page vii
All Rights Reserved

Contributors
The following individuals and their organization of affiliation are credited as Contributors to
development of the specification, for having been involved in the work group that developed the
draft then approved by WInnForum member organizations:

 Marc Adrat, Fraunhofer FKIE,
 Jean-Philippe Delahaye, DGA,
 Guillaume Delbarre, DGA,
 David Hagood, Cynosure,
 Olivier Kirsch, KEREVAL,
 Francois Levesque, NordiaSoft,
 Charles Linn, L3Harris,
 David Murotake, HKE,
 Eric Nicollet, Thales,
 Kevin Richardson, MITRE,
 Robert Sklut, JTNC.

Standard history

Version Date Contents
V1.0.0 21 September 2021 Initial release.

Composed of the PIM specification.
V1.1.0 17 January 2022 Addition of the Native C++ PSM Specification, SCA PSM Specification and FPGA PSM

specification.
The PIM specification content is identical to V1.0.0.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 1
All Rights Reserved

Time Service Facility PIM Specification
1 Introduction
This document WINNF-TS-3004-V1.1.0 is the PIM specification (Platform-Independent Model)
of WInnForum time service facility V1.1.0.
The time service facility V1.1.0 is also composed of the following appendices:
 WINNF-TS-3004-A.1-V1.1.0 Time Service Facility Native C++ PSM specification,
 WINNF-TS-3004-A.2-V1.1.0 Time Service Facility SCA PSM specification,
 WINNF-TS-3004-A.3-V1.1.0 Time Service Facility FPGA PSM specification.

1.1. The Time service facility

1.1.1 Purpose

The time service facility is the WInnForum standard for time services, which enable radio
platforms to provide radio applications with knowledge of time.
It supports portability of radio applications and hospitality of radio platforms, through a generic
specification of the time service capability, with the associated API and attributes.
An overview of time service facility is provided by the following figure:

Time service API

Time service attributes

Time service

(or other software
components)

Radio application

Figure 1 Overview of time service facility

Usage of the specified API is not limited to radio applications, e.g. components of the radio
platform may use it as needed.
For the purpose of simplicity, “radio application” is used in the remainder of the document either
designates a radio application or any other kind of client of a time service.
A time service can be distributed across several processing nodes within a radio platform.

1.1.2 Formal positioning

D01 A time service capability is defined as a functional support capability of a radio platform that
provides radio applications with knowledge of time.
D02 A time service is defined as an instantiation of a time service capability.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 2
All Rights Reserved

D03 The time service facility is defined as the WInnForum facility specified for time services.

1.1.3 Composition

The time service facility is composed of the following specification documents:
 The PIM specification (Platform-Independent Model, this document),
 Several PSM specifications (Platform-Specific Models).

This general structure complies with “Principles of WInnForum Facility Standards” (see [Ref1]).

1.1.4 Origin

The time service facility results from a development effort conducted by the WInnForum during
years 2018-2020.
The development joined international contributors experienced in usage of the JTNC “JTRS
Standard Timing Service API” (see [Ref2]) and derived APIs such as the ESSOR Architecture
Timing Service API specified by “Radio Services API Description Document” (see [Ref3]) or the
SVFuA corresponding API.

1.2. The PIM specification

1.2.1 Purpose

The PIM specification is the entry specification of the time service facility.
Disambiguation note related to “service” usage:
 “time service”, with the two terms systematically coupled, corresponds to one instance of

a time service capability, as specified by D02,
 “service”, “use service” or “provide service”, without “time” before, refer to elementary

services of a time service.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 3
All Rights Reserved

1.2.2 Reference definitions

The PIM specification applies the following reference definitions, specified in “Principles for
WInnForum Facility Standards” (see [Ref1]):

Topic Applied definitions
Base concepts radio application, radio platform, portability, hospitality
Architecture concepts application component, processing node, façade, functional support

capability
WInnForum facility facility, PIM specification, PSM specification
Services service, service implementation, service interface, provide service, use

service, services group
Primitives primitive, primitive implementation signature, parameter, type, direction,

semantics, exception
Attributes attribute, capability, property, variable
Execution time call time, return time, worst-case execution time, worst-case external

execution time

Table 1 Definitions used from “Principles for WInnForum Facility Standards”

1.2.3 Writing conventions

The PIM specification applies the writing conventions specified in “Principles for WInnForum
Facility Standards” (see [Ref1]).
All class diagrams, sequence diagrams and state charts are based on the Unified Modeling
Language (UML), specified in “OMG Unified Modeling Language (OMG UML)” (see [Ref4]).

1.3. Conformance

1.3.1 Conformance principles

In order to be “conformant with the time service facility”, a time service has to satisfy all the
requirements specified in the PIM specification.
Waivers may be attached to a conformant time service.
The concept of “partial conformance” may not be applied.

1.3.2 Definitions usage

Any documentation and technical artifact related to a time service should apply the definitions
specified in the PIM specification.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 4
All Rights Reserved

1.4. Implementations and usages

1.4.1 Multiple time services

Multiple time services are required in cases multiple uncorrelated time domains coexist within a
radio platform (e.g. uncorrelated multi-channel systems).
The following figure illustrates the associated usage configurations:

Radio
application 1

Time service
1

Time service
1

Radio
application

2 one-to-one
usages

Time service
2

Each radio application
uses one time service

One application uses two
ore more time services

One-to-several
usage

Time Service API

Radio
application 2

Time service
2

Time Service API

Multiple time
services

Concurrent radio
applications

Multiple time
services

Figure 2 Usage configurations of multiple time services

One-to-several usage should be limited to cases where the radio application is meant to handle
unsynchronized time domains.
Different time services are not expected to be synchronized, but this does not preclude
implementations from doing so.
Illustration: chassis with N processing blades

If each of the N blades has an independent local oscillator (i.e. not synchronized with the local oscillator of any
other blades), the only possibility is to implement one time service per processing blade (total: N time services).
If a time synchronization mechanism is implemented across the processing blades (e.g. a master clock is driving
the oscillators of all the processing blades), two possibilities exist.
First, one can keep implementing N different time services, even if they actually run at the same rate, they may not
be synchronized in value, and the executing radio applications may not assume synchronization.
Second, one can implement a common time service in which time is unified across all blades and the executing
radio applications may assume such unicity.

1.4.2 Multiple radio applications

Multiple radio applications happen when multiple independent radio applications simultaneously
execute within a radio platform.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 5
All Rights Reserved

The following figure illustrates the associated usage configurations:

Radio
application 1

Radio
application 2

Time service

Several-to-one
usage

2+ radio applications use
one time service

Time Service API

Radio
application 1

Time service
1

2 one-to-one
usages

Each radio application
uses one time service

Radio
application 2

Time service
2

Time Service API

Multiple time
services

Concurrent radio
applications

Concurrent radio
applications

Figure 3 Usage configurations of multiple radio applications

The time service facility does not prevent several-to-one usage, which can be used to minimize
complexity of the overall design in mutualizing access to a shared time service.
This said, safety or security considerations might prevent such approaches.

1.4.3 Services distribution

Services distribution happens where a same service of a given time service is simultaneously
accessible on façades available on several processing nodes.
In such situations, the time service is responsible for the distribution and synchronization of time
across façades.
This typically enables application components of a radio application to synchronize their real-
time execution.
This is illustrated on the following figure:

Ti
m

e
Se

rv
ic

e

Processing
node 2

Processing
node 1

Façade 1

Radio application

Façade 2

Component 1 Component 2

Time
service API

Implemented times

The supported platform
time is distributed
between related facades
and terminal time is
synchronized between
facades.

provides providesuses uses

Time
service API

Façades implementing
services related to the
supported implemented
times

Figure 4 Notion of services distribution

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 6
All Rights Reserved

1.5. Time concepts

1.5.1 Base notions

1.5.1.1 Physical time
D04 The physical time is defined as the time physically elapsing within the radio platform.
The physical time is the fundamental time from which all the other times are defined.
D05 A physical instant is defined as an infinitesimal moment of the physical time, whose passage
is instantaneous.
N01 t denotes an undefined physical instant of the physical time.
N02 t<qualifier> denotes the physical instant characterized by the used <qualifier>.
The notations t and t<qualifier> are independent from how physical instants are measured.

1.5.1.2 Time function
The time function is the concept enabling the characterization of any time through its dependency
to the physical time.
D06 A time value is defined as the value taken by a time at a certain physical instant.
D07 A time function is defined as the mathematical function that relates, for any time notion
measuring time, the taken time values to the physical time.

1.5.2 Standard times

D08 A standard time is defined as the International Atomic Time (TAI) or the Coordinated
Universal Time (UTC).

1.5.2.1 International Atomic Time (TAI)
D09 The International Atomic Time is defined as an ITU-standardized physical time measure built
from an international network of permanently running reference atomic clocks.
The International Atomic Time is the most accurate available measure of the elapsing physical
time.
See [Ref5] for the related Wikipedia article.
N03 TAI denotes the International Atomic Time.
N04 TAI(t) denotes the time function of the TAI.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 7
All Rights Reserved

TAI(t) is a strictly linear function of slope 1 :

t (physical time)

TAI(t)

Figure 5 Time function of the TAI

1.5.2.2 Coordinated Universal Time (UTC)
D10 The Coordinated Universal Time is defined as the ITU-standardized measurement of time that
adjusts the TAI using the concept of leap seconds (LS) to compensate the long term drifts in the
apparent position of the sun.
See [Ref6] for the related Wikipedia article.
N05 UTC denotes the Coordinated Universal Time.
N06 UTC(t) denotes the time function of the UTC.
UTC(t) is a piecewise linear function of slope 1, separated by transitions of 1 second in the advent
of leap seconds (at most once every 6 months):

t1 t2t0

t0: no LS
t1: added LS
t2: subtracted LS

LS can only occur on
31st Dec. or 31st June

Discontinuities
of 1 second

t (physical time)

UTC(t)

Figure 6 Time function of the UTC depicting leap seconds

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 8
All Rights Reserved

1.5.2.3 Standard time sources
D11 A standard time source is defined as any source of standard time supporting implementation
of a time service.
A standard time source can:
 Be internal to the time service,
 Come from a radio application, or from a radio platform client.

Typical examples of internal standard time sources are user inputs, GNSS or precise time devices.

1.5.2.4 Standard time sources identification
The standard time sources are identified using integer identifiers.
For the standard time sources that are part of the time service implementation, the identifiers are
implementation-dependent constant values chosen between 1 and 128.
For the standard time sources that are radio application components (or a radio platform client)
employing the time service, the identifiers are radio application-dependent values, which have to
be greater than 128.
How standard time sources identifiers are provided to radio applications, if needed, is unspecified.
Some possibilities are setting of values at deployment-time (e.g. using SCA configuration
properties), or porting time rebuild of radio applications after setting of the values in their source
code.

1.5.3 Implemented times

D12 An implemented time is defined as a time implemented by a time service.
There are 3 sorts of implemented times:
 Terminal time: permanent internal concept of time (see section 1.5.3.1),
 System time: estimation of the TAI or the UTC (see section 1.5.3.2),
 Specific times: non-standard times controlled by radio application (see section 1.5.3.3).

1.5.3.1 Terminal time

 Definition
D13 The terminal time is defined as the implemented time that measures the time elapsing within
the time service.
Within the time domain of the time service, terminal time is synchronized across processing nodes
and may be common between the time service and some other functional support capability of the
radio platform.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 9
All Rights Reserved

 Usage
A radio application typically uses the terminal time:
 To interpret time stamps attached to time values,
 To coordinate real-time execution of application components across processing nodes,
 As a time shared with other capabilities of the radio platform, e.g. WInnForum

“Transceiver Facility PIM Specification” (see [Ref7]) or timers.

 Implementation
The time service implements the terminal time as a strictly monotonic increasing function of
physical time measuring the time having elapsed since an implementation-specific initial instant.
There is no roll-over possibility within the lifetime of the time service and the time service never
resets the terminal time to align it with any other implemented time.
A terminal time is typically implemented using a counter incremented by progress of a local
oscillator of the radio platform.
The rate of the terminal time may be disciplined using a time reference in order to be closer to the
rate of the physical time, while never introducing a time discontinuity or moving backwards in
time.
In case of radio platforms with several time services, their terminal times are assumed to be
independent from each other.
Illustration

The terminal time can be available on a variety of processing nodes, e.g., from SCA-compliant GPPs to FPGAs.
The terminal time is not required to correspond to any standard time (UTC or TAI).
POSIX could be used to implement the terminal time on GPPs.
The terminal time can be implemented with a standard epoch (e.g. POSIX 1 Jan 1970) or start at any value (e.g.
“00:00”).

