
Copyright © 2009-2022 The Software Defined Radio Forum Inc – All Rights Reserved

Transceiver Facility PIM Specification

Document WINNF-TS-0008

Version V2.1.1

22 January 2022

Transceiver Facility
where software defines the radio

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page i
All Rights Reserved

TERMS, CONDITIONS & NOTICES
This document has been prepared by the work group of WInnForum project SCA-2015-001
“Transceiver Next” to assist The Software Defined Radio Forum Inc. (or its successors or assigns,
hereafter “the Forum”). It may be amended or withdrawn at a later time and it is not binding on
any member of the Forum or of the Transceiver Next work group.

Contributors to this document that have submitted copyrighted materials (the Submission) to the
Forum for use in this document retain copyright ownership of their original work, while at the same
time granting the Forum a non-exclusive, irrevocable, worldwide, perpetual, royalty-free license
under the Submitter’s copyrights in the Submission to reproduce, distribute, publish, display,
perform, and create derivative works of the Submission based on that original work for the purpose
of developing this document under the Forum's own copyright.

Permission is granted to the Forum’s participants to copy any portion of this document for
legitimate purposes of the Forum. Copying for monetary gain or for other non-Forum related
purposes is prohibited.

THIS DOCUMENT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER,
AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT
THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR ANY OF ITS
MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE
WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS
DOCUMENT.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the specification set forth in this document, and to provide
supporting documentation.

This document was developed following the Forum's policy on restricted or controlled information
(Policy 009) to ensure that that the document can be shared openly with other member
organizations around the world. Additional Information on this policy can be found here:
http://www.wirelessinnovation.org/page/Policies_and_Procedures

Although this document contains no restricted or controlled information, the specific
implementation of concepts contain herein may be controlled under the laws of the country of
origin for that implementation. Readers are encouraged, therefore, to consult with a cognizant
authority prior to any further development.

Wireless Innovation Forum ™ and SDR Forum ™ are trademarks of the Software Defined Radio
Forum Inc.

http://www.wirelessinnovation.org/page/Policies_and_Procedures

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page ii
All Rights Reserved

Table of Contents
TERMS, CONDITIONS & NOTICES .. i
Table of Contents .. ii
List of Figures ... v
List of Tables ... vii
Contributors .. viii
Standard history .. viii
Transceiver Facility PIM Specification ... 1
1 Introduction .. 1

1.1 Specification approach ... 1
1.1.1 Model Driven Architecture (MDA) .. 1
1.1.2 Implementation feedback collection ... 2
1.1.3 Conventions ... 2
1.1.4 Document structure ... 3

1.2 Transceiver concepts .. 3
1.2.1 Channels .. 3
1.2.2 I/O signals ... 4
1.2.3 Processing phases .. 5
1.2.4 Transmission ... 5
1.2.5 Reception ... 8
1.2.6 Inter-burst characterization ... 11
1.2.7 Transceiver time .. 12

1.3 Transceiver API .. 12
1.3.1 Services ... 12
1.3.2 Services groups ... 12
1.3.3 Implementation of services ... 13

2 Services ... 15
2.1 Provide services .. 15
2.2 Use services .. 15
2.3 States machines ... 16

2.3.1 Channels .. 16
2.3.2 CreationControl ... 21
2.3.3 RadioSilence .. 24
2.3.4 Retuning .. 26

2.4 Services groups description .. 27
2.4.1 Transceiver::Management ... 27
2.4.2 Transceiver::BurstControl ... 28
2.4.3 Transceiver::BasebandSignal .. 31
2.4.4 Transceiver::Tuning .. 33
2.4.5 Transceiver::Notifications ... 34
2.4.6 Transceiver::GainControl .. 36
2.4.7 Transceiver::TransceiverTime... 37
2.4.8 Transceiver::Strobing .. 38

3 Service primitives and attributes .. 39
3.1 Service primitives ... 39

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page iii
All Rights Reserved

3.1.1 Transceiver::Management::Reset .. 39
3.1.2 Transceiver::Management::RadioSilence ... 40
3.1.3 Transceiver::BurstControl::DirectCreation ... 42
3.1.4 Transceiver::BurstControl::RelativeCreation .. 44
3.1.5 Transceiver::BurstControl::AbsoluteCreation .. 46
3.1.6 Transceiver::BurstControl::StrobedCreation .. 48
3.1.7 Transceiver::BurstControl::Termination ... 50
3.1.8 Transceiver::BasebandSignal::SamplesReception .. 52
3.1.9 Transceiver::BasebandSignal::SamplesTransmission ... 54
3.1.10 Transceiver::BasebandSignal::RxPacketsLengthControl 56
3.1.11 Transceiver::Tuning::InitialTuning ... 57
3.1.12 Transceiver::Tuning::Retuning .. 60
3.1.13 Transceiver::Notifications::Events .. 62
3.1.14 Transceiver::Notifications::Errors ... 64
3.1.15 Transceiver::GainControl::GainChanges .. 67
3.1.16 Transceiver::GainControl::GainLocking ... 68
3.1.17 Transceiver::TransceiverTime::TimeAccess ... 71
3.1.18 Transceiver::Strobing::AppplicationStrobe ... 73

3.2 Exceptions .. 74
3.2.1 Specification .. 74
3.2.2 Associated properties .. 76
3.2.3 Behavior requirements .. 76

3.3 Attributes .. 77
3.3.1 Channels attributes .. 77
3.3.2 Processing attributes .. 78

3.4 Types .. 80
3.4.1 Base assumptions .. 80
3.4.2 BasebandPacket ... 80
3.4.3 BlockLength .. 80
3.4.4 BasebandSample ... 81
3.4.5 BurstNumber ... 81
3.4.6 CarrierFreq .. 81
3.4.7 Delay ... 81
3.4.8 Error .. 82
3.4.9 Event .. 82
3.4.10 Gain ... 82
3.4.11 IQ ... 83
3.4.12 MetaData ... 83
3.4.13 PacketLength ... 83
3.4.14 SampleNumber .. 84
3.4.15 StrobeSource .. 84
3.4.16 TimeSpec ... 84
3.4.17 TuningPreset .. 85

4 Properties .. 86
4.1 Introduction .. 86

4.1.1 Properties ... 86

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page iv
All Rights Reserved

4.1.2 Properties naming .. 86
4.1.3 Portability engineering support ... 86
4.1.4 Profiles .. 87

4.2 Structure .. 88
4.3 Behavior .. 90
4.4 Notifications ... 91
4.5 Interface declaration ... 93
4.6 Initialization .. 93
4.7 Parameters validity ... 94
4.8 Rapidity .. 95
4.9 Storage .. 97
4.10 Levels .. 97
4.11 Channelization .. 97
4.12 Temporal accuracy .. 100
4.13 Invocation lead time .. 100
4.14 Invocation delay .. 101
4.15 Worst-case execution time (WCET) ... 102

5 References .. 103
5.1 Referenced documents .. 103

END OF THE DOCUMENT .. 104

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page v
All Rights Reserved

List of Figures
Figure 1 Overview of Transceiver Facility 1
Figure 2 Principle of transmission processing phase 6
Figure 3 Transmit impulse response 7
Figure 4 Nominal and specific Tx bursts shapings 8
Figure 5 Principle of reception processing phase 9
Figure 6 Receive impulse response 10
Figure 7 Principle of inter-burst duration 11
Figure 8 Principle of inter-processing duration 11
Figure 9 Channels statechart 16
Figure 10 CreationControl statechart 22
Figure 11 RadioSilence statechart 25
Figure 12 Retuning statechart 26
Figure 13 Services of Management services group 27
Figure 14 Management::Reset interface 27
Figure 15 Management::RadioSilence interface 27
Figure 16 Services of BurstControl services group 28
Figure 17 BurstControl::DirectCreation interface 29
Figure 18 BurstControl::RelativeCreation interface 29
Figure 19 BurstControl::AbsoluteCreation interface 30
Figure 20 BurstControl::StrobedCreation interface 30
Figure 21 BurstControl::Termination interface 31
Figure 22 Services of BasebandSignal services group 31
Figure 23 BasebandSignal::SamplesReception interface 32
Figure 24 BasebandSignal::SamplesTransmission interface 32
Figure 25 BasebandSignal::RxPacketsLengthControl interface 33
Figure 26 Services of Tuning services group 33
Figure 27 Tuning::InitialTuning interface 34
Figure 28 Tuning::Retuning interface 34
Figure 29 Services of Notifications services group 34
Figure 30 Notifications::Events interface 35
Figure 31 Notifications::Errors interface 35
Figure 32 Services of GainControl services group 36
Figure 33 GainControl::GainChanges interface 36
Figure 34 GainControl::AGCActivation interface 37
Figure 35 Service of TransceiverTime services group 37
Figure 36 TransceiverTime::TimeAccess interface 38
Figure 37 Service of Strobing services group 38
Figure 38 Strobing::ApplicationStrobe interface 38
Figure 39 Principle of startRadioSilence() 40
Figure 40 Principle of stopRadioSilence() 41
Figure 41 Principle of startBurst() 42
Figure 42 Principle of scheduleRelativeBurst() 44
Figure 43 Principle of scheduleAbsoluteBurst() 46
Figure 44 Principle of scheduleStrobedBurst() 48

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page vi
All Rights Reserved

Figure 45 Principle of pushRxPacket() 52
Figure 46 Principle of pushTxPacket() 54
Figure 47 Principle of setTuning() 58
Figure 48 Principle of retune() 60
Figure 49 Principle of notifyEvent() 63
Figure 50 Principle of notifyError() 64
Figure 51 Principle of indicateGain() 67
Figure 52 Principle of lockGain() 69
Figure 53 Principle of unlockGain() 70
Figure 54 Principle of getCurrentTime() 71
Figure 55 Principle of getLastStartTime() 72
Figure 56 Specification of fields of channel masks 99

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page vii
All Rights Reserved

List of Tables
Table 1 Provide services of Transceiver API 15
Table 2 Use services of Transceiver API 15
Table 3 Specification of startBurst() parameters 43
Table 4 Specification of scheduleRelativeBurst() parameters 45
Table 5 Specification of scheduleAbsoluteBurst() parameters 47
Table 6 Specification of strobe sources 48
Table 7 Specification of scheduleStrobedBurst() parameters 49
Table 8 Specification of setBlockLength() parameters 50
Table 9 Specification of pushRxPacket() parameters 53
Table 10 Specification of pushTxPacket() parameters 55
Table 11 Specification of setRxPacketsLength() parameters 57
Table 12 Specification of setTuning() parameters 59
Table 13 Specification of retune() parameters 61
Table 14 Specification of events 63
Table 15 Specification of notifyEvent() parameters 63
Table 16 Specification of errors 65
Table 17 Specification of notifyError() parameters 66
Table 18 Specification of errors mitigation behaviors 67
Table 19 Specification of indicateGain() parameters 68
Table 20 Specification of getCurrentTime() parameters 71
Table 21 Specification of getLastStartTime() parameters 72
Table 22 Specification of general exceptions 74
Table 23 Specification of range exceptions 75
Table 24 Specification of MILT exceptions 76
Table 25 Structure properties 88
Table 26 Behavior properties 90
Table 27 Notification properties 91
Table 28 Interface declaration properties 93
Table 29 Initialization properties 93
Table 30 Parameters validity properties 94
Table 31 Rapidity properties 95
Table 32 Tuning conditions 96
Table 33 Duplex conditions 96
Table 34 Storage properties 97
Table 35 Level properties 97
Table 36 Channelization properties 98
Table 37 Temporal accuracy properties 100
Table 38 Invocation lead time properties 101
Table 39 Invocation delay properties 101
Table 40 WCET properties of provide operations 102
Table 41 WCET properties of use operations 102

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page viii
All Rights Reserved

Contributors
The following individuals and their organization of affiliation are credited as Contributors to
development of the specification, for having been involved in the work group that developed the
draft then approved by WInnForum member organizations:

 Marc Adrat, FKIE,
 Claude Bélisle, NordiaSoft,
 Eric Campbell, Harris Corporation,
 Jean-Philippe Delahaye, DGA,
 Antonio Di Rocco, Leonardo,
 David Hagood, Cobham,
 Frédéric Leroy, ENSTA,
 Sarah Miller, Rockwell-Collins,
 David Murotake, Hitachi Kokusai Electric,
 Eric Nicollet, Thales Communications & Security,
 Peter Troll, Rohde & Schwarz,
 Dmitri Zvernick, NordiaSoft.

Standard history

Version Date Contents
V1.0.0

(deprecated)
28 January 2009 Initial release.

V2.0.0 9 November 2017 Release of the PIM specification for V2.0.0.
Major upgrade of V1.0.0.

V2.1.0 20 January 2022 Addition of the Native C++ PSM specification, SCA PSM specification and FPGA PSM
specification.
The PIM specification content is identical to V2.0.0.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 1
All Rights Reserved

Transceiver Facility PIM Specification

1 Introduction
This document WINNF-TS-0008-V2.1.0 is the PIM specification (Platform-Independent Model)
of WInnForum transceiver facility V2.1.0.
The transceiver facility V2.1.0 is also composed of the following detached appendices:
 WINNF-TS-0008-App01-V2.1.0 Transceiver Facility Native C++ PSM specification,
 WINNF-TS-0008-App02-V2.1.0 Transceiver Facility SCA PSM specification,
 WINNF-TS-0008-App03-V2.1.0 Transceiver Facility FPGA PSM specification,
 WINNF-TS-0008-App04-V2.1.0 Transceiver Facility Absolute Time Use Case.

V2.1.0 complements V2.0.0 with three PSM specifications.
The Transceiver Facility standardizes a service-oriented Transceiver Application Programming
Interface (Transceiver API) and associated Transceiver Properties, in support of portability of
radio applications and hospitality of reconfigurable transceiver implementations.
The transceiver is the processing stage situated between the antenna and the radio physical layer
baseband processing. Its I/O signals are the baseband signal and the radio signal (see section
1.2.2), as depicted in following figure:

Radio
application

Transceiver API

Transceiver Properties

Transceiver

Radio
signal

Baseband
signal

Antenna

Figure 1 Overview of Transceiver Facility

1.1 Specification approach

1.1.1 Model Driven Architecture (MDA)

The Transceiver Facility structure is inspired by application of the Object Management Group
(OMG) Model Driven Architecture (MDA) approach (see [Ref1]) to the technical domain of
physical layer engineering of software-defined radio (SDR) systems.
The Transceiver Facility is composed of a core specification, denoted as the Platform-Independent
Model (PIM) specification (this document) and appendices.
The core specification answers to the definition of a PIM provided by [Ref1]: “A PIM exhibits a
sufficient degree of independence so as to enable its mapping to one or more platforms. This is
commonly achieved by defining a set of services in a way that abstracts out technical details. Other
models then specify a realization of these services in a platform specific manner.”.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 2
All Rights Reserved

Appendices are Platform-Specific Model (PSM) specifications specified for a number of
programming paradigms supporting implementation of the PIM software interfaces.
The PSM specifications answer to the definition of a PSM provided by [Ref1]: “A PSM combines
the specifications in the PIM with the details required to stipulate how a system uses a particular
type of platform. If the PSM does not include all of the details necessary to produce an
implementation of that platform it is considered abstract (meaning that it relies on other explicit
or implicit models which do contain the necessary details).”.
When no standard PSM specification is applicable, a non-standard PSM has to be formally
specified through a specification structured like standard PSMs.

1.1.2 Implementation feedback collection

Users of a core specification and standard PSM specifications are invited to submit implementation
feedback to the WInnForum for consideration in perspective improvement of the Transceiver
Facility.
Users of a non-standard PSM specification are invited to submit the non-standard specification as
an input document to the WInnForum to be considered for future inclusion in the Transceiver
Facility.

1.1.3 Conventions

The PIM specification refers itself as “the specification” in the remaining of the document.
A normative clause of the specification is a particular sentence that can be:

 A definition: defines a general concept, contains “is/are defined as”; name of the
defined concept is formatted in italics,

 A declaration: specifies a formal concept (e.g. a state, an interface, an error), contains
“is/are specified as/by”; name of the declared concept is formatted according to its
nature,

 A requirement: specifies a condition to be respected by a transceiver, contains “shall”.
The term "unspecified" indicates an aspect that is not specified by the specification, more specific
aspects being left to user’s decisions.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 3
All Rights Reserved

1.1.4 Document structure

The PIM specification is structured as follows:
 Section 1, Introduction: defines essential aspects, provides an overview of the specified

services groups,
 Section 2, Services: specifies states machines, API services groups, provide and use

services,
 Section 3, Service Primitives and Attributes: specifies API primitives, exceptions,

attributes and types,
 Section 4, Properties: specifies properties characterizing transceiver instances,
 Section 5, PSM specifications: specifies rules pertaining to derived PSM specifications.