 Time functions
N07 TT(t) denotes the idealized time function of terminal time.
TT(t) is a linear continuous function.
N08 TT[t] denotes the digitized time function of terminal time.
TT[t] reflects the quantization effects on terminal time implementation, and is a discontinuous step
function.
N09 tTTinit denotes the initial instant from which terminal time is measured.
N10 vTTinit denotes the initial value taken by terminal time at tTTinit.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 10
All Rights Reserved

The following figure illustrates the time functions of terminal time:

t (physical time)

TT(t)
(idealized)

TT[t]
(quantized)

tTTinit

vTTinit

Quantization step (typ.
µs or fraction)

Figure 7 Time functions of terminal time

 Terminal time rate error
D14 The terminal time rate error is defined as the relative rate error of the terminal time versus the
physical time.
N11 TTRE denotes terminal time rate error.
TTRE can take negative or positive values.
A terminal time implementation with high accuracy has a low absolute value of TTRE.
The typical order of magnitude for the absolute value of TTRE is between 10-5 (poor accuracy) and
10-9 (good accuracy).
E01 The terminal time rate error equation captures its mathematical definition:

 TT(𝑡𝑡0 + ∆𝑡𝑡) = TT(𝑡𝑡0) + �1 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡0� ∙ ∆𝑡𝑡 Eq. 1.

In Eq. 1:
 TT(𝑡𝑡0) and TT(𝑡𝑡0 + ∆𝑡𝑡) denote idealized terminal time values,
 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡0 denotes TTRE value at 𝑡𝑡0,
 ∆𝑡𝑡 denotes a small increment of physical time.

Eq. 1 uses the idealized terminal time representation TT(t), neglecting the quantization effects
appearing in actual terminal time implementations TT[t].

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 11
All Rights Reserved

The following figure illustrates the previous notions:

t (physical time)

TT(t)

TT[t]

t0 t0 + Δt

TT(t0)

TT(t0 + Δt)

Figure 8 Notion of terminal time rate error (TTRE)

TTRE may slowly vary over time, e.g., due to influence of temperature and aging of the oscillator.

 Terminal time rate uncertainty
D15 The terminal time rate uncertainty is defined as an upper bound of the absolute value of its
terminal time rate error.
N12 TTRU denotes terminal time rate uncertainty.
E02 The terminal time rate uncertainty equation captures its mathematical definition:

 |𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇| < 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 Eq. 2.

TTRU is typically equal to the accuracy of the oscillator used to implement terminal time.

 terminalTimeRateMaxUncertainty capability
The terminalTimeRateMaxUncertainty capability is specified as a scalar that reflects the
maximum terminal time rate uncertainty of a time service, in parts-per-billion (ppb).

 terminalTimeRateUncertainty variable
The terminalTimeRateUncertainty variable is specified as a scalar that reflects the current
terminal time rate uncertainty of a time service, in parts-per-billion (ppb).
The getTerminalTimeRateUncertainty() primitive (see section 3.1.2.2) enables a radio application
to access to terminalTimeRateUncertainty.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 12
All Rights Reserved

1.5.3.2 System time

 Definition
D16 The system time is defined as the implemented time that jointly estimates the TAI and the UTC.
The system time, being an estimate, may lead or lag the standard times, with an uncertainty
influenced by items such as the figure of merit of values from standard time sources used by the
implementation, the quantization error and the terminal time rate error.

 Usage
A radio application typically uses the system time to coordinate with other systems or other radio
applications.

 Implementation
A system time is typically derived from one or more sources (e.g. a GNSS device, a chronometer
device, or an operator input).
Implementation of system time typically has knowledge of leap seconds.

 Time representation
The time service represents, for TAI, system time as a measure of the physical time having elapsed
since epoch 00:00:00, 1 January 2000 (GMT).
The time service represents, for UTC, system time as a measure of the physical time having elapsed
since epoch 00:00:00, 1 January 2000 (GMT), minus leap seconds.
The previous statements make the UTC representation correspond to the concept of Unix time (see
[Ref8]), with an epoch changed from 1 Jan. 1970 to 1 Jan. 2000.

 Time functions
N13 ST(t) denotes the idealized time function of a system time.
ST(t) is a piecewise continuous function.
N14 ST[t] denotes the digitized time function of a system time.
ST[t] is a piecewise step function.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 13
All Rights Reserved

The following figure illustrates the time services of system time:

t (physical time)

ST(t)
(ideal)

ST[t]
(quantized)

Quantization step
(typ. µs or fraction)

Figure 9 Time functions of system time

 Leap seconds handling
When a leap second occurs, the UTC is delayed or advanced by one second at midnight of the
application day (30-June or 31-Dec).
The system time behavior in the advent of a leap second is unspecified.
Illustration

For added leap second, the seconds counter of the system time can stay on the same second for one additional
second, on the second before midnight or on the second after midnight,
For subtracted leap second, the seconds counter of the system time can skip one second, on the second before
midnight or on the second after midnight.

 System time updates
D17 A system time update is defined as a point in time when the time service updates the system
time in order to decrease its estimation uncertainty.
The time service makes a system time update when a standard time reference delivered by a
standard time source results in a decrease of the estimation uncertainty of the system time.
See section 1.6 for definitions of estimation uncertainty and standard time reference.
A system time update can be caused by arrival of any standard time reference, from any standard
time source.
A system time update generally causes a discontinuity in system time. Such discontinuity can move
the system time backwards resulting in a non-monotonic behavior.
The updated time is then used as the reference from which the time service determines the system
time based on terminal time rate until the next system time update occurs.
Depending on the nature of the time service and the course of events, the occurrence of system
time updates can be periodic (with possible interruptions), or sporadic.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 14
All Rights Reserved

The following figure illustrates the principle of a system time update:

t (physical time)tn

ST(tn
-)

TAI(t) or UTC(t)
ST(t)

System time update
ST(tn

+)

Figure 10 Principle of a system time update

 GNSS usage example
A GNSS (e.g., GPS, Galileo) device can be used as a standard time source, typically delivering
every second a standard time reference (see section 1.6.4.2) with the current second standard time
value and the associated figure of merit.
The following figure depicts the typical evolution of system time in case of a GNSS interruption:

GNSS PPS
available

GNSS PPS
available

GNSS PPS
interrupted

TT(t)

TAI(t) or UTC(t)

t (physical time)

ST(t)

System time updates

GNSS PPS standard time references

1 s

Figure 11 Typical system time in case of GNSS interruption

The previous figure illustrates that the instantaneous slope of system time is the slope of terminal
time, in which inaccuracy is compensated by system time updates.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 15
All Rights Reserved

1.5.3.3 Specific times

 Definitions
D18 A specific time is defined as a monotonically increasing implemented time maintained as
closely as possible to the physical time rate since it was last set.
D19 A setting time is defined as the physical time value at which a specific time was last set.
D20 A setting value is defined as the value to which a specific time was set to at a setting time.
A specific time becomes defined once any radio application sets it for the first time in the lifetime
of the time service.
A radio application can set a specific time as often as needed, possibly creating discontinuities in
the specific time.
By contrast to system time, occurrences of standard time references will not generate specific time
updates, but may be used to improve the accuracy of specific time maintenance.

 Usage
A radio application typically uses a specific time for the following purposes:
 To use a non-standard time of its own,
 To recover a previously set specific time after a period of de-instantiation.

Illustration: faster resynchronization
In anticipation of an inactive period, a radio application can set a specific time with a value, let the time service
maintain the specific time, and retrieve the updated value once the radio application is active again, in order to
reduce duration of its over-the-air resynchronization procedure with the other radios of the radio network.

Combinations of different radio applications may also use a same specific time for cross-
applications purposes, while such usages need to be considered with care.
Illustration: master/slave time

A master radio application can set a specific time, for a slave radio application to align with this specific time.

 Implementation
A time service represents a specific time adding to its setting value the number of seconds and
nanoseconds having elapsed since its setting time.
A specific time is typically computed and monotonically maintained using a combination of time
keeping mechanisms available to the time service (e.g., a local oscillator, a GNSS device, a
chronometer device).

 Time functions
N15 SpeT(t) denotes the idealized time function of a specific time.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 16
All Rights Reserved

SpeT(t) is a piecewise continuous function.
Each continuous portion of SpeT(t) reflects the monotonic maintenance of the specific time since
last setting time.
N16 SpeT[t] denotes the digitized time function of a specific time.
SpeT[t] reflects the quantization effects on specific time implementation, and is a piecewise step
function.
N17 tsetting denotes a setting time.
N18 vsetting denotes a setting value.
The following figure illustrates the time functions of a specific time:

t (physical time)

SpeT(t)
(idealized)

SpeT[t]
(quantized)

tsetting

vsetting

Quantization step (typ.
µs or fraction)

Figure 12 Time functions of a specific time

The following figure illustrates the possible discontinuities in the time function of a specific time:

t (physical time)

SpeT(t)

tsetting(n)

vsetting (n)

tsetting(n+1)

vsetting (n+1)

tsetting(n+2)

vsetting (n+2)

Figure 13 Possible specific time discontinuities

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 17
All Rights Reserved

 maxSpecificTimes capability
The maxSpecificTimes capability is specified as an integer that captures the number of specific
times implemented by a time service.

 Specific times identification
Integer constants ranging from 1 to maxSpecificTimes identify specific times.

Those identifiers are global to the time service, and need to be consistently assigned between radio
applications for correct overall behavior.
How specific times identifiers are assigned to radio applications is unspecified.
Some possibilities are setting of values at deployment-time (e.g. using SCA configuration
properties), or porting time rebuild of radio applications after setting of the values in their source
code.

1.6. Time handling

1.6.1 Time stamps

1.6.1.1 Definition
D21 A time stamp is defined as, for a stamped instant, a terminal time value measured at a physical
time close to when the stamped instant occurs.
N19 TS denotes a time stamp.
Time stamps are used to indicate a correspondence between a time of interest and terminal time.
The times of interest can be:
 An instant associated to implemented times, e.g. a system time current value, a last system

time update or the last setting time of a specific time,
 A standard time reference (see section 1.6.4.2) delivered by a standard time source.

This design paradigm enables radio applications and time service to interact with no hardware
interface needed.
Like all measurements of real-world values, the time stamp value makes a stamping error
influenced by implementation-specific factors such as quantization error, timing rate error, etc.

1.6.1.2 Stamping uncertainty
D22 A stamping uncertainty is defined as a maximum possible error between a stamped instant and
the associated time stamp.
N20 SU denotes the stamping uncertainty.
N21 tstamped denotes the physical time value of the stamped instant.
E03 The stamping uncertainty equation captures its mathematical definition:

 𝑇𝑇𝑇𝑇 ∈ TT�𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� ± 𝑇𝑇𝑇𝑇 Eq. 3.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 18
All Rights Reserved

In an ideal implementation, stamping uncertainty would be equal to zero, with TS = TT(tstamped).
The following figure illustrates the notion of stamping uncertainty:

Stamped instant

TT(t)

tstamped

Tim
e

stam
ping

t (physical time)

Time stamp
TSideal + SU

TSideal TT(tstamped)

TSideal - SU

TT(t)

Figure 14 Notion of stamping uncertainty

1.6.1.3 stampingUncertainty capability
A stampingUncertainty capability is specified as a scalar reflecting the stamping uncertainty
achieved services of a time service, expressed in ns.
Depending on implementation choices, a unique stampingUncertainty can be assigned to the
entire time service, or can be specialized on a finer per-primitive and/or per-façade basis.
Illustration:

For a GPP façade where the time stamp would be measured using a timer of the GPP, clocked by an oscillator
decoupled from the terminal time with regular resynchronization with the actual terminal time deported on an
FPGA, the stampingUncertainty value will encompass the uncertainties introduced between two
resynchronizations.

1.6.2 Estimation uncertainty

1.6.2.1 Definition
D23 An estimation uncertainty is defined as an upper bound of the absolute value of the difference
between a time value and a time it estimates, valid within a specified confidence percentage.
An estimation uncertainty characterizes the quality of a system time or specific time value, enabling
decisions of various nature to be taken (choice of the most relevant time source, adjustment of a
time, …).

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 19
All Rights Reserved

The concept of estimation uncertainty applies to:
 System time, where the related time is a standard time,
 Specific time, where the related time is the time maintained from last setting time according

to physical time rate.
The concept of estimation uncertainty does not apply to terminal time since it is not meant to
implement any particular time.