1.2 Transceiver concepts

A transceiver is defined as a subsystem of a radio platform that transforms, when it transmits,
baseband signal(s) into radio signal(s) and, when it receives, radio signal(s) into baseband
signal(s).
A transceiver instance is defined as one particular implementation of a transceiver.
One or several transceiver instances can be available on a radio platform and one or several
transceiver instances can be used by a radio application.
The remainder of the specification is applicable to any particular transceiver instance, assumed
fully independent of any other transceiver instance eventually available on a given radio platform.

1.2.1 Channels

1.2.1.1 Tx channels

A transmit channel (Tx channel) is defined as an elementary part of a transceiver instance that
transforms, when it transmits, one baseband signal (see section 1.2.2.1) into one radio signal (see
section 1.2.2.2).
A transmission is defined as a phase during which a Tx channel continuously transmits.
Up-conversion is defined as the signal processing performed by a Tx channel during a
transmission.
A transceiver instance can have zero to several Tx channels. All Tx channels of a specific
transceiver instance are controlled simultaneously by the radio application and operate
synchronously.
TX_CHANNELS (see section 4.2) specifies the number of Tx channels of a transceiver instance.

1.2.1.2 Rx channels

A receive channel (Rx channel) is defined as an elementary part of a transceiver instance that
transforms, when it receives, one radio signal into one baseband signal.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 4
All Rights Reserved

A reception is defined as a phase during which an Rx channel continuously receives.
Down-conversion is defined as the signal processing performed by an Rx channel during a
reception.
A transceiver instance can have zero to several Rx channels. All Rx channels of a specific
transceiver instance are controlled simultaneously by the radio application and operate
synchronously.
RX_CHANNELS (see section 4.2) specifies the number of Rx channels of a transceiver instance.

1.2.1.3 Transceiver categories

A simplex transceiver is defined as a transceiver with transmit or receive capability, but not both.
A simplex transceiver has one or many Tx channels, or one or many Rx channels.
A duplex transceiver is defined as a transceiver with one or many Tx channels and one or many
Rx channels.
A full-duplex transceiver is defined as a duplex transceiver which transmission and reception
phases are fully independent and can occur simultaneously.
A half-duplex transceiver is defined as a duplex transceiver with no simultaneous transmission
and reception phases, due to sharing of critical processing resources between its Tx channels and
Rx channels.
DUPLEX (see section 4.2) specifies if a duplex transceiver is half-duplex or full-duplex.

1.2.2 I/O signals

1.2.2.1 Baseband signal

A baseband signal (𝑠𝑠𝐵𝐵𝐵𝐵) is defined as the complex digital signal exchanged between a radio
application and Tx channels or Rx channels.

The baseband sampling frequency (𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵) is defined as the sampling frequency of a baseband
signal.

A baseband sample (𝑠𝑠𝐵𝐵𝐵𝐵[𝑛𝑛]) is defined as a complex sample of the baseband signal, with
𝑠𝑠𝐵𝐵𝐵𝐵[𝑛𝑛] = 𝐼𝐼 + 𝑖𝑖.𝑄𝑄, where 𝑖𝑖 = √−1.

The in-phase component (I) of a baseband sample is defined as its real part.
The quadrature component (Q) of a baseband sample is defined as its imaginary part.

𝑠̇𝑠𝐵𝐵𝐵𝐵 is defined as the Fourier transform of 𝑠𝑠𝐵𝐵𝐵𝐵.

𝐿𝐿𝐵𝐵𝐵𝐵 is defined as the level of the baseband signal expressed in decibels relative to full scale
(dBFS) for the applied numerical representation.
The full-scale (FS) of the numerical representation of the baseband signal is specified as,
depending on value of IQ_TYPE (see section 4.5):

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 5
All Rights Reserved

 2^15-1 if IQ_TYPE is equal to 16bit,
 2^31-1 if IQ_TYPE is equal to 32bit,
 1.0 if IQ_TYPE is equal to floatingPoint.

𝐿𝐿𝐵𝐵𝐵𝐵 shall be computed according to 𝐿𝐿𝐵𝐵𝐵𝐵 = 10. log10 �
1
𝑁𝑁
∑ |𝑠𝑠𝐵𝐵𝐵𝐵[𝑛𝑛0+𝑖𝑖]|2𝑖𝑖=𝑁𝑁−1
𝑖𝑖=0

𝐹𝐹𝐹𝐹2
�.

1.2.2.2 Radio signal

The radio signal (𝑠𝑠𝑅𝑅𝑅𝑅) is defined as the analogue voltage signal at the output of Tx channel, during
a Transmission, or at the input of Rx channel, during a Reception.
Radio signal is typically taken at the antenna connector, but can be defined elsewhere depending
on usage context.
The carrier frequency (fc) is defined as the radio frequency around which the radio signal
spectrum is positioned.
Note: the carrier frequency is the center frequency of the Tx signal measured spectrum when the
baseband signal is symmetrical. It is not always the case, e.g. in the case of single side band
modulations.

𝑠̇𝑠𝑅𝑅𝑅𝑅 is defined as the Fourier transform of 𝑠𝑠𝑅𝑅𝑅𝑅.

𝐿𝐿𝑅𝑅𝑅𝑅 is defined as the level of the radio signal expressed in decibels relative to one milliwatt (dBm).

1.2.3 Processing phases

A processing phase is defined as a continuous period of time during which Rx channels or Tx
channels perform a signal processing transformation.
The activation time of a processing phase is defined as the time at which the processing phase
starts.
The termination time of a processing phase is defined as the time at which the processing phase
stops.
A baseband block is defined as the baseband signal exchanged between a radio application and
one Rx channel or one Tx channel during a processing phase.
The sample number of a baseband sample is defined as its position within a baseband block,
starting at 1 for the first sample.

1.2.4 Transmission

A transmission is defined as the processing phase of Tx channels.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 6
All Rights Reserved

The following figure illustrates the principle of a transmission:

Tx processed block Last processed
sample1

Tx burst

Start time

CoreRamp-up Ramp-down

Up-conversion
latency

N

Transmission
Tx channels up-convert

First sample

0 0 0 0 0 0 0 0

Padding samples

Activation
time

Termination
time

Baseband signal
sBB [n]

Radio signal
sRF(t)

Up-conversion
latencyStop time

Figure 2 Principle of transmission processing phase

1.2.4.1 Boundary signals

A transmit forwarded block (Tx forwarded block) is defined as a the baseband block sent by a
radio application to one Tx channel during a transmission.
A transmit packet (Tx packet) is defined as a one elementary set of baseband samples successively
sent by a radio application to one Tx channel for transfer of a Tx forwarded block.
A transmit processed block (Tx processed block) is defined as a the part of the Tx forwarded block
up-converted by one Tx channel during a transmission.
Correct operation of Tx channels requires that the level of baseband signal is within a particular
range.
The upper bound of this range generally corresponds to the maximum level maintaining Tx
channels linearity. The lower bound of this range generally corresponds to the level required for
the baseband signal to be able to drive the Tx channels processing.
A transmit burst (Tx burst) is defined as the radio signal sent by one Tx channel to the antenna
during a transmission.
The core of a Tx burst is defined as the part of the Tx burst without its ramp-up and ramp-down.

1.2.4.2 Start and stop times

The start time of a Tx burst is defined as the start time of its core.
The start time of a Tx burst generally happens up-conversion latency after activation time.
The stop time of a Tx burst is defined as the stop time of its core.
The stop time of a Tx burst generally happens up-conversion latency before termination time.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 7
All Rights Reserved

1.2.4.3 Transmit transfer function

An ideal up-conversion generates a radio signal which spectrum is the zero-centered spectrum of
the baseband signal translated around the carrier frequency, with application of an ideal low-pass
filter of bandwidth B to select the spectrum portion of interest.
An ideal up-conversion obeys to the following equation:

 𝑠̇𝑠𝑅𝑅𝑅𝑅(𝑓𝑓 + 𝑓𝑓𝑐𝑐) = 𝛼𝛼. rect(𝑓𝑓/𝐵𝐵). 𝑠̇𝑠𝐵𝐵𝐵𝐵(𝑓𝑓), 𝑓𝑓 ∈ [−𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵 2⁄ ; +𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵/2] Eq. 1,

where:
 rect() is the rectangular function,
 𝛼𝛼 is a real coefficient reflecting the up-conversion gain.

The transmit transfer function (𝐻𝐻𝑇𝑇𝑇𝑇) is defined as the transfer function nearing the ideal low-pass
filter of the ideal up-conversion that is implemented by a Tx channel.

CHANNEL_MASK (see section 4.10) specify the frequency domain mask into which 𝐻𝐻𝑇𝑇𝑇𝑇 fits.

The actual up-conversion performed by a Tx channel obeys to the up-conversion formula:

 𝑠̇𝑠𝑅𝑅𝑅𝑅(𝑓𝑓 + 𝑓𝑓𝑐𝑐) = 𝐻𝐻𝑇𝑇𝑇𝑇(𝑓𝑓). 𝑠̇𝑠𝐵𝐵𝐵𝐵(𝑓𝑓), 𝑓𝑓 ∈ [−𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵 2⁄ ; +𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵/2] Eq. 2.

The transmit impulse response (ℎ𝑇𝑇𝑇𝑇) is defined as the non-causal equivalent impulse response
corresponding to up-conversion, symmetrical around the y-axis, with up-conversion latency equal
to the half of its domain:

−𝑈𝐿𝐿

𝑀𝑜𝑑𝑢𝑙𝑒𝑒

𝑡𝑡 (s)

Up-conversion latency (UL)

|𝒉𝑻𝒙(𝒕)|

0

+𝑈𝐿𝐿

Figure 3 Transmit impulse response

One has:

𝑠𝑠𝑅𝑅𝑅𝑅(𝑡𝑡) = ∑ �(ℜ�𝑠𝑠𝐵𝐵𝐵𝐵[𝑘𝑘]�. cos(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) − ℑ�𝑠𝑠𝐵𝐵𝐵𝐵[𝑘𝑘]�. sin(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡)).ℎ𝑇𝑇𝑇𝑇(𝑡𝑡 − 𝑡𝑡𝑠𝑠 − 𝑘𝑘/𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵)�𝐿𝐿−1

𝑘𝑘=0 ,
𝑡𝑡 ∈ [𝑡𝑡𝑠𝑠; 𝑡𝑡𝑠𝑠 + 𝐿𝐿/𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵]

 Eq. 3,

where:
 L denotes the transmit block length,
 ℜ() and ℑ() denote the real and imaginary part of a complex number,
 𝑡𝑡𝑠𝑠 denotes the start time.

Further technical information is available in technical literature, e.g. [Ref2] and [Ref3].

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 8
All Rights Reserved

1.2.4.4 Transmit gain

The transmit gain (𝐺𝐺𝑇𝑇𝑇𝑇) of a transmission is specified as 𝐺𝐺𝑇𝑇𝑇𝑇 = 𝐿𝐿𝑅𝑅𝑅𝑅 − 𝐿𝐿𝐵𝐵𝐵𝐵.

1.2.4.5 Tx shaping

Nominal shaping is defined as the case where the ramp-up and ramp-down parts of the Tx burst
are the ramp-up and ramp-down of up-conversion.
Ad-hoc shaping is defined as the case where the ramp-up or ramp-down parts of the Tx burst
modifies the ramp-up and ramp-down of up-conversion.
Ad-hoc shaping is unspecified, and has to be specified according to the radio application needs.
TX_SHAPING (see section 4.2) specifies if the shaping is nominal or specific:

Burst core

Nominal shaping: ramp-up
and ramp-down of up-
conversion are used.

Ramp-up
Ramp-
down

Start time

Ramp-up Ramp-downBurst core

Start time

Ad-hoc shaping: ramp-up or
ramp-down of up-conversion
are modified.

output of up-
conversion

Figure 4 Nominal and specific Tx bursts shapings

1.2.5 Reception

A reception is defined as the processing phase of Rx channels.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 9
All Rights Reserved

The following figure illustrates the principle of a reception:

Baseband signal
sBB [n]

1

Rx burst

Radio signal
sRF(t)

Down-conversion
latency

N

Reception
Rx channels down-convert

First sample

Start time

ignored

X X XX X X XX

Last processed
sample

Rx block Down-conversion
latency

CoreRamp-up Ramp-down

Termination
time

Activation
time

Stop time

Figure 5 Principle of reception processing phase

1.2.5.1 Boundary signals

A receive burst (Rx burst) is defined as the radio signal sent by the antenna to one Rx channel
during a reception.
Correct operation of Rx channels requires that the level of radio signal is within a particular range.
The upper bound of this range generally corresponds to the protection of Rx channels against high
level signals. The lower bound of this range generally corresponds to the expected sensitivity.
A receive block (Rx block) is defined as the baseband block sent by one Rx channel to a radio
application during a reception.
A receive packet (Rx packet) is defined as a one elementary set of baseband samples successively
sent by one Rx channel to a radio application for transfer of an Rx block.
Correct operation of a receiving radio application requires that the level of baseband signal is
within a particular range.
The upper bound of this range generally corresponds to the level maximum level allowed to avoid
saturation of the radio application processing. The lower bound of this range generally
corresponds to the level under which the quantization noise impacts the reception performance.

1.2.5.2 Start and stop times

The start time of an Rx burst is defined as the time when the Rx burst starts.
The start time of an Rx burst is equal to its activation time.
The stop time of an Rx burst is defined as the time when the Rx burst stops.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 10
All Rights Reserved

The stop time of an Rx burst generally happens two times down-conversion latency before
termination time, in order for the down-conversion processing chain to be fully flushed.

1.2.5.3 Receive transfer function

An ideal down-conversion generates a baseband signal which zero-centered spectrum is obtained
from a perfect transposition of the radio signal spectrum considered around the carrier frequency,
with application of an ideal low-pass filter of bandwidth B to select the spectrum portion of interest.
An ideal down-conversion obeys to the following equation:

 𝑠̇𝑠𝐵𝐵𝐵𝐵(𝑓𝑓) = 𝛼𝛼. rect(𝑓𝑓/𝐵𝐵). 𝑠̇𝑠𝑅𝑅𝑅𝑅(𝑓𝑓 − 𝑓𝑓𝑐𝑐), 𝑓𝑓 ∈ [−𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵 2⁄ ; +𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵/2] Eq. 4,

where:
 rect() is the rectangular function,
 𝛼𝛼 is a real coefficient reflecting the down-conversion gain.

The receive transfer function (𝐻𝐻𝑅𝑅𝑅𝑅) is defined as the transfer function nearing the ideal low-pass
filter of the ideal down-conversion that is implemented by an Rx channel.

CHANNEL_MASK (see section 4.10) specify the frequency domain mask into which 𝐻𝐻𝑅𝑅𝑅𝑅 fits.

The actual down-conversion performed by an Rx channel obeys to the down-conversion formula:

 𝑠̇𝑠𝐵𝐵𝐵𝐵(𝑓𝑓) = 𝐻𝐻𝑅𝑅𝑅𝑅(𝑓𝑓). 𝑠̇𝑠𝑅𝑅𝑅𝑅(𝑓𝑓 − 𝑓𝑓𝑐𝑐), 𝑓𝑓 ∈ [−𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵 2⁄ ; +𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵/2] Eq. 5.

The receive impulse response (ℎ𝑅𝑅𝑅𝑅) is defined as the non-causal equivalent impulse response
corresponding to down-conversion, symmetrical around the y-axis, with down-conversion latency
equal to the half of its domain:

−𝐷𝐿𝐿

𝑀𝑜𝑑𝑢𝑙𝑒𝑒

𝑡𝑡 (s)

Down-conversion latency (DL)

|𝒉𝑹𝒙(𝒕)|

0

+𝐷𝐿𝐿

Figure 6 Receive impulse response

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 11
All Rights Reserved

One has:

 𝑠𝑠𝐵𝐵𝐵𝐵[𝑘𝑘] = ��𝑠𝑠𝑅𝑅𝑅𝑅(𝑡𝑡) + 𝑖𝑖. 𝑠̂𝑠𝑅𝑅𝑅𝑅(𝑡𝑡)�. 𝑒𝑒−2𝜋𝜋𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡� ∗ ℎ𝑇𝑇𝑇𝑇(𝑡𝑡), 𝑡𝑡 = 𝑡𝑡𝑠𝑠 + 𝑘𝑘 𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵⁄ ,𝑘𝑘 ∈ [0; 𝐿𝐿 − 1] Eq. 6,

where:
 𝑠̂𝑠𝑅𝑅𝑅𝑅(𝑡𝑡) denotes the Hilbert transform of 𝑠𝑠𝑅𝑅𝑅𝑅(𝑡𝑡),
 * denotes the convolution product operator,
 𝑡𝑡𝑠𝑠 denotes the start time,
 𝐿𝐿 denotes the receive block length.

Further technical information is available in technical literature, e.g. [Ref2] and [Ref3].

1.2.5.4 Receive gain

The receive gain (𝐺𝐺𝑅𝑅𝑅𝑅) of a reception is specified as 𝐺𝐺𝑅𝑅𝑅𝑅 = 𝐿𝐿𝐵𝐵𝐵𝐵 − 𝐿𝐿𝑅𝑅𝑅𝑅.

1.2.6 Inter-burst characterization

The inter-burst duration is defined as the duration of the period occurring between two
consecutive core bursts.

Next burst

Core

Radio signal
sRF(t)

Core

Previous burst Inter-burst duration

Stop time Start time

Figure 7 Principle of inter-burst duration

INTER-BURST (see section 4.8) specifies the minimum value possibly taken by inter-burst
duration.
The inter-processing duration is defined as the duration of the period occurring between two
consecutive processing phases, as illustrated in the following figure:

Processing
phase n

Termination
time

Activation
time

Processing
phase n+1Inter-processing phase

Inter-processing duration

Figure 8 Principle of inter-processing duration

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 12
All Rights Reserved

INTER-PROCESSING (see section 4.8) specifies the minimum value possibly taken by inter-
processing duration.
Inter-burst duration and inter-processing duration is at least equal to the tuning duration between
the two bursts.
In addition to tuning duration, inter-burst duration comprises the duration of the bursts ramp-up
and ramp-down, while inter-processing duration does not.

1.2.7 Transceiver time

Transceiver time is defined as the monotonic time implemented by a transceiver instance, used to
exchange time specification of events related to operation of the transceiver.
Transceiver time is essentially used in the case absolute burst creation (see section 2.4.2.3), and
values of transceiver time can be accessed by radio applications using a dedicated service (see
section 2.4.7).

1.3 Transceiver API

The Transceiver API is defined as the service-oriented Application Programming Interface (API)
of the specification.

1.3.1 Services

A service of the Transceiver API is defined as a capability of a transceiver instance that exchanges
messages with a radio application in compliance with one attached software interface and the
specified behavior.
A service interface is defined as the particular Interface Description Language (IDL) software
interface attached to a service.
A service and its service interface have the same name.
A provide service is defined as a service whose service interface is used by a radio application
and provided by a transceiver instance.
A use service is defined as a service whose service interface is used by a transceiver instance and
provided by a radio application.

1.3.2 Services groups

A services group of the Transceiver API is defined as a set of provide services and use services
sharing a common purpose.
The module of a service group is defined as the IDL module of the interfaces of the services of
the services group.
A services group and its module have the same name.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 13
All Rights Reserved

The following services groups are specified:
 Management: general control,
 BurstControl: creation and termination of bursts,
 BasebandSignal: packet-based exchange of baseband blocks,
 Tuning: control of the tuning parameters,
 Notifications: notification of events and errors to the radio application,
 GainControl: automated gain control,
 TransceiverTime: access to transceiver time,
 Strobing: trigger of strobes for creation of strobed bursts.

1.3.3 Implementation of services

An active instance of a service is defined as a running implementation of the service that is
connected to the radio application in conformance with the service interface.

1.3.3.1 Access capabilities

The transceiver instances access capability is defined as the capability for the radio application
software to access, before the CONFIGURED state is reached, to the transceiver instances it uses.

The active services access capability is defined as the capability for the radio application software
to access, before the CONFIGURED state is reached, to the active services instances of the
transceiver instances it uses.
The solution for transceiver instance access and active services access has to be specified by the
applied PSM specification.

1.3.3.2 Tx channels services

SamplesTransmission (see section 2.4.2.5) is the service enabling Tx forwarded block
exchange.
A transceiver instance shall have one active instance of SamplesTransmission per Tx channel.

This implies TX_CHANNELS instances of the service are implemented.

TX_SERVICES (see section 4.2) specifies, if TX_CHANNELS > 0, the set of services attached to Tx
channels.
A transceiver instance shall have, for each service attached to Tx channels, one active instance of
the service that jointly applies to all Tx channels.

1.3.3.3 Rx channels services

SamplesReception (see section 2.4.2.5) is the service enabling Rx block exchange.

A transceiver instance shall have one active instance of SamplesReception per Rx channel.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 14
All Rights Reserved

This implies RX_CHANNELS instances of the service are implemented.

RX_SERVICES (see section 4.2) specifies, if RX_CHANNELS > 0, the set of services attached to Rx
channels.
A transceiver instance shall have, for each service attached to Rx channels, one active instance of
the service that jointly applies to all Rx channels.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 15
All Rights Reserved

2 Services

2.1 Provide services

The following table lists the provide services of the API (used by a radio application and provided
by a transceiver instance, see section 1.3.1):

Services groups /
Modules

Services / Interfaces Primitives

Management ::Management::Reset reset()
::Management::RadioSilence startRadioSilence()

stopRadioSilence()
BurstControl ::BurstControl::DirectCreation startBurst()

::BurstControl::RelativeCreation scheduleRelativeBurst()
::BurstControl::AbsoluteCreation scheduleAbsoluteBurst()
::BurstControl::StrobedCreation scheduleStrobedBurst()
::BurstControl::Termination setBlockLength()

stopBurst()
BasebandSignal ::BasebandSignal::SamplesTransmission pushTxPacket()

::BasebandSignal::RxPacketsLengthControl setRxPacketsLength()
Tuning ::Tuning::InitialTuning setTuning()

::Tuning::Retuning retune()
GainControl ::GainControl::GainLocking lockGain()

unlockGain()
TransceiverTime ::TransceiverTime::TimeAccess getCurrentTime()

getLastStartTime()
Strobing ::Strobing::ApplicationStrobe triggerStrobe()

Table 1 Provide services of Transceiver API

2.2 Use services

The following table lists the use services of the API (provided by a radio application and used by
a transceiver instance, see section 1.3.1):

Services groups Service / Interface Primitives
BasebandSignal ::BasebandSignal::SamplesReception pushRxPacket()
Notifications ::Notifications::Events notifyEvent()

::Notifications::Errors notifyError()
GainControl ::GainControl::GainChanges indicateGain()

Table 2 Use services of Transceiver API

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 16
All Rights Reserved

2.3 States machines

The state machines specified in this section and their associated statecharts aim to comply with the
OMG Unified Modeling Language v2.5, as specified in [Ref4].
All specified transitions are instantaneous.
Errors and exceptions handling are not modeled by the specified state machines.

2.3.1 Channels

Channels is specified as the main state machine followed by channels of a transceiver instance.

An instance of Channels is simultaneously followed by all Tx channels of a transceiver instance.

An instance of Channels is simultaneously followed by all Rx channels of a transceiver instance.

The instances of Channels in a half-duplex transceiver are not independent: if channels are in
TUNING or PROCESSING state, the other channels cannot be in one of those two states.

The following figure is the statechart of Channels state machine:

CONFIGURED

OPERATING

IDLE

PROCESSING

TUNING

ProcessingStart
(@ activation time)

TuningStart
(@ tuning time)

TuningStop

ProcessingStop
curentSample = BlockLength
stopBurst()
(@ termination time)

RuntimeReset
reset()

ResetCompleted

RESETTING

Figure 9 Channels statechart

2.3.1.1 States

2.3.1.1.1 CONFIGURED

CONFIGURED is specified as the main state of Channels during which channels of a transceiver
instance are configured according to the needs of a supported radio application.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 17
All Rights Reserved

CONFIGURED is reached by the channels of a transceiver instance when they:
 Comply with the values of properties specified for the supported radio application (see

section 4),
 Have attributes set to their initial values (see section 3.3),
 Can interact with the radio application according to interfaces of active services.

CONFIGURED decomposes into OPERATING and RESETTING sub-states.

Its entry transition brings to the OPERATING sub-state.

How CONFIGURED is reached has to be specified by the applied PSM specification.

2.3.1.1.2 OPERATING

OPERATING is specified as the sub-state of CONFIGURED during which channels are operational.

OPERATING decomposes into IDLE, TUNING and PROCESSING sub-states.

Its entry transition brings to the IDLE sub-state.

2.3.1.1.3 IDLE

IDLE is specified as the sub-state of OPERATING during which channels are inactive.

2.3.1.1.4 TUNING

TUNING is specified as the sub-state of OPERATING during which channels are tuned in
accordance with the applicable tuning parameters set, as defined by CreationControl (see
section 2.3.2).
Note: the concept of tuning of the specification is larger than only changing value of carrier
frequency. It can imply modification of tuning preset and gain.
A channel shall, during the TUNING state, set the value of applicableTuningPreset attribute
according to value of requestedTuningPreset:

 If equal to UndefinedTuningPreset: keep the value of
applicableTuningPreset used for the previous burst,

 If not equal to UndefinedTuningPreset: apply requestedTuningPreset as the new
value of applicableTuningPreset.

A channel shall, during TUNING state, set the value of applicableCarrierFreq attribute
depending on value of requestedCarrierFreq:

 If equal to UndefinedCarrierFreq: keep the value of applicableCarrierFreq
at termination of the previous burst,

 If not equal to UndefinedCarrierFreq: apply requestedCarrierFreq as the new
value of applicableCarrierFreq.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 18
All Rights Reserved

A Tx channel shall, during TUNING state, set the value of applicableGain attribute depending
on value of requestedGain:

 If equal to UndefinedGain: keep the value of applicableGain at termination of
the previous burst,

 If not equal to UndefinedGain: apply requestedGain as the new value of
applicableGain.

Usage of requestedGain by an Rx channel is unspecified.
TUNING_DURATION (see section 4.8) specifies the maximum duration of TUNING state (see
section 2.3.4).

2.3.1.1.5 PROCESSING

PROCESSING is specified as the sub-state of OPERATING during which channels are in a
processing phase (transmission for Tx channels, reception for Rx channels) (see section 1.2.3,
1.2.4 and 1.2.5).
Tx channels requirements
Tx channels shall, during PROCESSING state, initiate up-conversion:

 With first sample of Tx processed block equal to first sample of Tx forwarded block,
 With a ramp-up signal generated in accordance with TX_SHAPING (see section 4.2).

Tx channels shall, during a PROCESSING state, increment value of sampleCount (see section
3.3.1.2) each time a new baseband sample of the Tx forwarded block enters in up-conversion.
The valid input level range of Tx channels is defined as the interval
[TX_MIN_BASEBAND_LEVEL ; TX_MAX_BASEBAND_LEVEL] (see section 4.10).

Tx channels shall, during a PROCESSING state and so long as the baseband signal is within the
valid input level range, perform up-conversion in conformance with the up-conversion formula
(see section 1.2.4).
Tx channels shall exhibit, during PROCESSING state and so long as the baseband signal level is
within the valid input level range, an actual gain that belongs to applicableGain ± GAIN_ACC
(see section 4.10).
Automatic level control (ALC)
Automatic level control (ALC) is defined as the capability for a Tx channel to automatically adjust
the actually applied transmit gain, during early phase of the transmission, in order to radiate a
desired level of radio signal.
ALC (see section 4.3) specifies the nature of the applied ALC.

Tx channels shall, during PROCESSING state and if ALC is equal to noALC, implement no ALC.

Tx channels shall, during PROCESSING state and if ALC is equal to activeALC, implement ALC.

Further aspects of the implemented ALC are unspecified.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 19
All Rights Reserved

Adjustment in transmit gain realized by an active ALC can be indicated to the radio application
using the GainControl service (see section 2.4.6).

Rx channels requirements
Rx channels shall, during PROCESSING state, initiate down-conversion:

 Without transferring ramp-up samples to the radio application,
 With first sample of the Rx block equal to the sample following the ramp-up samples.

The valid input level range of Rx channels is defined as the interval [RX_MIN_RADIO_LEVEL ;
RX_MAX_RADIO_LEVEL] (see section 4.10).

Rx channels shall, during a PROCESSING state and so long the radio signal is within the valid
input level range, perform down-conversion in conformance with the down-conversion formula
(see section 1.2.5).
Rx channels shall, during a PROCESSING state, increment value of sampleCount (see section
3.3.1.2) each time a new baseband sample generated by down-conversion is assigned to an Rx
packet.
The valid output level range of Rx channels is defined as the interval
[RX_MIN_BASEBAND_LEVEL ; RX_MAX_BASEBAND_LEVEL] (see section 4.10).

Rx channels shall, during PROCESSING state and so long the radio signal is within the valid input
level range, deliver an output baseband signal which level is within the valid output level range.
Automatic gain control (AGC)
Automatic gain control (AGC) is defined as the capability for a Rx channel to automatically
change the receive gain in order to deliver a baseband signal which meets the specified level
requirements.
AGC (see section 4.3) specifies the nature of the applied AGC.

Rx channels shall, during PROCESSING state and if AGC is equal to noAGC, implement no AGC.

Rx channels shall, during PROCESSING state and if AGC is equal to earlyControl, implement
an AGC that sets the receive gain at beginning of the Rx burst, to a value that is then kept constant
for the remainder of the burst.
EARLY_AGC_DELAY (see section 4.8) specifies the delay available after start time of a Rx burst for
an earlyControl AGC to have set the receive gain.

Rx channels shall, during PROCESSING state and if AGC is equal to permanentControl,
implement an AGC that remains active during the full Rx burst.
Further aspects of the implemented AGC are unspecified.
For Rx channels implementing AGC, changes in receive gain can be indicated to the radio
application using the GainChanges service (see section 2.4.6).

For Rx channels implementing a permanent AGC, the AGC can be deactivated and reactivated
using the AGCActivation service (see section 2.4.6).

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 20
All Rights Reserved

Channelization requirements
Channels shall exhibit, during PROCESSING state and so long as input signal level is within the
valid input level range, an actual transfer function that fits into the mask defined by fields of
CHANNEL_MASK (see section 4.10).

Channels shall exhibit, during PROCESSING state and so long as the input signal level is within
the valid input level range, an actual baseband sampling frequency (𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵) that belongs to
CHANNEL_MASK.basebandSamplingFreq ± SAMPLING_FREQ_ACC (see section 4.10).

Channels shall exhibit, during PROCESSING state and so long as the input signal level is within
the valid input level range, an actual carrier frequency that belongs to
applicableCarrierFreq ± CARRIER_FREQ_ACC (see section 4.10).

Termination requirements
The last processed sample of a burst is defined as the sample of the processed block with a sample
number equal to applicableBurstLength.

Note: value of applicableBurstLength can be set by a creation operation (see section 2.4.2)
or updated by setBlockLength() or stopBurst() (see section 3.1.7).
Tx channels shall, during PROCESSING state:

 Make the sample of Tx forwarded block with sample number equal to
applicableBurstLength the last sample of the Tx processed block,

 Discard any sample of the Tx forwarded block after the last sample,
 Use null flushing baseband samples until ramp-down is completed.

Channels shall trigger a ProcessingStop transition once ramp-down is completed and, for Tx
channels, once the Tx forwarded block has been ended by the radio application.
Rx channels shall, during PROCESSING state, terminate down-conversion without transferring
ramp-down samples to the radio application.

2.3.1.1.6 RESETTING

RESETTING is specified as the sub-state of CONFIGURED during which channels reset.

RESETTING is completed by channels of a transceiver instance once:
 Attributes are set back to their initial values (see section 3.3),
 Any previously used storage is cleared: for creation operation (see sections 3.1.3, 3.1.4,

3.1.5 and 3.1.6), tuning parameters set (see section 3.1.11) or baseband samples of Tx
channels (see section 3.1.9).

2.3.1.2 Transitions

2.3.1.2.1 ResetCompleted

ResetCompleted is specified as the transition from RESETTING to IDLE.

It is triggered once channels have completed the RESETTING state.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 21
All Rights Reserved

2.3.1.2.2 TuningStart

TuningStart is specified as the transition from IDLE state to TUNING.

It is triggered under control of CreationControl (see section 2.3.2).

2.3.1.2.3 TuningStop

TuningStop is specified as the transition from TUNING to IDLE.

It is triggered once channels have completed the TUNING state.

2.3.1.2.4 ProcessingStart

ProcessingStart is specified as the transition from IDLE to PROCESSING.

It is triggered under control of CreationControl (see section 2.3.2).

2.3.1.2.5 ProcessingStop

ProcessingStop is specified as the transition from PROCESSING to IDLE.

It is triggered by PROCESSING based on knowledge of last processed sample (see section
2.3.1.1.5).

2.3.1.2.6 RuntimeReset

RuntimeReset is specified as the transition from OPERATING to RESETTING.

It is triggered upon call of reset() (see section 3.1.1) by the radio application.

2.3.2 CreationControl

CreationControl is specified as the autonomous process followed by a transceiver instance
for the control of creation of the bursts executed by channels.
An instance of CreationControl applies to all Tx channels of a transceiver instance.