1.6.2.2 System time uncertainty
D24 The system time uncertainty is defined as an estimation uncertainty, at 95% confidence,
between a time value of a system time and the standard time it estimates (TAI and/or UTC).
N22 STU denotes a system time uncertainty.
E04 The system time uncertainty equation captures its mathematical definition:

 |𝑇𝑇𝑇𝑇(𝑡𝑡) − 𝑇𝑇𝑡𝑡𝑆𝑆𝑇𝑇(𝑡𝑡)| ≤ 𝑇𝑇𝑇𝑇𝑇𝑇, in 95% of cases Eq. 4,

where:
 𝑇𝑇𝑇𝑇(𝑡𝑡) denotes the system time value (estimated standard time) at t,
 𝑇𝑇𝑡𝑡𝑆𝑆𝑇𝑇(𝑡𝑡) denotes the value of the estimated standard time at t.

Illustration
For a time service not assisted by whichever external mechanism (such a GNSS or a precise time source), the
system time uncertainty typically increases each second by the accuracy of the local oscillator used to maintain the
terminal time.
For a time service using a GNSS receiver, system time uncertainty depends on the number of received satellites.
A 95% confidence interval corresponds to a standard deviation of 2.𝜎𝜎 in case the standard time estimation follows
a Gaussian random distribution.

Illustration:
For a typical time service using a GNSS receiver as a standard time source, when all satellites are in sight, STU <
SU, and SU is be the dominant factor in system time uncertainty.
Upon loss of GNSS signals, assuming the time service uses terminal time to maintain system time, STU increases
by terminal time rate uncertainty every elapsing second. Eventually STU > SU, and STU becomes the dominant
factor in system time uncertainty.

1.6.2.3 Specific time uncertainty
D25 A specific time uncertainty is defined as an estimation uncertainty, at 95% confidence, between
a time value of a specific time and the time that would have been maintained from the last setting
time using physical time rate.
N23 SpeTU denotes a specific time uncertainty.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 20
All Rights Reserved

E05 The specific time uncertainty equation captures its mathematical definition:

 �𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇(𝑡𝑡) − (𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇�𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠� + �𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠�)� ≤ 𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇, at 95% confidence Eq. 5,

Where:
 𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇(𝑡𝑡) is the value at t of the specific time,
 (𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇�𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠� + �𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠�) is the value at t of a time ideally maintained from tsetting.

Illustration:
For a time service directly using its terminal time to maintain specific time: if TTRU is known by the time service
as a constant, EUSpeT increase rate is equal to terminal time rate uncertainty (𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇(𝑡𝑡) = 𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇(𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡) +
(𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡).𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇); if, more accurately, TTRU is known by the time service as a function of time, one has
𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇(𝑡𝑡) = 𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇(𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡) + ∫ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑡𝑡)𝑡𝑡

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠
. d𝑡𝑡 .

GNSS PPS
available

GNSS PPS
available

GNSS PPS
interrupted

TT(t)

TAI(t) or UTC(t)

t (physical time)

ST(t)

System time updates

GNSS PPS standard time references

1 s

Figure 15 Typical system time uncertainty evolution in case of GNSS interruption

1.6.3 Time uncertainty

D26 A time uncertainty is defined as the addition of the estimation uncertainty of a time value of
interest and the stamping uncertainty of the associated time stamp.

1.6.4 Time references

D27 A time reference is defined as a triplet composed of a time value of interest, the associated
time stamp and their time uncertainty.
Time references are the essential unified structure of information exchanged by the primitives of
the time service API.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 21
All Rights Reserved

1.6.4.1 System time references
D28 A system time reference is defined as a time reference which time value of interest relates to
system time.
When a radio application requests value of system time, using getCurrentTAI(), getCurrentUTC(),
getLastUpdateTAI() or getLastUpdateUTC() (see section 3.1.3), the time service returns a system
time reference.

1.6.4.2 Standard time references
D29 A standard time reference is defined as a time reference which time value of interest relates to
a standard time.
When a standard time reference is delivered to a time service by a standard time source:
 The time service evaluates it for eventual update of the system time (see section 1.5.3.2.7),
 The time service may notify radio application of the standard time reference, using

notifyStandardTimeReference() (see section 3.1.5).
When a radio application provides an estimate of a standard time, using provideTAI() or
provideUTC() (see section 3.1.4), it provides the corresponding standard time reference to the time
service.

1.6.4.3 Specific time references
D30 A specific time reference is defined as a time reference which time value of interest relates to
a specific time.
When a radio application sets a specific time, using setSpecificTime() (see section 3.1.6.1), it
provides the corresponding specific time reference to the time service.
Following a call to setSpecificTime(), the time service can notify a radio application using
notifySpecificTimeSetting() (see section 3.1.7), sending the corresponding specific time reference.
When a radio application gets the current value of a specific time, using getSpecificTime() (see
section 3.1.6.2), the time service returns the corresponding specific time reference.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 22
All Rights Reserved

2 Services

2.1. Provide services

The following table lists the provide services of the API (used by a radio application and provided
by a time service):

Services groups
(same as Modules)

Services
(same as Interfaces)

Primitives Optional
ity

TerminalTime TerminalTimeAccess getTerminalTime()
getTerminalTimeRateUncertainty()

M

SystemTime SystemTimeAccess getCurrentTAI()
getCurrentUTC()
getLastUpdateTAI()
getLastUpdateUTC()

M

StandardTimeProvision provideTAI()
provideUTC()

O

SpecificTimes SpecificTimeHandling setSpecificTime()
getSpecificTime()

O

Table 2 Provide services

The column “Optionality” specifies if a provide service is mandatory (M) or optional (O).

2.2. Use services

The following table lists the use service of the API (provided by a radio application and used by
a time service):

Services groups
(same as Modules)

Services
(same as Interfaces)

Primitives Optional
ity

StandardTimes ReferencesNotification notifyStandardTimeReference() O
SpecificTimes SettingsNotification notifySpecificTimeSetting() O

Table 3 Use services

The column “Optionality” specifies if a use service is mandatory (M) or optional (O).

2.3. Service-level conformance

2.3.1 Services scope

A service implementation is an implementation of a particular service on a particular façade (see
[Ref1]).
R01 A time service shall present a service implementation for each mandatory service.
R02 A time service shall present a service implementation for each selected optional service.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 23
All Rights Reserved

2.3.2 selectedOptionalServices capability

The selectedOptionalServices capability is specified as the set of boolean values indicating
which optional services specified by the time service facility are implemented.

2.3.3 Services implementation conformance

A service implementation needs to comply with the applicable normative content of the PIM
specification and of the applicable PSM specification.
A service implementation needs to present a primitive implementation for each primitive specified
in its service interface.

2.4. States machines

All specified transitions are instantaneous.
Errors and exceptions handling are not modeled by the specified state machines.

2.4.1 TimeService

TimeService is specified as the main state machine followed by time service.

An instance of TimeService is followed by each time service instance.

The following figure is the statechart of TimeService state machine:

CONFIGURED

Figure 16 TimeService statechart

2.4.1.1 States

1.1.1.1.1 CONFIGURED
CONFIGURED is specified as the unique state of TimeService, during which a time service is
configured according to the needs of all the radio applications to be supported during the
CONFIGURED state.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 24
All Rights Reserved

CONFIGURED is reached by a time service when it:
 Complies with any value specified for a capability or a property,
 Is capable of interacting with radio application according to the service interfaces of

its service implementations.
How CONFIGURED is reached is unspecified by the PIM specification, and can be specified by the
applied PSM specification.

2.5. Services groups description

2.5.1 TimeService::TerminalTime

The TerminalTime services group enables radio applications to access to terminal time, and
contains the TerminalTimeAccess service:

Radio
application

TimeService::TerminalTime

TerminalTimeAccess
• getTerminalTime()
• getTerminalTimeRateAccuracy()

Time service
provides

Figure 17 TerminalTime services group

TerminalTimeAccess is a provide service enabling to get the terminal time current value.

2.5.2 TimeService::SystemTime

The SystemTime services group enables radio applications to use system time, and contains
SystemTimeAccess and StandardTimeProvision services:

Radio
application

TimeService::SystemTime

SystemTimeAccess
• getCurrentTAI()
• getCurrentUTC()
• getLastUpdateTAI()
• getLastUpdateUTC()

Time service
provides

StandardTimeProvision
• provideTAI()
• provideUTC()

provides

Figure 18 SystemTime services group

SystemTimeAccess is a provide service enabling to get current or last update value of a standard
time (TAI or UTC). It offloads the radio application from duties related to estimation of standard
times.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 25
All Rights Reserved

StandardTimeProvision is a provide service enabling to provide a standard time reference to
the time service in order to support system time implementation. It allows a radio application to
act as a standard time source.
The principle of SystemTime and StandardTimes services groups (see section 2.5.3) is
summarized by the following figure:

Time serviceTerminal time

System time

Standard time
sources

Standard times

Standard time
references

TS

SystemTimeAccess
getCurrent<TAI/UTC>()

Radio
application

getLastUpdate<TAI/UTC>()

ReferencesNotification
notifyStandardTimeReference()

StandardTimeProvision
provide<TAI/UTC>()

System time
updates

TS

TS

Every
getCurrent…()

Every time
reference event

Every system
time update

SystemTime
services group

estimates

Time error
improvement?

estimates
StandardTimes

services group

Figure 19 Principle of SystemTime and StandardTimes services groups

2.5.3 TimeService::StandardTimes

The StandardTimes services group enables radio applications to be notified of all standard time
references generated by standard time sources, and contains the ReferencesNotification
service:

Radio
application

TimeService::StandardTimes Time service

ReferencesNotification
 notifyStandardTimeReference()

uses

Figure 20 StandardTimes services group

ReferencesNotification is a use service notifying radio applications of occurrence of a
standard time reference. It allows a radio application to directly use standard time sources.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 26
All Rights Reserved

2.5.4 TimeService::SpecificTimes

The SpecificTimes services group enables radio applications to use specific times, and contains
SpecificTimeHandling and SettingsNotification services:

Radio
application

TimeService::SpecificTimes

SpecificTimeHandling
• setSpecificTime()
• getSpecificTime()

Time service
provides

SettingsNotification
• notifySpecificTimeSetting()

uses

Figure 21 SpecificTimes services group

SpecificTimeHandling is a provide service enabling to set and get current value of a specific
time.
SettingsNotification is a use service enabling to notify occurrence of a specific time setting
by a radio application.
The principle of SpecificTimes services group is summarized by the following figure:

Time service
Terminal time

Specific time
getSpecificTime()

Radio
application

1
SpecificTimeHandling

setSpecificTime()

SettingsNotification
notifySpecificTimeSetting()

TS Specific time
update events

TS

SpecificTimes
services group

Figure 22 Principle of SpecificTimes services group

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 27
All Rights Reserved

3 Service primitives and attributes

3.1. Service primitives

This section specifies the primitives of the service interfaces of the time service API.

3.1.1 Specification approach

3.1.1.1 Primitive conformance
A primitive implementation needs to comply with the applicable normative content of the PIM
specification and of the applicable PSM specification.
A primitive implementation needs to comply with:
 Its signature, specified in section “Signature”,
 The semantics of parameters, specified in section “Parameters”,
 The exceptions listed in section “Exceptions”,
 The attributes specified in section “Attributes”.

3.1.1.2 Overview
The section “Overview” provides an informative overview of the primitive’s purpose, composed
of a short description and a sequence diagram.
For each primitive, tcall and treturn denote the call time and return time of a primitive invocation (see
[Ref1]).

3.1.1.3 Signatures
The section “Signature” specifies the signature of a primitive using the OMG Interface Definition
Language (IDL).
A signature specifies the name of the primitive, its ordered set of parameters, with each
parameter’s name, direction and applicable type.
The possible values for direction are in or out.

The applicable types are specified in Section type, which specifies all the types of the time service
API.
The signatures specified for primitives comply with the Ultra Lightweight (ULw) PIM IDL Profile
of the “IDL Profiles for Platform-Independent Modeling of SDR Applications” (see [Ref9]).
The conformance criteria for Application-Specific Interfaces specified by [Ref9], section 1.3.2
applies to the specified service interfaces: “An Application-Specific Interface is conformant with
one applicable IDL Profile if each of its operations exclusively uses capabilities of the applicable
IDL Profile.”.
The specified signatures also comply with the Ultra Lightweight (ULw) PIM IDL Profile of the
SCA 4.1 Appendix E-1 “Application Interface Definition Language Platform Independent Model
Profiles” (see [Ref10]).

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 28
All Rights Reserved

The specified signatures are common inputs to all PSM specifications.

3.1.1.4 Parameters
The section “Parameters” completes specification of parameters in specifying, in the column
“Content” of the parameters table, the semantics of each parameter.

3.1.1.5 Exceptions
The section “Exceptions” specifies the list of exceptions applicable for the primitive.
The listed exceptions are specified in Section 3.2, which specifies all the exceptions of the time
service API.

3.1.1.6 Attributes
The section “Attributes” specifies the attributes applicable to the primitive.
Most attributes are real-time capabilities.
Specification of values for real-time capabilities is optional.
Real-time capabilities can have façade-specific values.
A WCET real-time capability reflects the worst-case execution time (see [Ref1]) of a primitive
implementation of a provide service.
A WCEET real-time capability reflects the worst-case external execution time (see [Ref1]) of a
primitive implementation of a use service.
As stated in [Ref1], WCEET are difficult to verify and are more likely to be left unspecified.

3.1.2 TimeService::TerminalTime::TerminalTimeAccess

The service interface of the TerminalTimeAccess service is:

<< interface >>
TerminalTimeAccess

• getTerminalTime()
• getTerminalTimeUncertainty()

Figure 23 TerminalTime::TerminalTimeAccess service interface

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 29
All Rights Reserved

3.1.2.1 getTerminalTime()

 Overview
getTerminalTime() returns a terminal time value representative of when the call returns:

Time serviceRadio
application

getTerminalTime()

API

terminalTime

Terminal Time
= TT(t)

TT(tmeasure) tmeasuretreturn

tcall

Figure 24 getTerminalTime() overview

tmeasure denotes the physical instant close to treturn such that terminalTime = TT(tmeasure).

 Signature
The signature of getTerminalTime() is specified as:

void getTerminalTime(
 out TimeValue terminalTime
);

 Parameters
The parameters of getTerminalTime() are specified as:

Name Type Direction Semantics
terminalTime TimeValue

See 3.4.1
out Terminal time value representative of

when getTerminalTime() returns.
Referenced to the initial value of terminal
time.

Never equal to UndefinedTime.

Table 4 getTerminalTime() parameters

 Exceptions
None.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 30
All Rights Reserved

 Attributes
The real-time capabilities attached to getTerminalTime() are specified as:

Name Unit Description
timeliness ns |tmeasure – treturn| < timeliness
WCET ns treturn < tcall + WCET

Table 5 getTerminalTime() real-time capabilities

timeliness characterizes the maximum absolute difference between the return time and
measured terminalTime.
For reduction of the value of timeliness, a time service may compensate systematic delays
adding a positive offset to the actually measured terminal time. This may cause the returned values
to be in the future compared to return time.
Illustration

On FPGA façades, timeliness is typically equal to some clock cycles, e.g. some 10 ns for a 100 MHz clock,
On GPP façades, timeliness is typically close to the RTOS tasking transition time, e.g. some ms.

The following figure illustrates the real-time capabilities of getTerminalTime():

Time serviceRadio
application

getTerminalTime()

API

terminalTime

Terminal Time
= TT(t)

TT(tmeasure) |treturn-tmeasure | <
timeliness

treturn

tcall
tmeasure

treturn

treturn < tcall + WCET treturn - timeliness

treturn + timeliness
tcall + WCET

Figure 25 getTerminalTime() real-time capabilities

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 31
All Rights Reserved

3.1.2.2 getTerminalTimeRateUncertainty()

 Overview
getTerminalTimeRateUncertainty() returns the current value of
terminalTimeRateUncertainty variable:

Time serviceRadio
application

getTerminalTimeRateUncertainty()

API

terminalTimeRateUncertainty
treturn

tcall

• terminalTimeRateUncertainty

Figure 26 getTerminalTimeRateUncertainty() overview

 Signature
The signature of getTerminalTimeRateUncertainty() is specified as:

void getTerminalTimeRateUncertainty(
 out RateUncertainty terminalTimeRateUncertainty
);

 Parameters
The parameters of getTerminalTimeRateUncertainty() are specified as:

Name Type Direction Semantics
terminalTimeRateUncertainty RateUncertainty

See 3.4.3
out Current value of

terminalTimeRateUncertainty.

Equal to UnknownRateUncertainty if
the time service has no trustable value.

Table 6 getTerminalTimeRateUncertainty() parameters

 Exceptions
None.

 Attributes
The real-time capabilities attached to getTerminalTimeRateUncertainty() are specified as:

Name Unit Description
WCET ns treturn < tcall + WCET

Table 7 getTerminalTimeRateUncertainty() real-time capabilities

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 32
All Rights Reserved

3.1.3 TimeService::SystemTime::SystemTimeAccess

The service interface of the SystemTimeAccess service is:

<< interface >>
SystemTimeAccess

• getCurrentTAI()
• getCurrentUTC()
• getLastUpdateTAI()
• getLastUpdateUTC()

Figure 27 SystemTime::SystemTimeAccess service interface

3.1.3.1 getCurrentTAI()

 Overview
getCurrentTAI() returns the current TAI value of system time, with the associated time stamp and
time uncertainty:

Time serviceRadio
application

getCurrentTAI()

API

currentTAI
timeStamp

timeUncertainty

Terminal time
=TT(t)

System time
= ST(t)

ST(tmeasure) TT(tstamp)

tcall

treturn

Figure 28 getCurrentTAI() overview

tmeasure denotes the physical instant close to treturn such that currentTAI = ST(tmeasure).
tstamp denotes the physical instant matching tmeasure such that timeStamp = TT(tstamp).

 Signature
The signature of getCurrentTAI() is specified as:

void getCurrentTAI(
 out TimeValue currentTAI,
 out TimeValue timeStamp,
 out TimeUncertainty timeUncertainty
);

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 33
All Rights Reserved

 Parameters
The parameters of getCurrentTAI() are specified as:

Name Type Direction Semantics
currentTAI TimeValue

See 3.4.1
out TAI value estimated by system time close

to return time.
Referenced to 00:00:00, 1 January 2000
UTC, with no adjustment for leap seconds.

Equal to UndefinedTime if the time
service has not acquired system time.

timeStamp TimeValue
See 3.4.1

out Time stamp (see 1.6.1) attached to
currentTAI.
Referenced to the initial value of terminal
time.

Possibly equal to UndefinedTime if the
time service has not acquired system time.

timeUncertainty TimeUncertainty
See 3.4.2

out Time uncertainty attached to currentTAI.

Equal to UnknownTimeUncertainty if
value is unknown to the time service.

Table 8 getCurrentTAI() parameters

 Exceptions
None.

 Attributes
The real-time capabilities attached to getCurrentTAI() are specified as:

Name Unit Description
timeliness ns |tmeasure – treturn| < timeliness
WCET ns treturn < tcall + WCET

Table 9 getCurrentTAI() real-time capabilities

timeliness characterizes the maximum absolute difference between the return time and returned
currentTAI.
For reduction of the value of timeliness, a time service may compensate systematic delays
adding a positive offset to the actually measured system time. This may cause the returned values
to be in the future compared to return time.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 34
All Rights Reserved

The following figure illustrates the real-time capabilities of getCurrentTAI():

Time serviceRadio
application

getCurrentTAI()

API

currentTAI
timeStamp

timeUncertainty
ETESys +
stampingUncertainty

Terminal time
=TT(t)

System time
= ST(t)

ST(tmeasure) tmeasure

treturn
timeStamptreturn

tcall

tcall + WCET
|treturn-tmeasure | <
timeliness

treturn - timeliness

treturn + timeliness

treturn < tcall + WCET

|ST(tmeasure) – tmeasure| <
ETESys (@ 95%)

tmeasure – stampingUncertainty

tmeasure + stampingUncertainty

tmeasure

|timeStamp -TT(tmeasure)| <
stampingUncertainty

Figure 29 getCurrentTAI() real-time capabilities

3.1.3.2 getCurrentUTC()

 Overview
getCurrentUTC() returns the current UTC value of system time, with the associated time stamp and
time uncertainty:

Time serviceRadio
application

getCurrentUTC()

API

currentUTC
timeStamp

timeUncertainty

Terminal time
=TT(t)

System time
= ST(t)

ST(tmeasure) TT(tstamp)

tcall

treturn

Figure 30 getCurrentUTC() overview

tmeasure denotes the physical instant close to treturn such that currentUTC = ST(tmeasure).
tstamp denotes the physical instant matching tmeasure such that timeStamp = TT(tstamp).

 Signature
The signature of getCurrentUTC() is specified as:

void getCurrentUTC(
 out TimeValue currentUTC,
 out TimeValue timeStamp,
 out TimeUncertainty timeUncertainty
);

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 35
All Rights Reserved

 Parameters
The parameters of getCurrentUTC() are specified as:

Name Type Direction Semantics
currentUTC TimeValue

See 3.4.1
out UTC value estimated by system time close

to return time.
Referenced to 00:00:00, 1 January 2000
UTC, adjusted to reflect leap seconds.

Equal to UndefinedTime if the time
service has not acquired system time.

timeStamp TimeValue
See 3.4.1

out Time stamp (see 1.6.1) attached to
currentUTC.
Referenced to the initial value of terminal
time.

Possibly equal to UndefinedTime if the
time service has not acquired system time.

timeUncertainty TimeUncertainty
See 3.4.2

out Time uncertainty attached to currentUTC.

Equal to UnknownTimeUncertainty if
value is unknown to the time service.

Table 10 getCurrentUTC() parameters

 Exceptions
None.

 Attributes
The real-time capabilities attached to getCurrentUTC() are specified as:

Name Unit Description
timeliness ns |tmeasure – treturn| < timeliness
WCET ns treturn < tcall + WCET

Table 11 getCurrentUTC() real-time capabilities

timeliness characterizes the maximum absolute difference between the return time and returned
currentUTC.
For reduction of the value of timeliness, a time service may compensate systematic delays
adding a positive offset to the actually measured system time. This may cause the returned values
to be in the future compared to return time.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 36
All Rights Reserved

The following figure illustrates the real-time capabilities of getCurrentUTC():

Time serviceRadio
application

getCurrentUTC()

API

currentUTC
timeStamp

timeUncertainty
ETESys +
stampingUncertainty

Terminal time
=TT(t)

System time
= ST(t)

ST(tmeasure) tmeasure

treturn
timeStamptreturn

tcall

tcall + WCET
|treturn-tmeasure | <
timeliness

treturn - timeliness

treturn + timeliness

treturn < tcall + WCET

|ST(tmeasure) – tmeasure| <
ETESys (@ 95%)

tmeasure – stampingUncertainty

tmeasure + stampingUncertainty

tmeasure

|timeStamp -TT(tmeasure)| <
stampingUncertainty

Figure 31 getCurrentUTC() real-time capabilities

3.1.3.3 getLastUpdateTAI()

 Overview
getLastUpdateTAI() returns a system time reference (see 1.5.2.3) in TAI form corresponding to the
last system time update:

Time serviceRadio
application

getLastUpdateTAI()

API

lastUpdateTAI
timeStamp

timeUncertainty

Terminal time
=TT(t)

System time
= ST(t)

ST(tupdate) TT(tupdate)

tcall

treturn

Last system
time update

Figure 32 Principle of getLastUpdateTAI()

tupdate denotes the physical instant at which the last system time update occurred.

 Signature
The signature of getLastUpdateTAI() is specified as:

void getLastUpdateTAI(
 out TimeValue lastUpdateTAI,
 out TimeValue timeStamp,
 out TimeUncertainty timeUncertainty
);

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 37
All Rights Reserved

 Parameters
The parameters of getLastUpdateTAI() are specified as:

Name Type Direction Semantics
lastUpdateTAI TimeValue

See 3.4.1
out TAI value estimated by system time when

the last system time update occurred.
Referenced to 00:00:00, 1 January 2000
UTC, with no adjustment for leap seconds.

Equal to UndefinedTime if the time
service has not acquired system time.

timeStamp TimeValue
See 3.4.1

out Time stamp (see 1.6.1) attached to
lastUpdateTAI.
Referenced to the initial value of terminal
time.

Possibly equal to UndefinedTime if the
time service has not acquired system time.

timeUncertainty TimeUncertainty
See 3.4.2

out Time uncertainty attached to
lastUpdateTAI, corresponding to when the
last system time update occurred.

Equal to UnknownTimeUncertainty if
value is unknown to the time service.

Table 12 getLastUpdateTAI() parameters

 Exceptions
None.