An instance of CreationControl applies to all Rx channels of a transceiver instance.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 22
All Rights Reserved

The following figure is the statechart of CreationControl state machine:

CREATION

SCHEDULING

INITIATING

creationStart

ACTUATING

AWAITING

initiationCompleted

creationCompleted

schedulingCompleted

Figure 10 CreationControl statechart

2.3.2.1 States

2.3.2.1.1 AWAITING

AWAITING is specified as the state of CreationControl during which a transceiver instance
stays until it triggers a burst creation.
A transceiver instance shall, during AWAITING, wait until a creation command is available in
storage.

2.3.2.1.2 CREATING

CREATING is specified as the state of CreationControl during which a transceiver instance
performs creation of a particular burst.
The burst under creation is defined as the burst that an instance of CREATING aims to create.

The applied creation command is defined as the creation command applied by CREATING for
creation of the burst under creation.
The entry transition of CREATING is specified as a transition to the INITIATING sub-state.

The exit transition of CREATING is specified as a transition after completion of the ACTUATION
sub-state.

2.3.2.1.3 INITIATING

INITIATING is specified as the sub-state of CREATING during which burst creation is initiated.

A transceiver instance shall, during INITIATING, make the oldest creation command available
in storage the applied creation command, and remove it from storage.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 23
All Rights Reserved

A transceiver instance shall, during INITIATING, set value of applicableBurstLength to
value of requestedLength as specified in the applied creation command.
A transceiver instance shall, during INITIATING, increment burstCount (see section 3.3.1.1)
by 1 (one), rolling-over to 1 after 4.294.967.295 (2^32-1).

A transceiver instance shall, for Rx channels during INITIATING, set the length of Rx packets to
the value of applicableRxPacketsLength (see section 3.3.1.2).

A transceiver instance shall, during INITIATING, search for stored tuning parameters set
according to a condition specified by value of TUNING_ASSOCIATION (see section 4.3):

 For sequential: search for the oldest stored tuning parameters set,
 For burstReferencing: search for a stored tuning parameters set with value of

requestedBurstNumber equal to value of burstCount.

A transceiver instance shall, during INITIATING, if a stored tuning parameters set was found,
use it as the applicable tuning parameters set and remove it from storage.
A transceiver instance shall, during INITIATING, if no stored tuning parameters set was found,
set the applicable tuning parameters set as follows:

 requestedTuningPreset equals to UndefinedTuningPreset,
 requestedCarrierFreq equals to UndefinedCarrierFreq,
 requestedDelay equals to UndefinedDelay.

2.3.2.1.4 SCHEDULING

SCHEDULING is specified as the sub-state of CREATING during which the start time, activation
time and tuning time of a burst under creation are determined.
Start time corresponds to start of the core burst at radio signal level (see section 1.2.3).
A channel shall stay in SCHEDULING until all information required for determination of start time
is known.
A channel shall, during SCHEDULING of a startBurst() creation command, make start time equal
to the termination time of the previous burst plus INTER-PROCESSING (see section 3.1.4).

A channel shall, during SCHEDULING of a scheduleRelativeBurst() creation command, make start
time equal to the start time of the previous burst on channels specified by value of
requestedAlternate plus the value of requestedDelay (see section 3.1.4).
A channel shall, during SCHEDULING of a scheduleAbsoluteBurst() creation command, make start
time equal to the value of requestedStartTime (see section 3.1.5).
A channel shall, during SCHEDULING of a scheduleStrobedBurst() creation command, make start
time equal to the occurrence time of the next strobe triggered on the strobe source specified by
requestedStrobeSource plus the value of requestedDelay (see section 3.1.6).
Activation time is defined as the time at which the startProcessing transition is triggered.

A channel shall, during SCHEDULING, determine activation time so that the effective start time
belongs to start time ± START_TIME_ACC (see section 4.12).

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 24
All Rights Reserved

Note: for Tx channels, activation time is equal to start time minus up-conversion latency (see
Figure 2); for Rx channels, activation time is equal to start time (see Figure 5).
Tuning time is defined as the time at which the startTuning transition is triggered to ensure
that the applicable tuning parameters set is implemented by the TUNING state with a TuningStop
transition triggered before activation time.
A channel shall, during SCHEDULING, determine tuning time based on activation time.

2.3.2.1.5 ACTUATING

ACTUATING is specified as the sub-state of CREATING during which the transceiver instance
triggers TuningStart and ProcessingStart transitions of the Channels state machine.

A transceiver instance shall, during ACTUATING, trigger a TuningStart transition at tuning
time.
A transceiver instance shall, during ACTUATING of Tx channels if the applied creation operation
is startBurst(), shift activation time until first baseband sample becomes available.
A transceiver instance shall, during ACTUATING, trigger a ProcessingStart transition at
activation time.

2.3.2.2 Transitions

2.3.2.2.1 CreationStart

CreationStart is specified as the transition from AWAITING to CREATION.

It is triggered once a creation command is available in storage.

2.3.2.2.2 InitiationCompleted

CreationStart is specified as the transition from INITIATING to SCHEDULING.

It is triggered once a transceiver instance has completed INITIATING.

2.3.2.2.3 SchedulingCompleted

SchedulingCompleted is specified as the transition from SCHEDULING to ACTUATING.

It is triggered once a transceiver instance has completed SCHEDULING.

2.3.2.2.4 CreationCompleted

CreationCompleted is specified as the transition from CREATION to AWAITING.

It is triggered once a transceiver instance has completed ACTUATING.

2.3.3 RadioSilence

RadioSilence is specified as the state machine applicable if RadioSilence is active or if the
channels can be turned to radio silence by an agent different from the radio application.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 25
All Rights Reserved

The following figure is the statechart of RadioSilence:

OPERATING

RADIO_SILENCE

NORMAL

RadioSilenceStop
(stopRadioSIlence())

RadioSilenceStart
(startRadioSIlence())

IDLE

PROCESSING

TUNING

Figure 11 RadioSilence statechart

RadioSilence is a sub-state machine of OPERATING, parallel to the sub-state machine of
OPERATING specified by Channels (see section 2.3.1).

2.3.3.1 States

2.3.3.1.1 NORMAL

NORMAL is specified as the state during which the channels operate as specified for the
OPERATING state of Channels.

The entry transition of RadioSilence brings to NORMAL.

2.3.3.1.2 RADIO_SILENCE

RADIO_SILENCE is specified as the state during which channels minimize the radiated radio
signal, preventing respect of the specified tuning during PROCESSING state.

The RADIO_SILENCE state does not impact any other aspect of the OPERATING state.

2.3.3.2 Transitions

2.3.3.2.1 RadioSilenceStart

RadioSilenceStart is specified as the transition from NORMAL to RADIO_SILENCE.

It is triggered by invocation of startRadioSilence().

2.3.3.2.2 RadioSilenceStop

RadioSilenceStop is specified as the transition from RADIO_SILENCE to NORMAL.

It is triggered by invocation of stopRadioSilence().

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 26
All Rights Reserved

2.3.4 Retuning

Retuning is specified as the state machine applicable if Retuning is active.

The following figure is the statechart of Retuning:

PROCESSING

RETUNING

TUNED

RetuningStopRetuningStart
(execution of retune())

Figure 12 Retuning statechart

Retuning is a sub-state machine of PROCESSING (see section 2.3.1).

2.3.4.1 States

2.3.4.1.1 TUNED

TUNED is specified as the sub-state of PROCESSING during which channels process with stable
tuning characteristics that comply with the specified tuning.
The entry transition of Retuning brings to TUNED.

2.3.4.1.2 RETUNING

RETUNING is specified as the sub-state of PROCESSING during which channels change their
tuning while continuing to perform up-conversion or down-conversion.
RETUNING_DURATION (see section 4.8) specifies the maximum duration of RETUNING state.

2.3.4.2 Transitions

2.3.4.2.1 RetuningStart

RetuningStart is specified as the transition from TUNED to RETUNING.

It is triggered when the radio application calls retune() (see section 3.1.12).

2.3.4.2.2 RetuningStop

RetuningStop is specified as the transition from RETUNING to TUNED.

It is triggered when the new tuning characteristics are stable and conform to the tuning changes
commanded by retune().

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 27
All Rights Reserved

2.4 Services groups description

The class diagrams appearing in this section aim to comply with the OMG Unified Modeling
Language v2.5, as specified in [Ref4].

2.4.1 Transceiver::Management

The Management services group enables radio applications to manage the Transceiver, and
contains the following services:

Radio
application

Transceiver::Management

Reset

RadioSilence

Transceiver
provides

provides

Figure 13 Services of Management services group

The Reset service enables radio applications to reset channels.

The RadioSilence service enables radio applications to start and stop radio silence.

2.4.1.1 Transceiver::Management::Reset Interface Description

The Reset interface is composed of the reset() operation, as depicted in the following figure:

<< interface >>
Reset

• reset()

Figure 14 Management::Reset interface

reset() enables radio applications to reset channels.

2.4.1.2 Transceiver::Management::RadioSilence Interface Description

The RadioSilence interface is composed of the startRadioSilence() and stopRadioSilence()
operations, as depicted in the following figure:

<< interface >>
RadioSilence

• startRadioSilence()
• stopRadioSilence()

Figure 15 Management::RadioSilence interface

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 28
All Rights Reserved

startRadioSilence() enables radio applications to start radio silence.
stopRadioSilence() enables radio applications to stop radio silence.

2.4.2 Transceiver::BurstControl

The BurstControl services group enables radio applications to control the creation of bursts,
and contains the following services:

Transceiver::BurstControl

DirectCreation

RelativeCreation

AbsoluteCreation

StrobedCreation

TransceiverRadio
application

provides

provides

provides

provides

TerminationControl

Figure 16 Services of BurstControl services group

A creation service is defined as a service of BurstControl services group.

A creation operation is defined as one operation of a creation service: startBurst(),
scheduleRelativeBurst(), scheduleAbsoluteBurst() or scheduleStrobedBurst().
The DirectCreation service enables radio applications to schedule the creation of a new burst
with no specific requirement on its start time.
A timely creation service is defined as a RelativeCreation, AbsoluteCreation or
StrobedCreation service.

A timely creation operation is defined as a creation operation of a timely creation service:
scheduleRelativeBurst(), scheduleAbsoluteBurst() or scheduleStrobedBurst().
Timely creation services and operations enables to specify the start time of scheduled burst,
measured at the radio signal level, as specified in section 1.2.
The RelativeCreation service enables radio applications to schedule the creation of a new
burst with a start time delayed by a specified value from the start time of the previous burst.
The AbsoluteCreation service enables radio applications to schedule the creation of a new
burst with a start time specified using the transceiver time.
The StrobedCreation service enables radio applications to schedule the creation of a new burst
with a start time delayed by a specified value from the next occurrence of a strobe discrete signal
on a specified strobe source.
All creation services enable radio applications to specify the length of the baseband block.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 29
All Rights Reserved

Radio applications must make calls to creation operations in the same order as the order of created
bursts (see section 2.3.2), and can make up to CREATION_STORAGE (see section 4.8) anticipated
calls to creation operations.
Radio applications must make calls to timely creation operations ensuring value of INTER-
PROCESSING (see section 4.8) is respected.

The Termination service enables radio applications to control termination of an ongoing
processing phase.

2.4.2.1 Transceiver::BurstControl::DirectCreation Interface Description

The DirectCreation interface is composed of the startBurst() operation, as depicted in the
following figure:

<< interface >>
DirectCreation

• startBurst()

<< typedef>>
BlockLength

Figure 17 BurstControl::DirectCreation interface

startBurst() enables radio applications to schedule the creation of a new burst with no specific
requirement on its start time.

2.4.2.2 Transceiver::BurstControl::RelativeCreation Interface Description

The RelativeCreation interface is composed of the scheduleRelativeBurst() operation, as
depicted in the following figure:

<< interface >>
RelativeCreation

• scheduleRelativeBurst()

<< typedef>>
Delay

<< typedef>>
BlockLength

<< typedef>>
CrossReference

Figure 18 BurstControl::RelativeCreation interface

scheduleRelativeBurst() enables radio applications to schedule the creation of a new burst with a
start time delayed by a specified value from the start time of the previous burst.
scheduleRelativeBurst() must be combined with another creation operation (e.g. startBurst() or
scheduleStrobedBurst()), used to create the first burst of all series of bursts then created using
scheduleRelativeBurst().

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 30
All Rights Reserved

2.4.2.3 Transceiver::BurstControl::AbsoluteCreation Interface Description

The AbsoluteCreation interface is composed of the scheduleAbsoluteBurst() operation, as
depicted in the following figure:

<< interface >>
AbsoluteCreation

• scheduleAbsoluteBurst()

<< typedef >>
TimeSpec

<< typedef>>
BlockLength

Figure 19 BurstControl::AbsoluteCreation interface

scheduleAbsoluteBurst() enables radio applications to schedule the creation of a new burst with a
start time specified using the transceiver time.
scheduleAbsoluteBurst() must be used in conjunction with a mechanism enabling radio
applications to get the transceiver time (e.g. the TransceiverTime service).

2.4.2.4 Transceiver::BurstControl::StrobedCreation Interface Description

The StrobedCreation interface is composed of the scheduleStrobedBurst() operation, as
depicted in the following figure:

<< interface >>
StrobedCreation

• scheduleStrobedBurst()

<< typedef >>
Delay

<< typedef >>
StrobeSource

<< typedef>>
BlockLength

Figure 20 BurstControl::StrobedCreation interface

scheduleStrobedBurst() enables radio applications to schedule the creation of a new burst with a
start time delayed by a specified value from the next occurrence of a strobe discrete signal on a
specified strobe source.
The specified strobe source can be internal to the platform (e.g. the PPS signal of a GNSS system)
or be provided by a component of the radio application (e.g. a FPGA component).

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 31
All Rights Reserved

2.4.2.5 Transceiver::BurstControl::Termination Interface Description

The Termination interface is composed of the setBlockLength() and stopBurst() operations, as
depicted in the following figure:

<< interface >>
Termination

• setBlockLength()
• stopBurst()

<< typedef >>
BlockLength

Figure 21 BurstControl::Termination interface

setBlockLength() enables radio applications to set the length of the baseband block processed by
channels during an ongoing processing phase.
stopBurst() enables radio applications command immediate termination of an ongoing processing
phase.

2.4.3 Transceiver::BasebandSignal

The BasebandSignal services group enables radio applications to exchange blocks of baseband
samples processed by channel, and contains the following services:

TransceiverRadio
application

Transceiver::BasebandSignal

SamplesTransmission

provides

SamplesReception

uses

RxPacketsLengthControl

provides

Figure 22 Services of BasebandSignal services group

The SamplesReception service enables radio applications to obtain a receive baseband block
from an Rx channel during a reception (see section 1.2.4).
The SamplesTransmission service enables radio applications to forward a transmit baseband
block to a Tx channel during a transmission (see section 1.2.5).
The RxPacketsLengthControl service enables radio applications to set the value of the
applicableRxPacketsLength attribute.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 32
All Rights Reserved

2.4.3.1 Transceiver::BasebandSignal::SamplesReception Interface Description

The SamplesReception interface is composed of the pushRxPacket() operation, as depicted in
the following figure:

<< interface >>
SamplesReception

• pushRxPacket()

<< typedef >>
BasebandPacket

Figure 23 BasebandSignal::SamplesReception interface

pushRxPacket() enables radio applications to obtain a baseband packet from an Rx channel and
to be specified if the packet is the last packet of the Rx block.

2.4.3.2 Transceiver::BasebandSignal::SamplesTransmission Interface Description

The SamplesTransmission interface is composed of the pushTxPacket() operation, as depicted
in the following figure:

<< interface >>
SamplesTransmission

• pushTxPacket()

<< typedef >>
BasebandPacket

Figure 24 BasebandSignal::SamplesTransmission interface

pushTxPacket() enables radio applications to forward a baseband packet to a Tx channel and to
specify if the packet is the last packet of the Tx forwarded block.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 33
All Rights Reserved

2.4.3.3 Transceiver::BasebandSignal::RxPacketsLengthControl Interface Description

The RxPacketsLengthControl interface is composed of the setRxPacketsLength() operation,
as depicted in the following figure:

<< interface >>
RxPacketsLengthControl

• setRxPacketsLength()

<< typedef >>
PacketsLength

Figure 25 BasebandSignal::RxPacketsLengthControl interface

setRxPacketsLength() enables radio applications to set the value of the
applicableRxPacketsLength attribute.

2.4.4 Transceiver::Tuning

The Tuning services group enables radio applications to control the tuning of bursts, and contains
the following services:

Transceiver::Tuning

InitialTuning

TransceiverRadio
application

Retuning

provides

provides

Figure 26 Services of Tuning services group

The InitialTuning service enables radio applications to specify the tuning preset, carrier
frequency and gain values to be applied at beginning of a future burst.
Radio applications can make up to TUNING_STORAGE (see section 4.8) anticipated calls to
setTuning().
Radio applications must use the InitialTuning service for a given burst, if needed, before the
stored creation operation of the burst is used by CreationControl (see section 2.3.2).