 Attributes
The real-time capabilities attached to getLastUpdateTAI() are specified as:

Name Unit Description
reactivity ns tupdate < tcall - reactivity
WCET ns treturn < tcall + WCET

Table 13 getLastUpdateTAI() real-time capabilities

reactivity characterizes how much in advance from call time does the system time update need
to have taken place in order to guarantee that it is reflected by the call.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 38
All Rights Reserved

The following figure illustrates the real-time capabilities of getLastUpdateTAI():

Time serviceRadio
application

getLastUpdateTAI()

API

lastUpdateTAI
timeStamp

timeUncertainty
STU +
stampingUncertainty

Terminal time
=TT(t)

System time
= ST(t)

ST(tupdate) tupdate

tcall - reactivity timeStamp

treturn

tcall

tcall + WCET

tupdate < tcall - reactivity

treturn < tcall + WCET

|ST(tupdate) – tupdate| <
STU (@ 95%)

tupdate – stampingUncertainty

tupdate + stampingUncertainty

tupdate

|timeStamp - TT(tupdate)| <
stampingUncertainty

tcall

Figure 33 getLastUpdateTAI() capabilities

3.1.3.4 getLastUpdateUTC()

 Overview
getLastUpdateUTC() returns the system time reference (see 1.5.2.3) in UTC form corresponding
to the last system time update:

Time serviceRadio
application

getLastUpdateUTC()

API

lastUpdateUTC
timeStamp

timeUncertainty

Terminal time
=TT(t)

System time
= ST(t)

ST(tupdate) TT(tupdate)

tcall

treturn

Last system
time update

Figure 34 Principle of getLastUpdateUTC()

tupdate denotes the physical instant at which the last system time update occurred.

 Signature
The signature of getLastUpdateUTC() is specified as:

void getLastUpdateUTC(
 out TimeValue lastUpdateUTC,
 out TimeValue timeStamp,
 out TimeUncertainty timeUncertainty
);

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 39
All Rights Reserved

 Parameters
The parameters of getLastUpdateUTC() are specified as:

Name Type Direction Semantics
lastUpdateUTC TimeValue

See 3.4.1
out UTC value estimated by system time when

the last system time update occurred.
Referenced to 00:00:00, 1 January 2000
UTC, adjusted to reflect leap seconds.

Equal to UndefinedTime if the time
service has not acquired system time.

timeStamp TimeValue
See 3.4.1

out Time stamp (see 1.6.1) attached to
lastUpdateUTC.
Referenced to the initial value of terminal
time.

Possibly equal to UndefinedTime if the
time service has not acquired system time.

timeUncertainty TimeUncertainty
See 3.4.2

out Time uncertainty attached to
lastUpdateUTC, corresponding to when
the last system time update occurred.

Equal to UnknownTimeUncertainty if
value is unknown to the time service.

Table 14 getLastUpdateUTC() parameters

 Exceptions
None.

 Attributes
The real-time capabilities attached to getLastUpdateUTC() are specified as:

Name Unit Description
reactivity Ns tupdate < tcall - reactivity
WCET ns treturn < tcall + WCET

Table 15 getLastUpdateUTC() real-time capabilities

reactivity characterizes how much in advance from call time does the system time update need
to have taken place in order to guarantee that it reflected by the call.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 40
All Rights Reserved

The following figure illustrates the real-time capabilities of getLastUpdateUTC():

Time serviceRadio
application

getLastUpdateUTC()

API

lastUpdateUTC
timeStamp

timeUncertainty
STU +
stampingUncertainty

Terminal time
=TT(t)

System time
= ST(t)

ST(tupdate) tupdate

tcall - reactivity timeStamp

treturn

tcall

tcall + WCET

tupdate < tcall - reactivity

treturn < tcall + WCET

|ST(tupdate) – tupdate| <
STU (@ 95%)

tupdate – stampingUncertainty

tupdate + stampingUncertainty

tupdate

|timeStamp - TT(tupdate)| <
stampingUncertainty

tcall

Figure 35 Meaning of getLastUpdateUTC() capabilities

3.1.4 TimeService::SystemTime::StandardTimeProvision

The service interface of the StandardTimeProvision service is:

<< interface >>
StandardTimeProvision

• provideUTC()
• provideTAI()

Figure 36 SystemTime::StandardTimeProvision service interface

3.1.4.1 provideTAI()

 Overview
provideTAI() provides a standard time reference (see 1.6.4.2) in the past using TAI; for system
time update to take place the provided information must decrease time uncertainty of the system
time:

Time serviceRadio
application

provideTAI(
providedTAI,
timeStamp,

timeUncertainty,
sourceId)

API

Terminal time
=TT(t)

System time
= ST(t)

System time update, in case time
uncertainty decreases

Provided standard
time reference

tcall

treturn

providedTAI

providedTAI + (TT(tupdate) – timeStamp)

timeStamp

tupdate
TT(tupdate)

tref tref

tupdate

Figure 37 provideTAI() overview

tref denotes the physical instant corresponding to the provided standard time reference.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 41
All Rights Reserved

tupdate denotes the physical instant at which the system time update occurs, if the provided standard
time reference improved time uncertainty.

 Signature
The signature of provideTAI() is specified as:

void provideTAI(
 in TimeValue providedTAI,
 in TimeValue timeStamp,
 in TimeUncertainty timeUncertainty,
 in int sourceId
);

 Parameters
The parameters of provideTAI() are specified as:

Name Type Direction Semantics
providedTAI TimeValue

See 3.4.1
in TAI value to be considered for eventual

system time update.
Referenced to 00:00:00, 1 January 2000
UTC, with no adjustment for leap seconds.

The candidate value for system time update
is equal to:
providedTAI + TT(tupdate) – timeStamp.

If equal to UndefinedTime, time service
behavior is unspecified.

timeStamp TimeValue
See 3.4.1

in Time stamp (see 1.6.1) attached to
providedTAI.
Referenced to the initial value of terminal
time.

If equal to UndefinedTime, the behavior
of time service is unspecified.

timeUncertainty TimeUncertainty
See 3.4.2

in Time uncertainty attached to providedTAI.
The candidate value for system time update
is equal to:
timeUncertainty +∫ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) ∙ 𝑆𝑆𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠

𝑡𝑡𝑟𝑟𝑠𝑠𝑟𝑟
.

If equal to UnknownTimeUncertainty,
the behavior of time service is unspecified.

sourceId int in Radio application identification as the
standard time source having delivering the
standard time reference.

Table 16 provideTAI() parameters

sourceId should uniquely identify a given standard time source.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 42
All Rights Reserved

 Exceptions
The exceptions attached to the primitive are specified as (see section 3.2.1):

 FutureTimeStamp.

 Attributes
The real-time capabilities attached to provideTAI() are specified as:

Name Unit Description
reactivity ns tupdate < tcall + reactivity
WCET ns treturn < tcall + WCET

Table 17 provideTAI() real-time capabilities

reactivity characterizes how far from call time the system time update can take place.

The following figure illustrates the real-time capabilities of provideTAI():

Time serviceRadio
application

API

Terminal time
=TT(t)

System time
= ST(t)

treturn

tcall

tcall + WCET

treturn < tcall + WCET

tcall + reactivity

System time update, in case of time
error improvement

Provided standard
time reference

providedTAI

providedTAI + (TT(tupdate) – timeStamp)

timeStamp

tupdate
TT(tupdate)

tref tref

tupdate

provideTAI(
providedTAI,
timeStamp,
timeError,
sourceId)

Figure 38 provideTAI() real-time capabilities

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 43
All Rights Reserved

3.1.4.2 provideUTC()

 Overview
provideUTC() provides a standard time reference (see 1.6.4.2) in the past using UTC; for system
time update to take place the provided information must decrease time uncertainty of the system
time:

Time serviceRadio
application

provideUTC(
providedUTC,
timeStamp,

timeUncertainty,
sourceId)

API

Terminal time
=TT(t)

System time
= ST(t)

System time update, in case of
time error improvement

Provided standard
time reference

tcall

treturn

providedUTC

providedUTC + (TT(tupdate) – timeStamp)

timeStamp

tupdate
TT(tupdate)

tref tref

tupdate

Figure 39 Principle of provideUTC()

tref denotes the physical instant corresponding to the provided standard time reference.
tupdate denotes the physical instant at which the system time update occurs, if the provided standard
time reference improved time uncertainty.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 44
All Rights Reserved

 Signature
The signature of provideUTC() is specified as:

void provideUTC(
 in TimeValue providedUTC,
 in TimeValue timeStamp,
 in TimeUncertainty timeUncertainty,
 in int sourceId
);

 Parameters
The parameters of provideUTC() are specified as:

Name Type Direction Semantics
providedUTC TimeValue

See 3.4.1
in UTC value to be considered for eventual

system time update.
Referenced to 00:00:00, 1 January 2000
UTC, adjusted to reflect leap seconds.

The candidate value for system time update
is equal to providedUTC + TT(tupdate) –
timeStamp.

If equal to UndefinedTime, time service
behavior is unspecified.

timeStamp TimeValue
See 3.4.1

in Time stamp (see 1.6.1) attached to
providedUTC.
Referenced to the initial value of terminal
time.

If equal to UndefinedTime, the behavior
of time service is unspecified.

timeUncertainty TimeUncertainty
See 3.4.2

in Time uncertainty attached to
providedUTC.
The candidate value for system time update
is equal to:
timeUncertainty +∫ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) ∙ 𝑆𝑆𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠

𝑡𝑡𝑟𝑟𝑠𝑠𝑟𝑟
.

If equal to UnknownTimeUncertainty,
the behavior of time service is unspecified.

sourceId int in Radio application identification as the
standard time source having delivering the
standard time reference.

Table 18 provideUTC() parameters

sourceId should uniquely identify a given standard time source.

 Exceptions
The exceptions attached to the primitive are specified as (see section 3.2.1):

 FutureTimeStamp.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 45
All Rights Reserved

 Attributes
The real-time capabilities attached to provideUTC() are specified as:

Name Unit Description
reactivity ns tupdate < tcall + reactivity
WCET ns treturn < tcall + WCET

Table 19 provideUTC() real-time capabilities

reactivity characterizes how long, after call time, may the system time update take place.

The following figure illustrates the real-time capabilities of provideUTC():

Time serviceRadio
application

provideUTC(
providedUTC,
timeStamp,
timeError,
sourceId)

API

Terminal time
=TT(t)

System time
= ST(t)

treturn

tcall

tcall + WCET

treturn < tcall + WCET

tcall + reactivity

System time update, in case of time
error improvement

Provided standard
time reference

providedUTC

providedUTC + (TT(tupdate) – timeStamp)

timeStamp

tupdate
TT(tupdate)

tref tref

tupdate

Figure 40 provideUTC() real-time capabilities

3.1.5 TimeService::StandardTimes::ReferencesNotification

The service interface of the ReferencesNotification service is:

<< interface >>
ReferencesNotification

• notifyStandardTimeReference()

Figure 41 StandardTimes::ReferencesNotification service interface

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 46
All Rights Reserved

3.1.5.1 notifyStandardTimeReference()

 Overview
notifyStandardTimeReference() notifies the radio application of an occurrence of a standard time
reference (see 1.5.2.3) delivered by a standard time source using TAI and UTC representations:

Time serviceRadio
application

notifyStandardTimeReference(
referenceTAI,
referenceUTC,

timeStamp,
timeUncertainty,

sourceId)

API

Terminal time
=TT(t)

standard time
reference

timeStamp
tref tref

referenceTAI
referenceUTC

sourceId
Standard time source

tcall

treturn

Figure 42 notifyStandardTimeReference() overview

Design of radio applications need to take into account that, when all standard time sources are
inactive, no standard time references are notified.
Each standard time reference generated by standard time source is notified to the radio
application via a dedicated call. The standard time source having generated the standard time
reference has an identifier which is unique within the time service.

 Signature
The signature of notifyStandardTimeReference() is specified as:

void notifyStandardTimeReference(
 in TimeValue referenceTAI,
 in TimeValue referenceUTC,
 in TimeValue timeStamp,
 in TimeUncertainty timeUncertainty,
 in int sourceId
);

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 47
All Rights Reserved

 Parameters
The parameters of notifyStandardTimeReference() are specified as:

Name Type Direction Semantics
referenceTAI TimeValue

See 3.4.1
in TAI value estimated by the standard time

source.
Referenced to 00:00:00, 1 January 2000
UTC, with no adjustment for leap seconds.

Never equal to UndefinedTime.

referenceUTC TimeValue
See 3.4.1

in UTC value estimated by the standard time
source.
Referenced to 00:00:00, 1 January 2000
UTC, adjusted to reflect leap seconds.