The Retuning service enables radio applications to schedule and specify new values of carrier
frequency and gain without interrupting an ongoing processing phase.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 34
All Rights Reserved

2.4.4.1 Transceiver::Tuning::InitialTuning Interface Description

The InitialTuning interface is composed of the setTuning() operation, as depicted in the
following figure:

<< interface >>
InitialTuning

• setTuning()

<< typedef >>
TuningPreset

<< typedef >>
CarrierFrequency

<< typedef >>
BurstNumber

<< typedef >>
Gain

Figure 27 Tuning::InitialTuning interface

setTuning() enables radio applications to specify the tuning preset, carrier frequency and gain
values to be applied at beginning of a future burst.

2.4.4.2 Transceiver::Tuning::Retuning Interface Description

The Retuning interface is composed of retune() operation, as depicted in the following figure:

<< interface >>
Retuning

• retune()

<< typedef >>
CarrierFrequency

<< typedef >>
Delay

<< typedef >>
Gain

Figure 28 Tuning::Retuning interface

retune() enables radio applications to schedule and specify new values of carrier frequency and
gain without interrupting an ongoing processing phase.

2.4.5 Transceiver::Notifications

The Notifications services group enables radio applications to be notified by channels of
execution events and execution errors, and contains the following services:

TransceiverRadio
application

Transceiver::Notifications

Events

uses

Errors

uses

Figure 29 Services of Notifications services group

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 35
All Rights Reserved

The Events service enables radio applications to be notified of events occurrences.

The Errors service enables radio applications to be notified of errors occurrences.

2.4.5.1 Transceiver::Notifications::Events Interface Description

The Events interface is composed of the notifyEvent() operation, as depicted in the following
figure:

<< interface >>
Events

• notifyEvent()

<< typedef >>
EventCode

Figure 30 Notifications::Events interface

notifyEvent() enables radio applications to be notified of events occurrences.

2.4.5.2 Transceiver::Notifications::Errors Interface Description

The Errors interface is composed of the notifyError() operation, as depicted in the following
figure:

<< interface >>
Errors

• notifyError()

<< typedef >>
ErrorCode

Figure 31 Notifications::Errors interface

notifyError() enables radio applications to be notified of errors occurrences.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 36
All Rights Reserved

2.4.6 Transceiver::GainControl

The GainControl services group enables radio applications to be informed of aspects related to
gain control, and contains the following service:

TransceiverRadio
application

Transceiver::GainControl

GainChanges

uses

AGCActivation

provides

Figure 32 Services of GainControl services group

The GainCanges service enables radio applications to be notified of changes in gain values
decided by channels during a processing phase.
The AGCActivation service enables radio applications to deactivate and reactivate permanent
AGC while a reception is ongoing.

2.4.6.1 Transceiver::GainControl::GainChanges Interface Description

The GainChanges interface is composed of the indicateGain() operation, as depicted in the
following figure:

<< interface >>
GainChainges

• indicateGain()

<< typedef >>
SampleNumber

<< typedef >>
Gain

Figure 33 GainControl::GainChanges interface

indicateGain() enables radio applications to be notified of changes in gain values decided by
channels during a processing phase.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 37
All Rights Reserved

2.4.6.2 Transceiver::GainControl::AGCActivation Interface Description

The AGCActivation interface is composed of the deactivateAGC() and reactivateAGC()
operations, as depicted in the following figure:

<< interface >>
AGCActivation

• deactivateAGC()
• reactivateAGC()

Figure 34 GainControl::AGCActivation interface

deactivateAGC() enables radio applications to deactivate AGC in the course of a reception.
reactivateAGC() enables radio applications to reactivate a previously deactivated AGC.

2.4.7 Transceiver::TransceiverTime

The TransceiverTime services group enables radio applications to get values of transceiver
time, and contains the following service:

TransceiverRadio
application

Transceiver::TransceiverTime

AbsoluteCreation

supports

TimeAccess

provides

Figure 35 Service of TransceiverTime services group

The TimeAccess service enables radio applications to get the current value of transceiver time
and the value of transceiver time for the start time of the last created burst.

2.4.7.1 Transceiver::TransceiverTime::TimeAccess Interface Description

The TimeAccess interface is composed of the getCurrentTime() and getLastStartTime()
operations, as depicted in the following figure:

<< interface >>
TimeAccess

• getCurrentTime()
• getLastStartTime()

<< typedef>>
TimeSpec

<< typedef>>
BurstNumber

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 38
All Rights Reserved

Figure 36 TransceiverTime::TimeAccess interface

getCurrentTime() enables radio applications to get the current value of transceiver time.
getLastStartTime() enables radio applications to get the value of transceiver time for the start time
of the last created burst.

2.4.8 Transceiver::Strobing

The Strobing services group enables radio applications to trigger strobes that can be used for
creation of bursts scheduled with StrobedCreation service, and contains the following
interface:

TransceiverRadio
application

StrobedCreation

Transceiver::Strobing

ApplicationStrobe

provides

supports

Figure 37 Service of Strobing services group

The Strobing service enables radio applications to trigger strobes that can be used for creation
of a bursts scheduled with StrobedCreation service.

2.4.8.1 Transceiver::Strobing::ApplicationStrobe Interface Description

The ApplicationStrobe interface is composed of the triggerStrobe() operation, as depicted in
the following figure:

<< interface >>
ApplicationStrobe

• triggerStrobe()

Figure 38 Strobing::ApplicationStrobe interface

triggerStrobe() enables radio applications to trigger occurrences of strobes that can be used for
creation of a burst scheduled by a scheduleStrobedBurst() call (see section 3.1.6) with
requestedStrobeSource parameter equal to ApplicationStrobe.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 39
All Rights Reserved

3 Service primitives and attributes

3.1 Service primitives

This section specifies the primitives of the services interfaces of the Transceiver API.
Each declaration of a primitive complies with the Full PIM IDL Profile of WInnForum IDL profiles
for PIM of SDR Applications, specified in [Ref5].
The conformance criteria for Application-Specific Interfaces is applied (see [Ref5], section 1.3.2):
“An Application-Specific Interface is conformant with one applicable IDL Profile if each of its
operations exclusively uses capabilities of the applicable IDL Profile.”.
The declaration of each primitive also complies with SCA 4.1 Appendix E-1 [Ref6].
The specified declarations are common normative inputs for the PSMs (see section 1.1) specified
in appendices of the specification.
The sequence diagrams appearing in this section are based on the OMG Unified Modeling
Language v2.5, as specified in [Ref4].

3.1.1 Transceiver::Management::Reset

3.1.1.1 reset Operation

3.1.1.1.1 Overview

reset() commands channels to reset.

3.1.1.1.2 Associated properties

RESET_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.1.1.3 Declaration

The declaration of the operation is specified as:
void reset();

3.1.1.1.4 Parameters

None.

3.1.1.1.5 Returned value

None.

3.1.1.1.6 Originator

Radio application.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 40
All Rights Reserved

3.1.1.1.7 Exceptions

None.

3.1.1.1.8 Behavior requirements

An active instance of Reset shall, on a call to reset():
 Stop any ongoing activity,
 Trigger a RuntimeReset transition (see section 2.3.1.2.6),
 Complete the RESETTING state (see section 2.3.1.1.6),
 Trigger a ResetCompleted transition (see section 2.3.1.2.1),
 Return the call to the radio application.

3.1.2 Transceiver::Management::RadioSilence

3.1.2.1 startRadioSilence Operation

3.1.2.1.1 Overview

startRadioSilence() commands Tx channels to start a radio silence phase, as depicted in the
following figure:

TransceiverRadio
application

API RF

startRadioSilence()

Radio
silence

The radio silence starts

Radio silence minimizes RF radiation

For Tx channels, Tx burst is not radiated
For Rx channels, Rx baseband samples
are unspecified

Any other behavior of Transceiver is
unaffected

Figure 39 Principle of startRadioSilence()

3.1.2.1.2 Associated properties

START_SILENCE_WCET (see section 4.15) specifies the worst-case execution time of the
primitive.

3.1.2.1.3 Declaration

The declaration of the operation is specified as:
void startRadioSilence();

3.1.2.1.4 Parameters

None.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 41
All Rights Reserved

3.1.2.1.5 Returned value

None.

3.1.2.1.6 Originator

Radio application.

3.1.2.1.7 Exceptions

None.

3.1.2.1.8 Behavior requirements

An active instance of RadioSilence shall, on a call to startRadioSilence():
 Trigger a RadioSilenceStart transition (see section 2.3.2),
 Stop radiating any signal at RF level,
 Return the call to the radio application.

The RADIO_SILENCE state does not impact operation of the OPERATING state further than
preventing RF radiation.

3.1.2.2 stopRadioSilence Operation

3.1.2.2.1 Overview

stopRadioSilence() commands the Tx channels to stop a radio silence phase, as depicted in the
following figure:

TransceiverRadio
application

API RF

stopRadioSilence()

The radio silence stops

Radio
silence

Figure 40 Principle of stopRadioSilence()

3.1.2.2.2 Associated properties

STOP_SILENCE_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.2.2.3 Declaration

The declaration of the operation is specified as:
void stopRadioSilence();

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 42
All Rights Reserved

3.1.2.2.4 Parameters

None.

3.1.2.2.5 Returned value

None.

3.1.2.2.6 Originator

Radio application.

3.1.2.2.7 Exceptions

None.

3.1.2.2.8 Behavior requirements

An active instance of RadioSilence shall, on a call to stopRadioSilence():
 Trigger a RadioSilenceStop transition (see section 2.3.2),
 Resume normal radio operation at RF level,
 Return the call to the radio application.

3.1.3 Transceiver::BurstControl::DirectCreation

3.1.3.1 startBurst Operation

3.1.3.1.1 Overview

startBurst() commands the channels to schedule creation of a burst with no specified start time, as
depicted in the following figure:

TransceiverRadio
application

startBurst(…)

API RF

[Tx] pushTransmittedPacket(
<first packet>)

The created burst starts
immediately after the previously
scheduled burst has terminated

[Tx]: wait for the first packet to be
available before starting

[Rx] pushReceivedPacket(
<first packet>)

Figure 41 Principle of startBurst()

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 43
All Rights Reserved

3.1.3.1.2 Associated properties

CREATION_STORAGE (see section 4.8) specifies the maximum number of calls to creation
operations, such as calls to startBurst(), which channels can store in advance.
DIRECT_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.3.1.3 Declaration

The declaration of the operation is specified as:
void startBurst(
 in BlockLength requestedLength);

3.1.3.1.4 Parameters
Name Type Description

requestedLength BlockLength
(see § 3.4.3)

Value of applicableLength.
Number of baseband samples to be processed during the
processing phase associated to the burst:
 If equal to UndefinedBlockLength: specifies an

undefined value,
 If not equal to UndefinedBlockLength: specifies

the number of baseband samples of the baseband
block to be processed during PROCESSING (see
section 2.3.1).

Table 3 Specification of startBurst() parameters

The parameters validity properties are specified as (see section 4.7):
 For requestedLength: MIN_BLOCK_LENGTH and MAX_BLOCK_LENGTH.

3.1.3.1.5 Return value

None.

3.1.3.1.6 Originator

Radio application.

3.1.3.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 MinBlockLength and MaxBlockLength.

3.1.3.1.8 Behavior requirements

An active instance of DirectCreation shall, on a call to startBurst(), handle the exceptions of
the operation as specified in section 3.2.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 44
All Rights Reserved

An active instance of DirectCreation shall, on a call to startBurst() that raised no exception:
 If CREATION_STORAGE calls (see section 4.8) are stored, wait until storage becomes

available,
 Store the call for later usage by CreationControl (see section 2.3.2),
 Return the call to the radio application.

3.1.4 Transceiver::BurstControl::RelativeCreation

3.1.4.1 scheduleRelativeBurst Operation

3.1.4.1.1 Overview

scheduleRelativeBurst() commands the channels to schedule creation of a burst starting at a
specified delay after the start time of the previous burst of the referenced channel, as depicted in
the following figure:

TransceiverRadio
application

scheduleRelativeBurst(
requestedAlternate,
requestedDelay, …)

API RF

The created burst starts at:
start time = start time of previous
burst + requestedDelay

[Tx]: first packet needs to be
available on time

re
qu

es
te

dD
el

ay

Start time of previous burst

Referenced
channels

(Tx or Rx)

Previous burst is taken on same
channels or alternate channels, as
specified by requestedAlternate

[Tx] pushTransmittedPacket(
<first packet>)

[Rx] pushReceivedPacket(
<first packet>)

Figure 42 Principle of scheduleRelativeBurst()

3.1.4.1.2 Associated properties

CREATION_STORAGE (see section 4.8) specifies the maximum number of calls to creation
operations that channels can store in advance, including calls to scheduleRelativeBurst().
RELATIVE_MILT (see section 4.13) specifies the minimum invocation lead time for correct real-
time usage of the operation.
RELATIVE_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 45
All Rights Reserved

3.1.4.1.3 Declaration

The declaration of the operation is specified as:
void scheduleRelativeBurst(
 in boolean requestedAlternate,
 in Delay requestedDelay,
 in BlockLength requestedLength);

3.1.4.1.4 Parameters
Name Type Description

requestedAlternate boolean For duplex transceivers, specifies the reference channels:
 If equal to false: called channels are used,
 If equal to true: alternate channels are used.

requestedDelay Delay
(see § 3.4.7).

Specifies the delay between the start time of the previous
burst scheduled by reference channel and the start time of
the burst to create.

requestedLength BlockLength
(see § 3.4.3)

Number of baseband samples to be processed during the
processing phase associated to the burst:
 If equal to UndefinedBlockLength: specifies an

undefined value,
 If not equal to UndefinedBlockLength: specifies

the number of baseband samples of the baseband
block to be processed during PROCESSING (see
section 2.3.1).

Table 4 Specification of scheduleRelativeBurst() parameters

The parameters validity properties are specified as (see section 4.7):
 For requestedAlternate: ALTERNATE_REFERENCING,
 For requestedDelay: MIN_FROM_PREVIOUS and MAX_FROM_PREVIOUS,
 For requestedLength: MIN_BLOCK_LENGTH and MAX_BLOCK_LENGTH.

3.1.4.1.5 Return value

None.

3.1.4.1.6 Originator

Radio application.

3.1.4.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 NoAlternateReferencing,
 MinFromPrevious and MaxFromPrevious,
 MinBlockLength and MaxBlockLength,
 RelativeMILT.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 46
All Rights Reserved

3.1.4.1.8 Behavior requirements

An active instance of RelativeCreation shall, on a call to scheduleRelativeBurst(), handle the
exceptions of the operation as specified in section 3.2.
An active instance of RelativeCreation shall, on a call to scheduleRelativeBurst() that raised
no exception:

 If CREATION_STORAGE calls (see section 4.6) are stored, wait until storage becomes
available,

 Store the call for later usage by CreationControl (see section 2.3.2),
 Return the call to the radio application.

3.1.5 Transceiver::BurstControl::AbsoluteCreation

3.1.5.1 scheduleAbsoluteBurst Operation

3.1.5.1.1 Overview

scheduleAboluteBurst() commands the channels to schedule creation of a burst for which core
burst will start at the specified requestedStartTime, as depicted in the following figure:

TransceiverRadio
application

API RF

scheduleAbsoluteBurst(
requestedStartTime, …)

[Tx] pushTransmittedPacket(
<first packet>)

[Rx] pushReceivedPacket(
<first packet>)

The created burst starts at:
start time = requestedStartTime

[Tx]: first packet needs to be
available on time

requestedStartTime is a time spec
applying on transceiver time, a
monotonic increasing time that may
be coupled with another time of the
radio platform

Figure 43 Principle of scheduleAbsoluteBurst()

3.1.5.1.2 Associated properties

CREATION_STORAGE (see section 4.8) specifies the maximum number of calls to creation
operations that channels can store in advance, including calls to scheduleAbsoluteBurst().
TIME_COUPLING (see section 4.2) specifies coupling of transceiver time with other times of the
radio platform.
ABSOLUTE_MILT (see section 4.13) specifies the minimum invocation lead time for correct real-
time usage of the operation.
ABSOLUTE_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 47
All Rights Reserved

3.1.5.1.3 Declaration

The declaration of the operation is specified as:
void scheduleAbsoluteBurst(
 in TimeSpec requestedStartTime,
 in BlockLength requestedLength);

3.1.5.1.4 Parameters
Name Type Description

requestedStartTime TimeSpec
(see § 3.4.16)

Specifies the value of start time of the burst to create,
expressed according to transceiver time.

requestedLength BlockLength
(see § 3.4.3)

Number of baseband samples to be processed during the
processing phase associated to the burst:
 If equal to UndefinedBlockLength: specifies an

undefined value,
 If not equal to UndefinedBlockLength: specifies

the number of baseband samples of the baseband
block to be processed during PROCESSING (see
section 2.3.1).

Table 5 Specification of scheduleAbsoluteBurst() parameters

The parameters validity properties are specified as (see section 4.7):
 For requestedLength: MIN_BLOCK_LENGTH and MAX_BLOCK_LENGTH.

3.1.5.1.5 Return value

None.

3.1.5.1.6 Originator

Radio application.

3.1.5.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 MaxNanoseconds,
 MinBlockLength and MaxBlockLength,
 AbsoluteMILT.

3.1.5.1.8 Behavior requirements

An active instance of AbsoluteCreation shall, on a call to scheduleAbsoluteBurst(), handle the
exceptions of the operation as specified in section 3.2.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 48
All Rights Reserved

An active instance of AbsoluteCreation shall, on a call to scheduleAbsoluteBurst() that raised
no exception:

 If CREATION_STORAGE calls (see section 4.8) are stored, wait until storage becomes
available,

 Store the call for later usage by CreationControl (see section 2.3.2),
 Return the call to the radio application.

3.1.6 Transceiver::BurstControl::StrobedCreation

3.1.6.1 scheduleStrobedBurst Operation

3.1.6.1.1 Overview

scheduleStrobedBurst()commands the channels to schedule creation of a burst for which the core
burst will start at a specified delay taken after the start time of the next strobe occurrence of the
specified strobe source, as depicted in the following figure:

TransceiverRadio
application

API RF

re
qu

es
te

dD
el

ay

requestedStrobe
Source

Next strobe is the first strobe
occurring after the call to
scheduleStrobedBurst()

scheduleStrobedBurst(
requestedStrobeSource,

requestedDelay, …)

[Tx] pushTransmittedPacket(
<first packet>)

[Rx] pushReceivedPacket(
<first packet>)

The created burst starts at:
start time = next strobe +
requestedDelay

[Tx]: first packet needs to be
available on time

Strobes before the call to
scheduleStrobedBurst() are ignored

Figure 44 Principle of scheduleStrobedBurst()

The standard strobe sources are specified by the following table:

Name Description
ApplicationStrobe Strobes delivered by the radio application using the ApplicationStrobe interface.
TimeRef_PPS Strobes delivered by the PPS signal of a wired time reference.
GNSS_PPS Strobes delivered by the PPS signal of a GNSS system.
UserStrobe1 User-defined strobe 1.
UserStrobe2 User-defined strobe 2.
UserStrobe3 User-defined strobe 3.
UserStrobe4 User-defined strobe 4.

Table 6 Specification of strobe sources

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 49
All Rights Reserved

Additional strobe sources can be implemented if required by usage context.

3.1.6.1.2 Associated properties

CREATION_STORAGE (see section 4.8) specifies the maximum number of calls to creation
operations that channels can store in advance, including calls to scheduleStrobedBurst().
STROBED_MILT (see section 4.13) specifies the minimum invocation lead time for correct real-
time usage of the operation.
STROBED_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.6.1.3 Declaration

The declaration of the operation is specified as:
void scheduleStrobedBurst(
 in StrobeSource requestedStrobeSource,
 in Delay requestedDelay,
 in BlockLength requestedLength);

3.1.6.1.4 Parameters
Name Type Description

requestedStrobeSource StrobeSource
(see § 3.4.14)

Specifies the strobe source to be used.

requestedDelay Delay
(see § 3.4.7)

Specifies the delay between the next strobe occurrence on
strobe source and start time of the burst to create.

requestedLength BlockLength
(see § 3.4.3)

Number of baseband samples to be processed during the
processing phase associated to the burst:
 If equal to UndefinedBlockLength: specifies an

undefined value,
 If not equal to UndefinedBlockLength: specifies

the number of baseband samples of the baseband
block to be processed during PROCESSING (see
section 2.3.1).

Table 7 Specification of scheduleStrobedBurst() parameters

The parameters validity properties are specified as (see section 4.7):
 For requestedStrobeSource: STROBE_SOURCES,
 For requestedDelay: MIN_FROM_STROBE and MAX_FROM_STROBE,
 For requestedLength: MIN_BLOCK_LENGTH and MAX_BLOCK_LENGTH.

3.1.6.1.5 Return value

None.

3.1.6.1.6 Originator

Radio application.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 50
All Rights Reserved

3.1.6.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 StrobeSource,
 MinFromStrobe and MaxFromStrobe,
 MinBlockLength and MaxBlockLength.

3.1.6.1.8 Behavior requirements

An active instance of StrobedCreation shall, on a call to scheduleStrobedBurst(), handle the
exceptions of the operation as specified in section 3.2.
An active instance of StrobedCreation shall, on a call to scheduleStrobedBurst() that raised
no exception:

 If CREATION_STORAGE calls (see section 4.8) are stored, wait until storage becomes
available,

 Store the call for later usage by CreationControl (see section 2.3.2),
 Return the call to the radio application.

3.1.7 Transceiver::BurstControl::Termination

3.1.7.1 setBlockLength operation

3.1.7.1.1 Overview

setBlockLength() specifies the length of baseband block applicable for termination of an ongoing
processing phase.

3.1.7.1.2 Associated properties

BLOCK_LENGTH_MILT (see section 4.13) specifies the minimum invocation lead time for correct
real-time usage of the operation.
BLOCK_LENGTH_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.7.1.3 Declaration

The declaration of the operation is specified as:
void setBlockLength(
 in BlockLength requestedLength);

3.1.7.1.4 Parameters
Name Type Description

requestedLength BlockLength
(see § 3.4.3)

Number of baseband samples to be processed during
PROCESSING (see section 2.3.1).

Table 8 Specification of setBlockLength() parameters

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 51
All Rights Reserved

The parameters validity properties are specified as (see section 4.7):
 For requestedLength: MIN_BLOCK_LENGTH and MAX_BLOCK_LENGTH.

3.1.7.1.5 Return value

None.

3.1.7.1.6 Originator

Radio application.

3.1.7.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 NoOngoingProcessing,
 MinBlockLength and MaxBlockLength.

3.1.7.1.8 Behavior requirements

An active instance of Termination shall, on a call to setBlockLength(), handle the exceptions of
the operation as specified in section 3.2.
An active instance of Termination shall, on a call to setBlockLength() that raised no exception:

 Set value of applicableBurstLength to value of requestedLength,
 Notify the PROCESSING state of Channels of availability of a new

applicableBurstLength value,
 Return the call to the radio application.

3.1.7.2 stopBurst operation

3.1.7.2.1 Overview

stropBurst() commands an ongoing processing phase to immediately terminate.

3.1.7.2.2 Associated properties

None.

3.1.7.2.3 Declaration

The declaration of the operation is specified as:
void stopBurst();

3.1.7.2.4 Parameters

None.

3.1.7.2.5 Return value

None.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 52
All Rights Reserved

3.1.7.2.6 Originator

Radio application.

3.1.7.2.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 NoOngoingProcessing.

3.1.7.2.8 Behavior requirements

An active instance of Termination shall, on a call to setBlockLength(), handle the exceptions of
the operation as specified in section 3.2.
An active instance of Termination shall, on a call to stopBurst() that raised no exception:

 Set value of applicableBurstLength to the value enabling fastest possible
termination of the ongoing processing phase,

 Notify the PROCESSING state of Channels of availability of a new
applicableBurstLength value,

 Return the call to the radio application.

3.1.8 Transceiver::BasebandSignal::SamplesReception

3.1.8.1 pushRxPacket Operation

3.1.8.1.1 Overview

pushRxPacket() provides the radio application with the next packet of an Rx block received by
one Rx channel, as depicted in following figure:

TransceiverRadio
application

API Rx RF

Down-conversion latency

Last packet
sample

First packet
sample

pushedPacket

pushRxPacket(
pushedPacket,

endOfBlock)

pushedPacket has been processed by
the radio application

endOfBurst specifies if the packet is
the last packet of the received
samples block

Down-conversion generates a
pushedPacket with a length equal to
defaultRxPacketsLength, except last
packet that can be shorter

Last
packet

First
packet

Received samples block

Pushed packets

Figure 45 Principle of pushRxPacket()

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 53
All Rights Reserved

Rx packets are sent by the Rx channel until the last processed sample (see section 2.3.1.1.5) has
been transferred.
The first packet is sent after the ProcessingStart transition (see section 2.3.1).

A boolean flag specifies to the radio application that a received packet is the last packet of the
received samples block. The next received packet is the first packet of the next received samples
block.

3.1.8.1.2 Associated properties

RX_MIN_BASEBAND_LEVEL and RX_MAX_BASEBAND_LEVEL (see section 4.10) specify the
interval into which the level of baseband signal fits.
RX_META_DATA (see section 4.5) specifies if meta-data is associated to Rx packets.

RX_PACKET_WCET (see section 4.15) specifies the worst-case execution time of the primitive for
correct real-time operation of the transceiver instance.

3.1.8.1.3 Declaration

The declaration of the operation is specified as, if RX_META_DATA is equal to FALSE:
void pushRxPacket(
 in BasebandPacket rxPacket,
 in boolean endOfBlock);

The declaration of the operation is specified as, if RX_META_DATA is equal to TRUE:
void pushRxPacket(
 in BasebandPacket rxPacket,
 in boolean endOfBlock,
 in RxMetaData rxMetaData);

3.1.8.1.4 Parameters
Name Type Description

rxPacket BasebandPacket
(see § 0)

The transferred Rx packet within the Rx block.

endOfBlock boolean Specifies if rxPacket is the last packet of the Rx block.
rxMetaData
If RX_META-DATA is equal
to TRUE.

RxMetaData
(see § 3.4.12)

Specifies the user-defined meta-data associated to the Rx
packet.

Table 9 Specification of pushRxPacket() parameters

No parameters validity property is specified for use services.

3.1.8.1.5 Return value

None.

3.1.8.1.6 Originator

Rx channel.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 54
All Rights Reserved

3.1.8.1.7 Exceptions

Not applicable to a use service.

3.1.8.1.8 Behavior requirements

nbrFullPackets and tailPacketLength are defined as, respextively, the quotient and the remainder
of the Euclidean division of applicableBlockLength by applicableRxPacketsLength.

Active instances of SamplesReception shall transfer the Rx block with a succession of
nbrFullPackets calls to pushRxPacket(), with the length of rxPacket equal to
applicableRxPacketsLength.

Active instances of SamplesReception shall, if tailPacketLength is greater than 0, make a last
call to pushRxPacket() with the length of rxPacket equal to tailPacketLength.
Active instances of SamplesReception shall set the value of endOfBlock as follows:

 false: for all calls to pushRxPacket() except the last one,
 true: for the last call to pushRxPacket().

Active instances of SamplesReception shall wait for the radio application to return the
previous call to pushRxPacket() before making a next call to pushRxPacket().

3.1.9 Transceiver::BasebandSignal::SamplesTransmission

3.1.9.1 pushTxPacket Operation

3.1.9.1.1 Overview

pushTxPacket() provides a Tx channel with the next packet of a Tx forwarded block to be stored
prior to up-conversion, as depicted in following figure:

TransceiverRadio
application

API Tx RF

Up-
conversion

Storage

Last
packet

First
packet

Transmitted samples block

Pushed packets

pushTxPacket(
pushedPacket,

endOfBlock)

pushedPacket is stored and available
for up-conversion
endOfBurst specifies if the packet is
the last packet of the transmitted
samples block

Wait, if needed, for storage to
become available before storing

Last packet
sample

First packet
sample

pushedPacket
Up-conversion latency
Up-conversion generates the part of
the Tx burst corresponding to
pushedPacket

Figure 46 Principle of pushTxPacket()

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 55
All Rights Reserved

The length of each packet is determined by the radio application, and can vary from one packet to
another down to a single sample packet.
The first packet of the first Tx forwarded block is the first packet after ResetCompleted
transition (see section 2.3.1.2.1).
A flag specifies to the Tx channel the last packet of the Tx forwarded block. Next transmitted
packet is the first packet of the next Tx forwarded block.

3.1.9.1.2 Associated properties

TX_META_DATA (see section 4.5) specifies if meta-data is associated to Tx packets.

TX_BASEBAND_STORAGE (see section 4.8) specifies the number of baseband samples that a
transceiver can store in advance of their usage by up-conversion.
TX_PACKET_MILT (see section 4.13) specifies the minimum invocation lead time for correct real-
time usage of the operation.
TX_MIN_BASEBAND_LEVEL and TX_MAX_BASEBAND_LEVEL (see section 4.10) specify the
interval into which the level of baseband signal must belong for correct Rx channel operation.
TX_PACKET_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.9.1.3 Declaration

The declaration of the operation is specified as, if TX_META_DATA is equal to FALSE:
void pushTxPacket(
 in BasebandPacket txPacket,
 in boolean endOfBlock);

The declaration of the operation is specified as, if TX_META_DATA is equal to TRUE:
void pushTxPacket(
 in BasebandPacket txPacket,
 in boolean endOfBlock,
 in TxMetaData txMetaData);

3.1.9.1.4 Parameters
Name Type Description

txPacket BasebandPacket
(see § 0)

The transferred Tx packet.

endOfBlock boolean Specifies that txPacket is the last packet of the Tx forwarded
block.

txMetaData
If TX_META-DATA is equal
to TRUE.

TxMetaData
(see § 3.4.12)

Specifies the user-defined meta-data associated to the Tx
packet.

Table 10 Specification of pushTxPacket() parameters

The parameters validity properties are specified as (see section 4.7):
 For length of txPacket: MAX_PACKETS_LENGTH.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 56
All Rights Reserved

3.1.9.1.5 Return value

None.

3.1.9.1.6 Originator

Radio application.

3.1.9.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 MaxTxPacketsLength,
 TxPacketsMILT.

3.1.9.1.8 Behavior requirements

Active instances of SamplesTransmission shall, on a call to pushTxPacket(), handle the
exceptions of the operation as specified in section 3.2.
Active instances of SamplesTransmission shall, on a call to pushTxPacket() that raised no
exception:

 Wait, if needed, until all baseband samples of a previous burst have entered up-
conversion,

 Wait, if storage is saturated, for consumption by up-conversion of previously stored
samples to free storage capacity,

 Store the samples of txPacket for later usage by up-conversion,
 Depending on value of endOfBlock:

o false: Tx forwarded block is not ended,
o true: Tx forwarded block is ended, the last sample of txPacket is the last

sample of the Tx forwarded block,
 Return the call to the radio application.

A channel shall be capable to store up to TX_BASEBAND_STORAGE (see section 4.6) baseband
samples.

3.1.10 Transceiver::BasebandSignal::RxPacketsLengthControl

3.1.10.1 setRxPacketsLength operation

3.1.10.1.1 Overview

setRxPacketsLength() provides Rx channels with the size of received packets to be used at creation
of forthcoming Rx bursts.

3.1.10.1.2 Associated properties

RX_PACKETS_LENGTH_WCET (see section 4.15) specifies the worst-case execution time of the
primitive.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 57
All Rights Reserved

3.1.10.1.3 Declaration

The declaration of the operation is specified as:
void setRxPacketsLength(
 in PacketLength requestedLength);

3.1.10.1.4 Parameters
Name Type Description

requestedLength PacketLength
(see § 3.4.12)

Specifies the new value for
applicableRxPacketsLength attribute (see § 3.3.1.2).

Table 11 Specification of setRxPacketsLength() parameters

The parameters validity properties are specified as (see section 4.7):
 For requestedLength: MAX_PACKETS_LENGTH.

3.1.10.1.5 Return value

None.

3.1.10.1.6 Originator

Radio application.

3.1.10.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 MaxRxPacketsLength.

3.1.10.1.8 Behavior requirements

An active instance of RxPacketsLengthControl shall, on a call to setRxPacketsLength(),
handle the exceptions of the operation as specified in section 3.2.
An active instance of RxPacketsLengthControl shall, on a call to setRxPacketsLength() that
raised no exception:

 Sets value of applicableRxPacketsLength attribute (see section 3.3.1.2) to value
of requestedLength parameter,

 Return the call to the radio application.

3.1.11 Transceiver::Tuning::InitialTuning

3.1.11.1 setTuning Operation

3.1.11.1.1 Overview

setTuning() commands the channels to store a tuning parameters set (composed of tuning preset,
carrier frequency (fc) and gain (G), see section 1.1.4) than will be later applied to the tuned burst,
as depicted in the following figure:

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 58
All Rights Reserved

TransceiverRadio
application

API

setTuning(
requestedTuningPreset,

requestedFrequency,
requestedGain, …)

[stored burst creation
operation is used by

creationControl]

RF

The tuned burst starts when the
tuning specified by the tuning
parameters set has been applied

Tuned burst

The call has to be done before the
stored burst creation operation is
used

The tuning parameters set specifies,
if needed, new value(s) for tuning
preset, fc and/or G

Figure 47 Principle of setTuning()

The call to setTuning() for a given burst needs to done, if needed, before CreationControl
enters in INITIATING state for the considered burst (see section 2.3.2).