Never equal to UndefinedTime.

timeStamp TimeValue
See 3.4.1

in Time stamp (see 1.6.1) attached to
referenceTAI and referenceUTC.
Referenced to the initial value of terminal
time.

Never equal to UndefinedTime.

timeUncertainty TimeUncertainty
See 3.4.2

in Time uncertainty attached to referenceTAI
and referenceUTC.

Equal to UnknownTimeUncertainty if
time service is not able to determine time
uncertainty.
Never equal to UndefinedTime.

sourceId int in Identifier of the standard time source that
provided the standard time reference
notified by the call.

Table 20 notifyStandardTimeReference() parameters

 Exceptions
None.

 Attributes
The real-time capabilities attached to notifyStandardTimeReference() are specified as:

Name Unit Description
reactivity ns tcall < tref + reactivity
WCEET ns treturn < tcall + WCEET

Table 21 notifyStandardTimeReference() real-time capabilities

reactivity characterizes how long after occurrence of the standard time reference the call to
notifyStandardTimeReference() can take place.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 48
All Rights Reserved

The following figure illustrates the real-time capabilities of notifyStandardTimeReference():

Time serviceRadio
application

notifyStandardTimeReference(
referenceTAI,
referenceUTC,

timeStamp,
timeUncertainty,

sourceId)

API

Terminal time
=TT(t)

standard time
reference

timeStamp
tref tref

referenceTAI
referenceUTC

sourceId
Standard time source

tcall

treturn

tref + reactivity

tcall + WCEET

Figure 43 notifyStandardTimeReference() real-time capabilities

3.1.6 TimeService::SpecificTimes::SpecificTimeHandling

The service interface of the SpecificTimeHandling service is:

<< interface >>
SpecificTimeHandling

• setSpecificTime()
• getSpecificTime()

Figure 44 SystemTimes::SpecificTimeHandling service interface

3.1.6.1 setSpecificTime()

 Overview
setSpecificTime() provides the time service with a specific time reference in the past used to set the
identified specific time:

Time serviceRadio
application

setSpecificTime(
specificTimeId,
specificTime,
timeStamp,

timeUncertainty)

API

Terminal time
=TT(t)

Specific time
= SpeT(t)

Specific time setting
(systematic)

Provided specific
time reference

tcall

treturn

specificTime

specificTime + (TT(tsetting) – timeStamp)

timeStamp

tsetting
TT(tsetting)

tref tref

tsetting

specificTimeId

Figure 45 setSpecificTime() overview

tref denotes the physical instant corresponding to the provided specific time reference.
tsetting denotes the physical instant at which setting of specific time occurs.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 49
All Rights Reserved

 Signature
The signature of setSpecificTime() is specified as:

void setSpecificTime(
 in int specificTimeId,
 in TimeValue specificTime,
 in TimeValue timeStamp,
 in TimeUncertainty timeUncertainty
);

 Parameters
The parameters of setSpecificTime() are specified as:

Name Type Direction Semantics
specificTimeId int in Identifier of the specific time to be set.

specificTime TimeValue
See 3.4.1

in The value to be used for specific time
setting is equal to specificTime + TT(tsetting)
– timeStamp.

If equal to UndefinedTime, the behavior
of time service is unspecified.

timeStamp TimeValue
See 3.4.1

in Time stamp (see 1.6.1) attached to
specificTime.
Referenced to the initial value of terminal
time.

If equal to UndefinedTime, the behavior
of time service is unspecified.

timeUncertainty TimeUncertainty
See 3.4.2

in Time uncertainty attached to specificTime.
The value at specific time setting is equal
to:
timeUncertainty +∫ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) ∙ 𝑆𝑆𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑡𝑡𝑟𝑟𝑠𝑠𝑟𝑟
.

If equal to UndefinedTime, the behavior
of time service is unspecified.
If equal to UnknownTimeUncertainty,
time uncertainty will remain unknown
until a value is set.

Table 22 setSpecificTime() parameters

 Exceptions
The exceptions attached to the primitive are specified as (see section 3.2.1):
 FutureTimeStamp,
 InvalidSpecificTimeId.

 Attributes
The maxSpecificTimes capability (see section 1.5.3.3.5) sets the validity range of
specificTimeId being from 1 to maxSpecificTimes.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 50
All Rights Reserved

The real-time capabilities attached to setSpecificTime() are specified as:

Name Unit Description
reactivity ns tsetting < tcall + reactivity
WCET ns treturn < tcall + WCET

Table 23 setSpecificTime() real-time capabilities

reactivity characterizes how far from call time the specific time update event can take place.

The following figure illustrates the real-time capabilities of setSpecificTime():

Time serviceRadio
application

API

Terminal time
=TT(t)

treturn

tcall

tcall + WCET

treturn < tcall + WCET

tcall + reactivity

specificTime

specificTime + (TT(tsetting) – timeStamp)

timeStamp

tsetting
TT(tsetting)

tref tref

tsetting

void setSpecificTime(
specificTimeId,
specificTime,
timeStamp,

timeUncertainty)

Specific time
= SpeT(t)

specificTimeId

Provided specific
time reference

Specific time setting
(systematic)

Figure 46 setSpecificTime () real-time capabilities

3.1.6.2 getSpecificTime()

 Overview
getSpecificTime() returns the current value of specific time, with the associated time stamp and
time uncertainty:

Time serviceRadio
application

getSpecificTime(
specificTimeId, …)

API

Terminal time
=TT(t)

Specific time
= SpeT(t)

tcall

treturn

specificTime timeStamp

tmeasure tstamp

specificTimeId

specificTime,
timeStamp,

timeUncertainty

SpeT(tmeasure) TT(tstamp)

Figure 47 getSpecificTime() overview

tmeasure denotes the physical instant close to treturn such that specificTime = SpeT(tmeasure).
tstamp denotes the physical instant matching tmeasure such that timeStamp = TT(tstamp).

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 51
All Rights Reserved

 Signature
The signature of getSpecificTime() is specified as:

void getSpecificTime(
 in int specificTimeId,
 out TimeValue specificTime,
 out TimeValue timeStamp,
 out TimeUncertainty timeUncertainty
);

 Parameters
The parameters of getSpecificTime() are specified as:

Name Type Direction Semantics
specificTimeId int in Identifier of the specific time to be get.

specificTime TimeValue
See 3.4.1

out Value of specific time close to when
getSpecificTime() returns.

Equal to UndefinedTime if the specific
time was not set.

timeStamp TimeValue
See 3.4.1

out Time stamp (see 1.6.1) attached to
specificTime.
Referenced to the initial value of terminal
time.

May be equal to UndefinedTime if the
specific time was not set.

timeUncertainty TimeUncertainty
See 3.4.2

out Time uncertainty attached to specificTime.

Equal to UnknownTimeUncertainty if
the specific time was not set or set with
UnknownTimeUncertainty.
May be equal to UndefinedTime if the
specific time was not set.

Table 24 getSpecificTime() parameters

 Exceptions
The exceptions attached to the primitive are specified as (see section 3.2.1):

 InvalidSpecificTimeId.

 Attributes
The maxSpecificTimes capability (see section 1.5.3.3.5) sets the validity range of
specificTimeId being from 1 to maxSpecificTimes.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 52
All Rights Reserved

The real-time capabilities attached to getSpecificTime() are specified as:

Name Unit Description
timeliness ns |tmeasure – treturn| < timeliness
WCET ns treturn < tcall + WCET

Table 25 getSpecificTime() real-time capabilities

timeliness characterizes how close to the return time the returned specificTime was measured.

The following figure illustrates the real-time capabilities of getSpecificTime():

Time serviceRadio
application

API

specificTime
timeStamp

timeUncertainty
ETESpe +
stampingUncertainty

Terminal time
=TT(t)

SpeT(tmeasure) tmeasure

treturn
timeStamptreturn

tcall

tcall + WCET
|treturn-tmeasure | <
timeliness

treturn - timeliness

treturn + timeliness

treturn < tcall + WCET

|SpeT(tmeasure) – tmeasure|
< ETESpe (@ 95%)

tmeasure – stampingUncertainty

tmeasure + stampingUncertainty

tmeasure

|timeStamp -TT(tmeasure)| <
stampingUncertainty

getSpecificTime(
specificTimeId,..)

Specific time
= SpeT(t)

specificTimeId

Figure 48 getSpecificTime() real-time capabilities

3.1.7 TimeService::SpecificTimes::SettingsNotification

The service interface of the SettingsNotification service is:

<< interface >>
SettingsNotification

• notifySpecificTimeSetting()

Figure 49 SpecificTimes::SettingsNotification service interface

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 53
All Rights Reserved

3.1.7.1 notifySpecificTimeSetting()

 Overview
notifySpecificTimeSetting() notifies the radio application that a specific time has been set by a
radio application, using setSpecificTime():

timeStamp

Time serviceRadio
application A

notifySpecificTimeSetting(
specificTimeId,
specificTime,
timeStamp,

timeUncertainty)

API

Terminal time
=TT(t)

tcall

treturn

setSpecificTime(
specificTimeId, …)

Specific time
= SpeT(t)

Specific time
setting

specificTime tsetting tsetting

specificTimeId
Radio

application B

notifySpecificTimeSetting(…)

Figure 50 notifySpecificTimeSetting() overview

 Signature
The signature of notifySpecificTimeSetting() is specified as:

void notifySpecificTimeSetting(
 in int specificTimeId,
 in TimeValue specificTime,
 in TimeValue timeStamp,
 in TimeUncertainty timeUncertainty
);

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 54
All Rights Reserved

 Parameters
The parameters of notifySpecificTimeSetting() are specified as:

Name Type Direction Semantics
specificTimeId int in Identifier of the specific time for which a

setting took place.
specificTime TimeValue

See 3.4.1
in Specific time value applied by the reported

setting.

Never equal to UndefinedTime.

timeStamp TimeValue
See 3.4.1

in Time stamp (see 1.6.1) attached to
specificTime.
Referenced to the initial value of terminal
time.

Never equal to UndefinedTime.

timeUncertainty TimeUncertainty
See 3.4.2

in Time uncertainty attached to specificTime.

Equal to UnknownTimeUncertainty if
the specific time was set with
UnknownTimeUncertainty.
Never equal to UndefinedTime.

Table 26 notifySpecificTimeSetting() parameters

 Exceptions
None.

 Attributes
The real-time capabilities attached to notifySpecificTimeSetting() are specified as:

Name Unit Description
Reactivity ns tcall < tsetting + reactivity
WCEET ns treturn < tcall + WCEET

Table 27 notifySpecificTimeSetting() real-time capabilities

reactivity characterizes how long, after occurrence of the specific time setting, the call to
notifySpecifcTimeSetting() can take place.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 55
All Rights Reserved

The following figure illustrates the real-time capabilities of notifySpecificTimeSetting():

timeStamp

Time serviceRadio
application A

notifySpecificTimeSetting(
specificTimeId,
specificTime,
timeStamp,

timeUncertainty)

API

Terminal time
=TT(t)

tcall

treturn

setSpecificTime(
specificTimeId, …)

Specific time
= SpeT(t)

Specific time
setting

specificTime tsetting tsetting

specificTimeId
Radio

application B

tcall + WCEET

tsetting + reactivity

Figure 51 notifySpecificTimeSetting() real-time capabilities

3.2. Exceptions

An exception is an abnormal situation related to the calling context or to parameters values,
detected during execution of a called primitive (see [Ref1]).
Exceptions are only specified for provide services.

3.2.1 Specification

General exceptions are specified by the following table:

Name Applies to Description
FutureTimeStamp provideTAI()

provideUTC()
setSpecificTime()

The provided standard time reference is in the future
compared to tcall.

Table 28 Specification of general exceptions

Range exceptions are specified by the following table:

Name Applies to Description
InvalidSpecificTimeId setSpecificTime()

getSpecificTime()
specificTimeId is greater than maxSpecificTimes or
lower than 1.

Table 29 Specification of range exceptions

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 56
All Rights Reserved

3.2.2 Associated capabilities

The exceptionsActive capability is specified as a boolean that indicates if the time service
raises exceptions.
The supportedExceptions capability is specified as a set of booleans indicating, for each
specified exception, if it is raised by the time service.

3.3. Attributes

This section specifies the attributes attached to time service.

3.3.1 Overview

Attributes are characterized by the lifespan of their constant value (see [Ref1]):
 Capabilities: attributes constant over the lifetime of time service,
 Properties: attributes constant during the CONFIGURED state,
 Variables: attributes not expected to be constant.

How capabilities and properties values are accessible to the radio application is unspecified.
Variables are only accessible to the radio application via access primitives.
See section 2.4.1 for specification of the CONFIGURED state.

3.3.2 Attributes conformance

The specification of a value for an attribute of a time service is either mandatory or optional.
For mandatory attributes the implementer must specify a value whereas for optional attributes the
implementer may or may not specify a value.
R03 A time service shall, for each attribute for which a value is specified, comply with the related
specified content.
Depending on implementation choices, specification of attribute values can be part of the
documentation of the time service and/or can be implemented in software.

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 57
All Rights Reserved

3.3.3 Capabilities

The following table lists the general capabilities of a time service:

Capability Meaning Section
terminalTimeRateMaxUncertainty Scalar that reflects the maximum terminal

time rate uncertainty of a time service, in
ppb.

1.5.3.1.7

maxSpecificTimes Integer that captures the number of specific
times implemented by a time service.

1.5.3.3.5

stampingUncertainty Scalar reflecting the stamping uncertainty
achieved by a service of a time service,
expressed in ns.

1.6.1.3

selectedOptionalServices Set of boolean values indicating which
optional services specified by the time
service facility are implemented.

2.3.2

exceptionsActive

Boolean that indicates if the time service
raises exceptions.

3.2.2

supportedExceptions Set of booleans indicating, for each specified
exception, if it is raised by the time service.

3.2.2

Table 30 Time service general capabilities

Specification of values for all general capabilities is mandatory.
Section 3.1 specifies the capabilities attached to primitives. Specification of values for these
capabilities is optional.

3.3.4 Properties

None.

3.3.5 Variables

The following table lists the specified variables:

Variable Meaning Section
terminalTimeRateUncertainty Scalar that reflects the current terminal time

rate uncertainty of a time service, in ppb.
1.5.3.1.8

Table 31 Variables

The following table lists the access primitives and the variables they give access to:

Variable access primitive Accessed variable Section
getTerminalTimeRateUncertainty() terminalTimeRateUncertainty 3.1.2.2

Table 32 Variables access primitives

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 58
All Rights Reserved

3.4. Types

3.4.1 TimeValue

The TimeValue type is specified as a structure that reflects a time value using a seconds and
nanoseconds 32-bit signed fields, where the seconds field reflects the number of entire seconds
that have physically elapsed since a referenced time and the nanoseconds field reflects the
remaining number of nanoseconds.
UndefinedTime is specified as the reserved value reflecting an undefined time value.

The associated declarations are specified as:
struct TimeValue {
 long seconds, // in seconds
 long nanoseconds}; // in nanoseconds (<1.000.000.000)

const TimeValue UndefinedTime = {0xFFFFFFFF, 0xFFFFFFFF};

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 59
All Rights Reserved

3.4.2 TimeUncertainty

The TimeUncertainty type is specified as a 32-bit signed integer that reflects a time uncertainty
value, in ns.
A time uncertainty is the addition of an estimation uncertainty (see section 1.6.2) and a stamping
uncertainty (see section 1.6.1.2).
The natural valid values for TimeUncertainty range from 0 to 2,000,000,000.

Beyond<2^n>SecTimeUncertainty, for n = 1 to 14, are specified as reserved values that
reflect higher values of time uncertainty, ranging from beyond 2 s to beyond 16384 s.
UnknownTimeUncertainty is specified as the reserved value reflecting that the time service is
unable to evaluate time uncertainty while the time itself is valid.
UndefinedTime is specified as the reserved value reflecting that the time service is unable to
return a time value. This implies that the time uncertainty is unknown.
The following table summarizes the possible TimeUncertainty values:

Table 33 Possible values for TimeUncertainty

Identifier Meaning Hexadecimal Decimal
None Time uncertainty, in ns

(for values up to 2 s)
0x0 to
0x77359400

0 to
2,000,000,000

Beyond2SecTimeUncertainty 2 s < time uncertainty ≤ 4 s 0xFFFFFFF0 -16

Beyond4SecTimeUncertainty 4 s < time uncertainty ≤ 8 s 0xFFFFFFF1 -15

Beyond8SecTimeUncertainty 8 s < time uncertainty ≤ 16 s 0xFFFFFFF2 -14

Beyond16SecTimeUncertainty 16 s < time uncertainty ≤ 32 s 0xFFFFFFF3 -13

Beyond32SecTimeUncertainty 32 s < time uncertainty ≤ 64 s 0xFFFFFFF4 -12

Beyond64SecTimeUncertainty 64 s < time uncertainty ≤ 128 s 0xFFFFFFF5 -11

Beyond128SecTimeUncertainty 128 s < time uncertainty ≤ 256 s 0xFFFFFFF6 -10

Beyond256SecTimeUncertainty 256 s < time uncertainty ≤ 512 s 0xFFFFFFF7 -9

Beyond512SecTimeUncertainty 512 s < time uncertainty ≤ 1024 s 0xFFFFFFF8 -8

Beyond1024SecTimeUncertainty 1024 s < time uncertainty ≤ 2048 s 0xFFFFFFF9 -7

Beyond2048SecTimeUncertainty 2048 s < time uncertainty ≤ 4096 s 0xFFFFFFFA -6

Beyond4096SecTimeUncertainty 4096 s < time uncertainty ≤ 8192 s 0xFFFFFFFB -5

Beyond8192SecTimeUncertainty 8192 s < time uncertainty ≤ 16384 s 0xFFFFFFFC -4

Beyond16384SecTimeUncertainty time uncertainty > 16384 s 0xFFFFFFFD -3

UnknownTimeUncertainty Unknown time uncertainty 0xFFFFFFFE -2

UndefinedTime Undefined time 0xFFFFFFFF -1

Not allowed Not allowed positive 0x77359401 to
0x7FFFFFFF

>
2,000,000,000

Not allowed Not allowed negative 0x80000000 to
0xFFFFFFEF

< -16

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 60
All Rights Reserved

The associated declarations are specified as:
typedef long TimeUncertainty;

const TimeUncertainty Beyond2SecTimeUncertainty = 0xFFFFFFF0;
const TimeUncertainty Beyond4SecTimeUncertainty = 0xFFFFFFF1;
const TimeUncertainty Beyond8SecTimeUncertainty = 0xFFFFFFF2;
const TimeUncertainty Beyond16SecTimeUncertainty = 0xFFFFFFF3;
const TimeUncertainty Beyond32SecTimeUncertainty = 0xFFFFFFF4;
const TimeUncertainty Beyond64SecTimeUncertainty = 0xFFFFFFF5;
const TimeUncertainty Beyond128SecTimeUncertainty = 0xFFFFFFF6;
const TimeUncertainty Beyond256SecTimeUncertainty = 0xFFFFFFF7;
const TimeUncertainty Beyond512SecTimeUncertainty = 0xFFFFFFF8;
const TimeUncertainty Beyond1024SecTimeUncertainty = 0xFFFFFFF9;
const TimeUncertainty Beyond2048SecTimeUncertainty = 0xFFFFFFFA;
const TimeUncertainty Beyond4096SecTimeUncertainty = 0xFFFFFFFB;
const TimeUncertainty Beyond8192SecTimeUncertainty = 0xFFFFFFFC;
const TimeUncertainty Beyond16384SecTimeUncertainty = 0xFFFFFFFD;

const TimeUncertainty UnknownTimeUncertainty = 0xFFFFFFFE;
const TimeUncertainty UndefinedTime = 0xFFFFFFFF;

3.4.3 RateUncertainty

RateUncertainty type is specified as a 32-bit signed integer that reflects a time rate uncertainty
value, expressed in parts-per-billion (ppb).
UnknownRateUncertainty is specified as the reserved value reflecting that time service is not
able to evaluate the considered time rate uncertainty.
The associated declarations are specified as:

typedef long RateUncertainty;

const RateUncertainty UnknownRateUncertainty = 0xFFFFFFFF;

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 61
All Rights Reserved

4 References

4.1. Referenced documents

[Ref1] Principles for WInnForum Facility Standards, The Wireless Innovation Forum, WINNF-
TR-2007, V1.0.0, 13 October 2020
https://sds.wirelessinnovation.org/specifications-and-recommendations
https://winnf.memberclicks.net/assets/work_products/Reports/WINNF-TR-2007-V1.0.0.pdf

[Ref2] Joint Tactical Radio System Standard Timing Service Application Program Interface, Joint
Tactical Networking Center, Version 1.4.4, 26 June 2013
https://www.jtnc.mil/Resources-Catalog/Resource-Catalog-Article-View/Article/2084734/timingservice-
api/

[Ref3] Radio Services API Description Document, ESSOR Architecture, 2019

 https://www.occar.int/programmes/essor, tab EXPERT AREA
http://www.occar.int/sites/default/files/downloads/Radio%20Services%20API%20Description%20Docum
ent.pdf

[Ref4] OMG Unified Modeling Language (OMG UML), The Object Management Group,
formal/2015-03-01, Version 2.5, March 2015
http://www.omg.org/spec/UML/2.5

[Ref5] International Atomic Time (TAI), Wikipedia
https://en.wikipedia.org/wiki/International_Atomic_Time

[Ref6] Coordinated Universal Time (UTC), Wikipedia
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

[Ref7] Transceiver Facility PIM Specification, The Wireless Innovation Forum, WINNF-TS-
0008, V2.0.0, 9 November 2017
https://sds.wirelessinnovation.org/specifications-and-recommendations
https://sds.wirelessinnovation.org/assets/docs/WINNF-TS-0008-V2.0.0.pdf

[Ref8] Unix Time, Wikipedia
https://en.wikipedia.org/wiki/Unix_time

[Ref9] IDL Profiles for Platform-Independent Modeling of SDR Applications, The Wireless
Innovation Forum, WINNF-14-S-0016, V2.0.2, 12 June 2015
https://sds.wirelessinnovation.org/specifications-and-recommendations
https://winnf.memberclicks.net/assets/work_products/Specifications/winnf-14-s-0016-v2.0.2.pdf

[Ref10] Application Interface Definition Language Platform Independent Model Profiles, SCA 4.1
Appendix E-1, Joint Tactical Networking Center, 20 August 2015
https://www.jtnc.mil/Resources-Catalog/Resource-Catalog-Article-View/Article/2083328/sca-41-
appendix-e-1-application-idl-pim-profiles/

The URLs above were successfully accessed at release date.

https://sds.wirelessinnovation.org/specifications-and-recommendations
https://winnf.memberclicks.net/assets/work_products/Reports/WINNF-TR-2007-V1.0.0.pdf
https://www.occar.int/programmes/essor
http://www.omg.org/spec/UML/2.5
https://en.wikipedia.org/wiki/International_Atomic_Time
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://sds.wirelessinnovation.org/specifications-and-recommendations
https://sds.wirelessinnovation.org/assets/docs/WINNF-TS-0008-V2.0.0.pdf
https://en.wikipedia.org/wiki/Unix_time
https://sds.wirelessinnovation.org/specifications-and-recommendations

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 62
All Rights Reserved

5 Acronyms list
The following table lists the acronyms appearing in the time service facility:

Acronym Signification
API Application Programming Interface
ESSOR European Secure Software Radio
FPGA Field Programmable Gate Array
GNSS Global Navigation Satellite System
GPP General Purpose Processor
GPS Global Positioning System
IDL Interface Description Language
ITU International Telecommunication Union
JTNC Joint Tactial Networking Center
OMG Object Management Group
PIM Platform-Independent Model
POSIX Portable Operating System Interface
PSM Platform-Specific Model
RTOS Real-Time Operating System
SCA Software Communications Architecture
SVFuA Streitkräftegemeinsame Verbundfähige

Funkgeräte-Ausstattung
TAI International Atomic Time
UTC Coordinated Universal Time
WInnForum Wireless Innovation Forum

Table 34 Acronyms list

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 63
All Rights Reserved

6 Reference tables
The prefix “TSF”, for “Time Service Facility”, is used for construction of identifiers.

6.1. Definitions

The following table lists the definitions specified by the time service facility:

Identifier Concept Meaning Page
TSF.D01 Time service capability A functional support capability of a radio platform that

provides radio applications with knowledge of time.
1

TSF.D02 Time service An instantiation of a time service capability. 1
TSF.D03 Time service facility The WInnForum facility specified for time services. 2
TSF.D04 Physical time The time physically elapsing within the radio platform. 6
TSF.D05 Physical instant An infinitesimal moment of the physical time, whose passage is

instantaneous.
6

TSF.D06 Time value Value taken by a time at a certain physical instant. 6
TSF.D07 Time function The mathematical function that relates, for any time notion

measuring time, the taken time values to the physical time.
6

TSF.D08 Standard times The International Atomic Time (TAI) and the Coordinated
Universal Time (UTC)

6

TSF.D09 International Atomic
Time

An ITU-standardized physical time measure built from an
international network of permanently running reference atomic
clocks.