3.1.11.1.2 Associated properties

TUNING_ASSOCIATION (see section 4.3) specifies how CreationControl (see section 2.3.2)
associates stored tuning calls to created bursts during INITIATING state.

TUNING_STORAGE (see section 4.8) specifies the maximum number of calls to setTuning()
channels can store in advance.
TUNING_MILT (see section 4.13) specifies the minimum invocation lead time in advance of the
call to the creation operation of the tuned burst.
TUNING_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.11.1.3 Declaration

The declaration of the operation is specified as:
void setTuning(
 in TuningPreset requestedPreset,
 in CarrierFreq requestedFrequency,
 in Gain requestedGain,
 in BurstNumber requestedBurstNumber);

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 59
All Rights Reserved

3.1.11.1.4 Parameters
Name Type Description

requestedPreset TuningPreset
(see § 3.4.14)

Tuning preset to be applied under control of burst creation
during a TUNING state:
 If equal to UndefinedTuningPreset: specifies to

reuse the previously active tuning preset,
 If not equal to UndefinedTuningPreset: specifies

the tuning preset to apply.
requestedFrequency CarrierFreq

(see § 3.4.6)
Carrier frequency (fc) to be applied under control of burst
creation during a TUNING state:
 If equal to UndefinedCarrierFreq: specifies to

reuse the previously active carrier frequency,
 If not equal to UndefinedCarrierFreq: specifies

the carrier frequency to apply.
requestedGain Gain

(see § 3.4.10)
Gain (G) to be applied under control of burst creation
during a TUNING state:
 If equal to UndefinedGain: specifies to reuse the

previously active gain,
 If not equal to UndefinedGain: specifies the gain to

apply.
requestedBurstNumber BurstNumber

(see § 3.4.5)
Specifies a burst number for burst creation to determine the
tuned burst for the specified tuning parameters set,
depending on value of TUNING_ASSOCIATION:
 If equal to sequential: the value is ignored,
 If equal to burstReferencing: the specified

number of the burst for which the specified tuning
parameters set applies.

Table 12 Specification of setTuning() parameters

The parameters validity properties are specified as (see section 4.7):
 For requestedPreset: MAX_TUNING_PRESET,
 For requestedFrequency: MIN_CARRIER_FREQ and MAX_CARRIER_FREQ,
 For requestedGain: MIN_GAIN and MAX_GAIN.

3.1.11.1.5 Return value

None.

3.1.11.1.6 Originator

Radio application.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 60
All Rights Reserved

3.1.11.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 MaxTuningPreset,
 MinCarrierFreq and MaxCarrierFreq,
 MinGain and MaxGain,
 TuningMILT.

3.1.11.1.8 Behavior requirements

An active instance of InitialTuning shall, on a call to setTuning(), handle the exceptions of
the operation as specified in section 3.2.
An active instance of InitialTuning shall, on a call to setTuning() that raised no exception:

 Wait, if storage is saturated, for usage of a previously stored call to free capacity,
 Store the call by order of arrival for later usage by CreationControl (see section

2.3.2),
 Return the call to the radio application.

A channel shall be capable to store up to TUNING_STORAGE (see section 4.8) setTuning() calls.

3.1.12 Transceiver::Tuning::Retuning

3.1.12.1 retune Operation

3.1.12.1.1 Overview

retune() commands the channels to change the tuning during an ongoing processing phase,
specifying the delay to take from the start time of the burst before starting to retune, as depicted
in following figure:

TransceiverRadio
application

retune(
requestedFrequency,

requestedGain,
requestedDelay)

API RF

Retuning

Start time of a processing phase

re
qu

es
te

dD
el

ay

The call to retune() happens when a
processing phase is ongoing

Retuning starts at:
start time of ongoing burst +
requestedDelay

Retuning applies the specified
requestedFrequency and
requestedGain

Figure 48 Principle of retune()

An undefined delay specifies retuning to take place immediately after the call to retune().

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 61
All Rights Reserved

3.1.12.1.2 Associated properties

RETUNING_DURATION (see section 4.8) specifies the maximum duration of RETUNING state (see
section 2.3.4).
RETUNING_MILT (see section 4.13) specifies the minimum invocation lead time for correct real-
time usage of the operation.
RETUNING_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.12.1.3 Declaration

The declaration of the operation is specified as:
void retune(
 in CarrierFreq requestedFrequency,
 in Gain requestedGain,
 in Delay requestedDelay);

3.1.12.1.4 Parameters
Name Type Description

requestedFrequency CarrierFreq
(see § 3.4.6)

Carrier frequency (fc) to be applied by channels during the
scheduled RETUNING state:
 If equal to UndefinedCarrierFreq: specifies to

reuse the previously active carrier frequency,
 If not equal to UndefinedCarrierFreq: specifies

the carrier frequency to apply.
requestedGain Gain

(see § 3.4.10)
Gain (G) to be applied by channels during the scheduled
RETUNING state:
 If equal to UndefinedGain: specifies to reuse the

previously active gain,
 If not equal to UndefinedGain: specifies the gain to

apply.
requestedDelay Delay

(see § 3.4.7)
Delay to take after the start time of the ongoing processing
phase for triggering the RetuningStart transition:
 If equal to UndefinedDelay: specifies that the

RetuningStart transition is triggered immediately,
 If not equal to UndefinedDelay: specifies the

applicable delay.

Table 13 Specification of retune() parameters

The parameters validity properties are specified as (see section 4.7):
 For requestedFrequency: MIN_CARRIER_FREQ and MAX_CARRIER_FREQ,
 For requestedGain: MIN_GAIN and MAX_GAIN,
 For requestedDelay: MIN_FROM_ONGOING and MAX_FROM_ONGOING.

3.1.12.1.5 Return value

None.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 62
All Rights Reserved

3.1.12.1.6 Originator

Radio application.

3.1.12.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 NoOngoingProcessing,
 MinCarrierFreq and MaxCarrierFreq,
 MinGain and MaxGain,
 MinFromOngoing and MaxFromOngoing,
 RetuningMILT.

3.1.12.1.8 Behavior requirements

An active instance of Retuning shall, on a call to retune(), handle the exceptions of the operation
as specified in section 3.2.
An active instance of Retuning shall, on a call to retune() that raised no exception, with value
of requestedDelay equal to UndefinedDelay:

 Return the call to retune() to the radio application,
 Trigger the RetuningStart transition (see section 2.3.4) immediately after.

An active instance of Retuning shall, on a call to retune() that raised no exception, with value
of requestedDelay not equal to UndefinedDelay:

 Return the call to retune() to the radio application,
 Trigger the RetuningStart transition (see section 2.3.4) at start time of the ongoing

processing phase plus value of requestedDelay.
A channel shall, during RETUNING state, act on the carrier frequency according to
requestedFrequency value:

 If equal to UndefinedCarrierFreq: keep the carrier frequency unchanged.
 If not equal to UndefinedCarrierFreq: apply requestedFrequency as the new

carrier frequency,
A channel shall, during RETUNING state, act on the gain according to requestedGain value:

 If equal to UndefinedGain: keep the gain unchanged,
 If not equal to UndefinedGain: apply requestedGain as the new gain,

3.1.13 Transceiver::Notifications::Events

3.1.13.1 notifyEvent Operation

3.1.13.1.1 Overview

An event is defined as occurrence of a condition related to operation of a channel.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 63
All Rights Reserved

notifyEvent() informs the radio application that a defined event has occurred as depicted in
following figure:

TransceiverRadio
application

API

notifyEvent(event) An event occurred

Notification has been processed

Transceiver bahavior is not
influenced by the notification

Figure 49 Principle of notifyEvent()

Events are specified by the following table:

Name / <eventName> Description See §
eventProcessingStart Applies to: all channels.

Condition: channels make a ProcessingStart transition.
2.3.1

eventProcessingStop Applies to: all channels.
Condition: channels make a ProcessingStop transition.

2.3.1

eventSilenceStart Applies to: channels capable of radio silence.
Condition: channels make a SilenceStart transition.

2.3.2

eventSilenceStop Applies to: channels capable of radio silence.
Condition: channels make a SilenceStop transition.

2.3.2

Table 14 Specification of events

3.1.13.1.2 Associated properties

EVENTS (see section 4.40) specifies, for each event, if event notification has to be performed.

EVENTS_WCET (see section 4.15) specifies the worst-case execution time of the primitive for
correct real-time operation of the transceiver instance.

3.1.13.1.3 Declaration

The declaration of the operation is specified as:
void notifyEvent(
 in Event notifiedEvent);

3.1.13.1.4 Parameters
Name Type Description

notifiedEvent Event
(see §3.4.9)

Enumerated value specifying the notified event.

Table 15 Specification of notifyEvent() parameters

No parameters validity property is specified for use services.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 64
All Rights Reserved

3.1.13.1.5 Return value

None.

3.1.13.1.6 Originator

Transceiver.

3.1.13.1.7 Exception

Not applicable to use services.

3.1.13.1.8 Behavior requirements

Channels with an active instance of Events shall, when <eventName> happens and
EVENTS.<eventName> is equal to true, call notifyEvent() with notifiedEvent equal to
<eventName>.

Channels with an active instance of Events shall, if channels have been set in radio silence by
another agent than the radio application when INITIALIZATION terminates, call notifyEvent()
with notifiedEvent equal to eventSilenceStart.

3.1.14 Transceiver::Notifications::Errors

3.1.14.1 notifyError Operation

3.1.14.1.1 Overview

An error is defined as an abnormal situation related to channels internal execution errors.
notifyError() informs the radio application that a defined error (see section 3.2) has occurred as
depicted in following figure:

TransceiverRadio
application

API

notifyError(error) An error occurred

Notification has been processed

Other transceiver’s reaction in front
of the error depends on errors
handling strategy

Figure 50 Principle of notifyError()

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 65
All Rights Reserved

Errors are specified by the following table:

Name / <errorName> Specification See §
error1stSampleDelayed Applies to: Tx channels with at least one active instance of a

timely creation service.
Condition: the first sample of a Tx forwarded block is not
available before activation time.

2.3.2

error1stSampleTimeout Applies to: Tx channels with at least one active instance of a
timely creation service, if
ERRORS.err1stSampleDelayed.reaction is equal to
mitigating.
Condition: during a burst creation, the first sample of a Tx
forwarded block is not available once
1ST_SAMPLE_TIMEOUT nanoseconds have elapsed after
activation time.

2.3.2

errorBurstOverlap Applies to: channels with at least one active instance of a
timely creation service.
Condition: activation time of a burst under creation and
termination time of the previous burst do not enable respect
value of INTER-PROCESS.

2.3.2
4.8

errorRxOverflow Applies to: Rx channels.
Condition: the radio application did not return a
pushRxPacket() call when Rx channels have to make the
next call.

3.1.7

errorShorterTxBlock Applies to: Tx channels.
Condition: a Tx forwarded block is ended (value of
endOfBlock in a call to pushTxPacket() is set to true) and
requestedLength is equal to UndefinedBlockLength or
length of the baseband block is smaller than a defined value
of requestedLength.

2.3.1

errorTxUnderflow Applies to: Tx channels.
Condition: baseband samples are not available early enough
for a Tx channel to proceed with up-conversion during a
PROCESSING state.

3.1.8

errorTuningDelayed Applies to: channels with an active instance of
InitialTuning.
Condition: during a burst creation, the TuningStop
transition has not occurred at the time required for
ProcessingStart transition to satisfy the start time.

3.1.11

errorTuningTimeout Applies to: channels with an active instance of
InitialTuning, if
ERRORS.errTuningDelayed.reaction is equal to
mitigating.
Condition: during a burst creation, TuningStop transition
has not occurred once TUNING_TIMEOUT nanoseconds
elapsed after the activation time.

2.3.2

Table 16 Specification of errors

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 66
All Rights Reserved

3.1.14.1.2 Associated properties

ERRORS (see section 4.4) specifies, for each error, how it is handled by active instances of
Errors:

 Applicable behavior when the error happens,
 If error notification has to be performed.

ERRORS_WCET (see section 4.15) specifies the worst-case execution time of the primitive for
correct real-time operation of the transceiver instance.

3.1.14.1.3 Declaration

The declaration of the operation is specified as:
void notifyError(
 in Error notifiedError);

3.1.14.1.4 Parameters
Name Type Description

notifiedError Error
(see § 3.4.8)

Specifies the notified error.

Table 17 Specification of notifyError() parameters

No parameters validity property is specified for use services.

3.1.14.1.5 Return value

None.

3.1.14.1.6 Originator

Transceiver.

3.1.14.1.7 Exceptions

Not applicable to use services.

3.1.14.1.8 Behavior requirements

Error notification of <errorName> is defined as a call to notifyError(), independently of other
channels operation, with notifiedError parameter equal to <errorName>.

Channels with an active instance of Errors, when <errorName> happens and
ERRORS.<errorName>.reaction is equal to fatal, have unspecified behavior.

Channels with an active instance of Errors shall, when <errorName> happens and
ERRORS.<errorName>.reaction is equal to resetting:

 Trigger a RuntimeReset transition,
 If ERRORS.<errorName>.isNotified is equal to true, perform error notification.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 67
All Rights Reserved

Channels with an active instance of Errors shall, when <errorName> happens and
ERRORS.<errorName>.reaction is equal to mitigation:

 Perform the error mitigation behavior specified in Table 18,
 If ERRORS.<errorName>.isNotified is equal to true, perform error notification.

Errors mitigation behaviors are specified by the following table:

Error name Error mitigation behavior
error1stSampleDelayed Wait until the first baseband sample is available, then make a

ProcessingStart transition (entry in PROCESSING state,
see section 2.3.1).

error1stSampleTimeout Unspecified.
errorBurstOverlap Call setBlockLength() with requestedLength shortening the

length of previous burst so that its termination time is smaller
than the tuning time of the burst under creation.

errorRxOverflow Drop the baseband samples delivered by down-conversion
until the pending call to pushRxPacket() returns.

errorShorterTxBlock Call setBlockLength() with requestedLength equal to the
length of the Tx forwarded block.

errorTxUnderflow Pad missing baseband samples with unspecified samples until
new baseband samples are available.

errorTuningDelayed Wait until TuningStop transition, then make a
ProcessingStart transition (entry in PROCESSING state,
see section 2.3.1).

errorTuningTimeout Unspecified.

Table 18 Specification of errors mitigation behaviors

3.1.15 Transceiver::GainControl::GainChanges

3.1.15.1 indicateGain Operation

3.1.15.1.1 Overview

indicateGain() provides the radio application with a new value of gain decided by channels during
a processing phase as depicted in following figure:

TransceiverRadio
application

API

indicateGain(gain) Gain has been modified

Indication has been recorded

Figure 51 Principle of indicateGain()

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 68
All Rights Reserved

3.1.15.1.2 Associated properties

GAIN_CHANGE_WCET (see section 4.15) specifies the worst-case execution time of the primitive
for correct real-time operation of the transceiver instance.

3.1.15.1.3 Declaration

The declaration of the operation is specified as:
void indicateGain(
 in Gain newGain,
 in SampleNumber firstValidSample
);

3.1.15.1.4 Parameters
Name Type Description

newGain Gain
(see § 3.4.10)

Specifies the new value of gain.

firstValidSample SampleNumber
(see § 3.4.14)

Sample number of the first sample in the Rx block after
which the tuning is stable again.

Table 19 Specification of indicateGain() parameters

No parameters validity property is specified for use services.

3.1.15.1.5 Return value

None.

3.1.15.1.6 Originator

Transceiver.

3.1.15.1.7 Exceptions

Not applicable to use services.

3.1.15.1.8 Behavior requirements

An active instance of GainChanges shall indicate each new value of gain using indicateGain().

3.1.16 Transceiver::GainControl::GainLocking

3.1.16.1 lockGain Operation

3.1.16.1.1 Overview

lockGain() commands Rx channels to lock the applied Rx gain, that becomes not modifiable by
AGC.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 69
All Rights Reserved

TransceiverRadio
application

API RF

lockGain()
Rx gain is locked
AGC cannot modify it

Figure 52 Principle of lockGain()

3.1.16.1.2 Associated properties

LOCK_GAIN_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.16.1.3 Declaration

The declaration of the operation is specified as:
void lockGain();

3.1.16.1.4 Parameters

None.

3.1.16.1.5 Returned value

None.

3.1.16.1.6 Originator

Radio application.

3.1.16.1.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 NoOngoingProcessingException.