6

TSF.D10 Coordinated Universal
Time

The ITU-standardized measurement of time that adjusts the TAI
using the concept of leap seconds (LS) to compensate the long
term drifts in the apparent position of the sun.

7

TSF.D11 Standard time source Any source of standard time supporting implementation of a
time service.

8

TSF.D12 Implemented time A time implemented by a time service. 8
TSF.D13 Terminal time The implemented time that measures the time elapsing within

the time service.
8

TSF.D14 Terminal time rate error The relative rate error of the terminal time versus the physical
time.

10

TSF.D15 Terminal time rate
uncertainty

An upper bound of the absolute value of its terminal time rate
error.

11

TSF.D16 System time The implemented time that jointly estimates the TAI and the
UTC.

12

TSF.D17 System time update A point in time when the time service updates the system time in
order to decrease its time uncertainty.

13

TSF.D18 Specific time A monotonically increasing implemented time maintained as
closely as possible to the physical time rate since it was last set.

15

TSF.D19 Setting time The physical time value at which a specific time was last set. 15
TSF.D20 Setting value The value to which a specific time was set to at a setting time. 15
TSF.D21 Time stamp For a stamped instant, a terminal time value measured at a

physical time close to when the stamped instant occurs.
17

TSF.D22 Stamping uncertainty The maximum possible error between a stamped instant and the
associated time stamp.

17

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 64
All Rights Reserved

Identifier Concept Meaning Page
TSF.D23 Estimation uncertainty An upper bound of the absolute value of the difference between

a time value and the related time notion, valid within a specified
confidence percentage.

18

TSF.D24 System time uncertainty An estimation uncertainty, at 95% confidence, between a time
value of a system time and the standard time it estimates (TAI
and/or UTC).

19

TSF.D25 Specific time uncertainty An estimation uncertainty, at 95% confidence, between a time
value of a specific time and the specific time that would have
been maintained from the last setting time using physical time.

19

TSF.D27 Time reference A triplet composed of a time value of interest, the associated
time stamp and time uncertainty.

20

TSF.D28 System time reference A time reference which time value of interest relates to system
time.

21

TSF.D29 Standard time reference A time reference which time value of interest relates to a
standard time.

21

TSF.D30 Specific time reference A time reference which time value of interest relates to a
specific time.

21

Table 35 Specified definitions

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 65
All Rights Reserved

6.2. Notations

The following table lists the notations specified by the time service facility:

Identifier Notation Denoted concept Page
TSF.N01 t Undefined physical instant of the physical time. 6
TSF.N02 t<qualifier> Physical instant characterized by the used <qualifier>. 6
TSF.N03 TAI International Atomic Time 6
TSF.N04 TAI(t) Time function of the TAI. 6
TSF.N05 UTC Coordinated Universal Time 7
TSF.N06 UTC(t) Time function of the UTC. 7
TSF.N07 TT(t) Idealized time function of terminal time. 9
TSF.N08 TT[t] Digitized time function of terminal time. 9
TSF.N09 tTTinit Initial instant from which terminal time is measured. 9
TSF.N10 vTTinit Initial value taken by terminal time at tTTinit. 9
TSF.N11 TTRE Terminal time rate error. 10
TSF.N12 TTRU Terminal time rate accuracy. 11
TSF.N13 ST(t) Idealized time function of a system time. 12
TSF.N14 ST[t] Digitized time function of a system time. 12
TSF.N15 SpeT(t) Idealized time function of a specific time. 15
TSF.N16 SpeT[t] Digitized time function of a specific time. 16
TSF.N17 tsetting Setting time. 16
TSF.N18 vsetting Setting value. 16
TSF.N19 TS Time stamp. 17
TSF.N20 SU Stamping uncertainty. 17
TSF.N21 tstamped Stamping instant. 17
TSF.N22 STU System time uncertainty. 19
TSF.N23 SpeTU Specific time uncertainty. 19

Table 36 Specified notations

6.3. Equations

The following table lists the equations specified by the time service facility:

Identifier Equation content Page
TSF.E01 Mathematical definition of terminal time rate error. 10
TSF.E02 Mathematical definition of terminal time rate uncertainty. 11
TSF.E03 Mathematical definition of stamping uncertainty. 17
TSF.E04 Mathematical definition of system time uncertainty. 19
TSF.E05 Mathematical definition of specific time uncertainty. 20

Table 37 Specified equations

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 66
All Rights Reserved

6.4. Requirements

The following table lists the requirements specified by the time service facility:

Identifier Requirement clause Page
TSF.R01 A time service shall present a service implementation for each mandatory service. 22
TSF.R02 A time service shall present a service implementation for each selected optional service. 22
TSF.R03 A time service shall, for each attribute for which a value is specified, comply with the

related specified content.
56

Table 38 Specified requirements

Copyright © 2020-2022 The Software Defined Radio Forum Inc. Page 67
All Rights Reserved

END OF THE DOCUMENT

	Time Service Facility PIM Specification
	TERMS, CONDITIONS & NOTICES
	Table of Contents
	List of Figures
	List of Tables
	Contributors
	Standard history
	Time Service Facility PIM Specification
	1 Introduction
	1.1. The Time service facility
	1.1.1 Purpose
	1.1.2 Formal positioning
	1.1.3 Composition
	1.1.4 Origin

	1.2. The PIM specification
	1.2.1 Purpose
	1.2.2 Reference definitions
	1.2.3 Writing conventions

	1.3. Conformance
	1.3.1 Conformance principles
	1.3.2 Definitions usage

	1.4. Implementations and usages
	1.4.1 Multiple time services
	1.4.2 Multiple radio applications
	1.4.3 Services distribution

	1.5. Time concepts
	1.5.1 Base notions
	1.5.1.1 Physical time
	1.5.1.2 Time function

	1.5.2 Standard times
	1.5.2.1 International Atomic Time (TAI)
	1.5.2.2 Coordinated Universal Time (UTC)
	1.5.2.3 Standard time sources
	1.5.2.4 Standard time sources identification

	1.5.3 Implemented times
	1.5.3.1 Terminal time
	1.5.3.1.1 Definition
	1.5.3.1.2 Usage
	1.5.3.1.3 Implementation
	1.5.3.1.4 Time functions
	1.5.3.1.5 Terminal time rate error
	1.5.3.1.6 Terminal time rate uncertainty
	1.5.3.1.7 terminalTimeRateMaxUncertainty capability
	1.5.3.1.8 terminalTimeRateUncertainty variable

	1.5.3.2 System time
	1.5.3.2.1 Definition
	1.5.3.2.2 Usage
	1.5.3.2.3 Implementation
	1.5.3.2.4 Time representation
	1.5.3.2.5 Time functions
	1.5.3.2.6 Leap seconds handling
	1.5.3.2.7 System time updates
	1.5.3.2.8 GNSS usage example

	1.5.3.3 Specific times
	1.5.3.3.1 Definitions
	1.5.3.3.2 Usage
	1.5.3.3.3 Implementation
	1.5.3.3.4 Time functions
	1.5.3.3.5 maxSpecificTimes capability
	1.5.3.3.6 Specific times identification

	1.6. Time handling
	1.6.1 Time stamps
	1.6.1.1 Definition
	1.6.1.2 Stamping uncertainty
	1.6.1.3 stampingUncertainty capability

	1.6.2 Estimation uncertainty
	1.6.2.1 Definition
	1.6.2.2 System time uncertainty
	1.6.2.3 Specific time uncertainty

	1.6.3 Time uncertainty
	1.6.4 Time references
	1.6.4.1 System time references
	1.6.4.2 Standard time references
	1.6.4.3 Specific time references

	2 Services
	2.1. Provide services
	2.2. Use services
	2.3. Service-level conformance
	2.3.1 Services scope
	2.3.2 selectedOptionalServices capability
	2.3.3 Services implementation conformance

	2.4. States machines
	2.4.1 TimeService
	2.4.1.1 States
	1.1.1.1.1 CONFIGURED

	2.5. Services groups description
	2.5.1 TimeService::TerminalTime
	2.5.2 TimeService::SystemTime
	2.5.3 TimeService::StandardTimes
	2.5.4 TimeService::SpecificTimes

	3 Service primitives and attributes
	3.1. Service primitives
	3.1.1 Specification approach
	3.1.1.1 Primitive conformance
	3.1.1.2 Overview
	3.1.1.3 Signatures
	3.1.1.4 Parameters
	3.1.1.5 Exceptions
	3.1.1.6 Attributes

	3.1.2 TimeService::TerminalTime::TerminalTimeAccess
	3.1.2.1 getTerminalTime()
	3.1.2.1.1 Overview
	3.1.2.1.2 Signature
	3.1.2.1.3 Parameters
	3.1.2.1.4 Exceptions
	3.1.2.1.5 Attributes

	3.1.2.2 getTerminalTimeRateUncertainty()
	3.1.2.2.1 Overview
	3.1.2.2.2 Signature
	3.1.2.2.3 Parameters
	3.1.2.2.4 Exceptions
	3.1.2.2.5 Attributes

	3.1.3 TimeService::SystemTime::SystemTimeAccess
	3.1.3.1 getCurrentTAI()
	3.1.3.1.1 Overview
	3.1.3.1.2 Signature
	3.1.3.1.3 Parameters
	3.1.3.1.4 Exceptions
	3.1.3.1.5 Attributes

	3.1.3.2 getCurrentUTC()
	3.1.3.2.1 Overview
	3.1.3.2.2 Signature
	3.1.3.2.3 Parameters
	3.1.3.2.4 Exceptions
	3.1.3.2.5 Attributes

	3.1.3.3 getLastUpdateTAI()
	3.1.3.3.1 Overview
	3.1.3.3.2 Signature
	3.1.3.3.3 Parameters
	3.1.3.3.4 Exceptions
	3.1.3.3.5 Attributes

	3.1.3.4 getLastUpdateUTC()
	3.1.3.4.1 Overview
	3.1.3.4.2 Signature
	3.1.3.4.3 Parameters
	3.1.3.4.4 Exceptions
	3.1.3.4.5 Attributes

	3.1.4 TimeService::SystemTime::StandardTimeProvision
	3.1.4.1 provideTAI()
	3.1.4.1.1 Overview
	3.1.4.1.2 Signature
	3.1.4.1.3 Parameters
	3.1.4.1.4 Exceptions
	3.1.4.1.5 Attributes

	3.1.4.2 provideUTC()
	3.1.4.2.1 Overview
	3.1.4.2.2 Signature
	3.1.4.2.3 Parameters
	3.1.4.2.4 Exceptions
	3.1.4.2.5 Attributes

	3.1.5 TimeService::StandardTimes::ReferencesNotification
	3.1.5.1 notifyStandardTimeReference()
	3.1.5.1.1 Overview
	3.1.5.1.2 Signature
	3.1.5.1.3 Parameters
	3.1.5.1.4 Exceptions
	3.1.5.1.5 Attributes

	3.1.6 TimeService::SpecificTimes::SpecificTimeHandling
	3.1.6.1 setSpecificTime()
	3.1.6.1.1 Overview
	3.1.6.1.2 Signature
	3.1.6.1.3 Parameters
	3.1.6.1.4 Exceptions
	3.1.6.1.5 Attributes

	3.1.6.2 getSpecificTime()
	3.1.6.2.1 Overview
	3.1.6.2.2 Signature
	3.1.6.2.3 Parameters
	3.1.6.2.4 Exceptions
	3.1.6.2.5 Attributes

	3.1.7 TimeService::SpecificTimes::SettingsNotification
	3.1.7.1 notifySpecificTimeSetting()
	3.1.7.1.1 Overview
	3.1.7.1.2 Signature
	3.1.7.1.3 Parameters
	3.1.7.1.4 Exceptions
	3.1.7.1.5 Attributes

	3.2. Exceptions
	3.2.1 Specification
	3.2.2 Associated capabilities

	3.3. Attributes
	3.3.1 Overview
	3.3.2 Attributes conformance
	3.3.3 Capabilities
	3.3.4 Properties
	3.3.5 Variables

	3.4. Types
	3.4.1 TimeValue
	3.4.2 TimeUncertainty
	3.4.3 RateUncertainty

	4 References
	4.1. Referenced documents

	5 Acronyms list
	6 Reference tables
	6.1. Definitions
	6.2. Notations
	6.3. Equations
	6.4. Requirements

	END OF THE DOCUMENT