3.1.16.1.8 Behavior requirements

An active instance of GainLocking shall, on a call to lockGain():
 Lock value of Rx gain at its current value independently of AGC operation,
 Return the call to the radio application.

3.1.16.2 unlockGain Operation

3.1.16.2.1 Overview

unlockGain() commands Rx channels to unlock Rx gain, that becomes subject to modifications
under control of AGC.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 70
All Rights Reserved

TransceiverRadio
application

API RF

unlockGain()
Rx gain is unlocked
AGC can change it again

Figure 53 Principle of unlockGain()

3.1.16.2.2 Associated properties

UNLOCK_GAIN_WCET (see section 4.15) specifies the maximum processing time for correct joint
real-time operation of radio application and transceiver.

3.1.16.2.3 Declaration

The declaration of the operation is specified as:
void unlockGain();

3.1.16.2.4 Parameters

None.

3.1.16.2.5 Returned value

None.

3.1.16.2.6 Originator

Radio application.

3.1.16.2.7 Exceptions

The exceptions of the operation are specified as (see section 3.2):
 NoOngoingProcessingException.

3.1.16.2.8 Behavior requirements

An active instance of GainLocking shall, on a call to unlockGain():
 Enable Rx gain to be modified by AGC,
 Return the call to the radio application.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 71
All Rights Reserved

3.1.17 Transceiver::TransceiverTime::TimeAccess

3.1.17.1 getCurrentTime Operation

3.1.17.1.1 Overview

getCurrentTime() commands the channels to return the value of transceiver time corresponding to
return time of the call, as depicted in following figure:

TransceiverRadio
application

getCurrentTime()

API

currentTime
currentTime is the time of return of
the call

Figure 54 Principle of getCurrentTime()

3.1.17.1.2 Associated properties

CURRENT_TIME_ACC (see section 4.12) specifies the accuracy of the returned currentTime value.

CURRENT_TIME_WCET (see section 4.15) specifies the worst-case execution time of the primitive.

3.1.17.1.3 Declaration

The declaration of the operation is specified as:
void getCurrentTime(
 out TimeSpec currentTime);

3.1.17.1.4 Parameters
Name Type Description

currentTime TimeSpec
(see § 3.4.16)

Value of transceiver time when getCurrentTime()
returns.

Table 20 Specification of getCurrentTime() parameters

No parameters validity property is associated to out parameters.

3.1.17.1.5 Return value

None.

3.1.17.1.6 Originator

Radio application.

3.1.17.1.7 Exceptions

None.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 72
All Rights Reserved

3.1.17.1.8 Behavior requirements

An active instance of TimeAccess shall, on a call to getCurrentTime():
 Set the return value of currentTime to a value belonging to value of transceiver time

when getCurrentTime() returns ± CURRENT_TIME_ACC,
 Return the call to the radio application.

3.1.17.2 getLastStartTime Operation

3.1.17.2.1 Overview

getLastStartTime() commands the channels to return the value of transceiver time corresponding
to the start time of the last burst created by the channels for which getLastStartTime() is called,
and to return its burst number, as depicted in following figure:

TransceiverRadio
application

getLastStartTime()

API

lastStartTime,
lastBusrtNumber

lastStartTime is the start time of the
last burst
lastBusrtNumber is the burst number
of the last burst

Figure 55 Principle of getLastStartTime()

LAST_START_TIME_ACC (see section 4.12) specifies the accuracy of the returned lastStartTime
value.
LAST_START_TIME_WCET (see section 4.15) specifies the maximum processing time for correct
joint real-time operation of radio application and transceiver.

3.1.17.2.2 Declaration

The declaration of the operation is specified as:
void getLastStartTime(
 out TimeSpec lastStartTime,
 out BurstNumber lastBurstNumber);

3.1.17.2.3 Parameters
Name Type Description

lastStartTime TimeSpec
(see § 3.4.16)

Value of transceiver time for the start time of last
created burst.

lastBurstNumber BurstNumber
(see § 3.4.5)

Number of the last created burst.

Table 21 Specification of getLastStartTime() parameters

3.1.17.2.4 Return value

None.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 73
All Rights Reserved

3.1.17.2.5 Originator

Radio application.

3.1.17.2.6 Exceptions

None.

3.1.17.2.7 Behavior requirements

An active instance of TimeAccess shall, on a call to getLastStartTime(), if no burst was created
by the channels before the call to getLastStartTime():

 Set the return value of lastStartTime to UndefinedTimeSpec (see section 3.4.16),
 Set the return value of lastBurstNumber to zero (0),
 Return the call to the radio application.

An active instance of TimeAccess shall, on a call to getLastStartTime(), if at least one burst was
created by the channels before the call to getLastStartTime():

 Set the return value of lastStartTime to a value belonging to the actual start time of the
last burst created by the channels ± LAST_START_TIME_ACC,

 Set the return value of lastBurstNumber to the burst number of the last burst created
by the channels,

 Return the call to the radio application.

3.1.18 Transceiver::Strobing::AppplicationStrobe

3.1.18.1 triggerStrobe Operation

3.1.18.1.1 Overview

triggerStrobe() provides the channel with a strobe occurrence.

3.1.18.1.2 Associated properties

TRIGGER_STROBE_WCET (see section 4.15) specifies the worst-case execution time of the
primitive.

3.1.18.1.3 Declaration

The declaration of the operation is specified as:
void triggerStrobe(void);

3.1.18.1.4 Parameters

None.

3.1.18.1.5 Returned value

None.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 74
All Rights Reserved

3.1.18.1.6 Originator

Radio application.

3.1.18.1.7 Exceptions

None.

3.1.18.1.8 Behavior requirements

A channel shall, on a call to triggerStrobe():
 Register the triggered strobe as a strobe occurrence for the ApplicationStrobe

strobe source,
 Return the call to the radio application.

3.2 Exceptions

3.2.1 Specification

An exception is defined as an abnormal situation related to the calling context or to parameters
values, detected during execution of a called operation of a provide service (see section 2.1).
General exceptions are specified by the following table:

Name Description See §
NoAlternateReferencing Applies to: an active instance of RelativeCreation in a

simplex transceiver or in a duplex transceiver with
ALTERNATE_REFERENCING equal to false.
Condition: the value of requestCrossReference in a call to
createRelativeBurst() is equal to true while the transceiver
instance is simplex or ALTERNATE_REFERENCING is false.

3.1.4
4.7

NoOngoingProcessing Applies to: active instance of TerminationContol or
Retuning.
Condition: setBlockLength() or retune() is called while the
channels are not in PROCESSING state.

3.1.7
3.1.12
2.3.1

StrobeSource Applies to: an active instance of StrobedCreation.
Condition: the value of requestedStrobeSource in a call to
createStrobedBurst() has a corresponding field in
STROBE_SOURCES equal to false.

3.1.6
4.7

Table 22 Specification of general exceptions

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 75
All Rights Reserved

Range exceptions are specified by the following table:

Name Description See §
MinBlockLength
MaxBlockLength

Applies to: an active instance of a burst creation service or
Termination.
Condition: the value of requestedLength in call to a creation
operation or setBlockLength() is not equal to
UndefinedBlockLength and is lower / greater than
MIN_BLOCK_LENGTH / MAX_BLOCK_LENGTH.

3.1.7
4.7

MinCarrierFreq
MaxCarrierFreq

Applies to: an active instance of InitialTuning or
Retuning.
Condition: the value of requestedFrequency in a call to
retune() or setTuning() is not equal to
UndefinedCarrierFreq and is lower / greater than
MIN_CARRIER_FREQ / MAX_CARRIER_FREQ.

3.1.11
3.1.12
4.7

MinFromOngoing
MaxFromOngoing

Applies to: an active instance of Retuning.
Condition: the value of requestedDelay in a call to retune()
is not equal to UndefinedDelay and is lower / greater than
MIN_FROM_ONGOING / MAX_FROM_ONGOING.

3.1.12
4.7

MinFromPrevious
MaxFromPrevious

Applies to: an active instance of RelativeCreation.
Condition: the value of requestedDelay in a call to
createRelativeBurst() is lower / greater than
MIN_FROM_PREVIOUS / MAX_FROM_PREVIOUS.

3.1.4
4.7

MinFromStrobe
MaxFromStrobe

Applies to: an active instance of StrobedCreation.
Condition: the value of requestedDelay in a call to
createStrobedBurst() is lower / greater than
MIN_FROM_STROBE / MAX_FROM_STROBE.

3.1.6
4.7

MinGain
MaxGain

Applies to: an active instance of InitialTuning or
Retuning.
Condition: the value of requestedGain in a call to retune() or
setTuning() is not equal to UndefinedGain and is lower /
greater than MIN_GAIN / MAX_GAIN.

3.1.11
3.1.12
4.7

MaxNanoseconds Applies to: an active instance of AbsoluteCreation.
Condition: the value of field nanoseconds of
requestedStartTime in a call to createAbsluteBurst() is
greater than 999.999.999.

3.1.5

MaxRxPacketsLength Applies to: an active instance of
RxPacketsLengthControl.
Condition: the value of requestedLength in a call to
setRxPacketsLength() is greater than
MAX_PACKETS_LENGTH.

3.1.10
4.7

MaxTuningPreset Applies to: an active instance of InitialTuning.
Condition: the value of requestedPreset in a call to
setTuning() is greater than MAX_TUNING_PRESET.

3.1.11
4.7

MaxTxPacketsLength Applies to: an active instance of SamplesTransmission.
Condition: the length of txPacket in a call to pushTxPacket()
is greater than MAX_PACKETS_LENGTH.

3.1.8
4.7

Table 23 Specification of range exceptions

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 76
All Rights Reserved

MILT exceptions are specified by the following table:

Name Description See §
AbsoluteMILT Applies to: an active instance of AbsoluteCreation.

Condition: the invocation time of scheduleAbsoluteBurst()
does not respect ABSOLUTE_MILT.

3.1.5
4.13

RelativeMILT Applies to: an active instance of RelativeCreation.
Condition: the invocation time of scheduleRelativeBurst()
does not respect RELATIVE_MILT.

3.1.4
4.13

RetuningMILT Applies to: an active instance of Retuning.
Condition: the invocation time retune() does not respect
RETUNING_MILT.

3.1.12
4.6

TuningMILT Applies to: an active instance of InitialTuning.
Condition: the invocation time of setTuning() does not
respect TUNING_MILT.

3.1.11
4.3.3

TxPacketsMILT Applies to: an active instance of SamplesTransmission.
Condition: the invocation time of pushTxPacket() does not
respect TX_PACKET_MILT.

3.1.9
4.6

Table 24 Specification of MILT exceptions

3.2.2 Associated properties

EXCEPTIONS_SUPPORT (see section 4.4) specifies if exceptions are supported.

EXCEPTIONS (see section 4.4) specifies for each exception, if EXCEPTIONS_SUPPORT is equal to
true, how any active instance of a provide service behave when the exception occurs:

 Reaction of the provide service,
 Need to raise the exception.

3.2.3 Behavior requirements

The applicative handler of an exception <exceptionName> is defined as a part of the radio
application dedicated to handling of <exceptionName> occurrences.

The exception raising of an exception <exceptionName> is defined as branching the execution
of the radio application to an applicative handler of <exceptionName> instead of waiting for
the called operation to return.
The applied PSM (see section 1.1) specifies how exception raising is realized.
An active instance of a provide service, when <exceptionName> occurs and
EXCEPTIONS.<exceptionName>.reaction is equal to fatal, has unspecified behavior.

An active instance of a provide service shall, when <exceptionName> occurs and
EXCEPTIONS.<exceptionName>.reaction is equal to resetting:

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 77
All Rights Reserved

 Trigger a RuntimeReset transition,
 If EXCEPTIONS.<exceptionName>.isNotified is equal to true, perform

exception raising.
An active instance of a provide service shall, when <exceptionName> occurs and
EXCEPTIONS.<exceptionName>.reaction is equal to callIgnoring:

 Implement no requirement of the nominal execution of the called operation,
 If EXCEPTIONS.<exceptionName>.isNotified is equal to true, perform

exception raising.

3.3 Attributes

This section specifies channels attributes referenced by the remainder of the specification.
All channel attributes are virtual: transceiver instances are not required to make them accessible
to radio applications.

3.3.1 Channels attributes

The initial value of a channels attribute is defined as the value of an attribute when channels enter
the OPERATING state (see section 2.3.1).

3.3.1.1 burstCount

burstCount attribute is specified as the number of bursts created since the last entry in the
OPERATING state (see section 2.3).

The associated declaration is specified as:
BurstNumber burstCount;

The initial value of burstCount is specified as 0 (zero).

Value of burstCount is incremented during INITIATING state of CreationControl, as
specified in section 2.3.2.

3.3.1.2 applicableRxPacketsLength

applicableRxPacketsLength attribute is specified as the length of the Rx packets sent by an
Rx channel with pushRxPacket() (see section 3.1.7).
The associated declaration is specified as:

PacketLength applicableRxPacketsLength;

INIT_RX_PACKETS_LENGTH (see section 4.6) specifies the initial value of
applicableRxPacketsLength.

Value of applicableRxPacketsLength is changed by radio applications using
setRxPacketsLength() (see section 3.1.10).

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 78
All Rights Reserved

3.3.2 Processing attributes

3.3.2.1 applicableTuningPreset

applicableTuningPreset attribute is specified as a reference to the transmit transfer function
(see section 1.2.4) or the receive transfer function (see section 1.2.5) applied by channels during
PROCESSING state (see section 2.3).

The associated declaration is specified as:
TuningPreset applicableTuningPreset;

applicableTuningPreset ranges from 1 (one) to MAX_TUNING_PRESET (see section 4.7).

For channels with no active instance of InitialTuning, the value of
applicableTuningPreset is equal to 1 and cannot be modified.

For channels with an active instance of InitialTuning, no initial value of
applicableTuningPreset is specified.

Value of applicableTuningPreset is controlled by radio applications using setTuning() (see
section 3.1.11).

3.3.2.2 applicableCarrierFreq

applicableCarrierFreq attribute is specified as the carrier frequency (see section 1.2.2.2)
applied by channels during PROCESSING state (see section 2.3).

The associated declaration is specified as:
CarrierFreq applicableCarrierFreq;

applicableCarrierFreq ranges from MIN_CARRIER_FREQ to MAX_CARRIER_FREQ (see
section 4.7).
For channels with no active instance of InitialTuning, INIT_CARRIER_FREQ (see section
4.6) specifies the value of applicableCarrierFreq at beginning of the first burst.

For channels with an active instance of InitialTuning, no initial value of
applicableCarrierFreq is specified.

Value of applicableCarrierFreq is controlled by radio applications using setTuning() (see
section 3.1.11) and retune() (see section 3.1.12).

3.3.2.3 applicableGain

applicableGain attribute is specified as the transmit gain (see section 1.2.4.4) or the receive
gain (see section 1.2.5) applied by channels during PROCESSING state (see section 2.3).

The associated declaration is specified as:
Gain applicableGain;

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 79
All Rights Reserved

applicableGain ranges from MIN_GAIN to MAX_GAIN (see section 4.7).

For channels with no active instance of InitialTuning, INIT_GAIN (see section 4.6) specifies
the value of applicableGain at beginning of the first burst.

For channels with an active instance of InitialTuning, no initial value of applicableGain
is specified.
Value of applicableGain is controlled by radio applications using setTuning() (see section
3.1.11) and retune() (see section 3.1.12).

3.3.2.4 applicableLength

applicableLength attribute is specified as the length of the baseband block to be processed by
channels during PROCESSING state (see section 2.3).

The associated declaration is specified as:
BlockLength applicableLength;

Undefined applicableLength is equal to UndefinedBlockLength (see section 3.4.3).

Defined applicableLength ranges from MIN_BLOCK_LENGTH to MAX_BLOCK_LENGTH (see
section 4.7).
No initial value of applicableLength is specified.

Value of applicableLength is controlled by radio applications using creation operations (see
section 2.4.2) and setBlockLength() (see section 3.1.7).

3.3.2.5 sampleCount

sampleCount attribute is specified as the number of samples of the baseband block processed
by channels since entry in the PROCESSING state (see section 2.3).

The associated declaration is specified as:
SampleNumber sampleCount;

The start value of sampleCount is specified as 1 (one) for the first sample of the baseband block.

Value of sampleCount is incremented during PROCESSING state of Channels, as specified in
section 2.3.1.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 80
All Rights Reserved

3.4 Types

3.4.1 Base assumptions

The IDL keywords used for specification of types are:
 For Basic Types:

o 16-bit integers: short, unsigned short,
o 32-bit integers: long, unsigned long,
o 64-bit integers: long long, unsigned long long,
o Others: float, boolean,

 For Constructed Types: typedef, struct, enum,
 For Template Types: sequence.

This makes the specification compliant with the Full Profile or [Ref5], and with the ULw Profile
augmented by long long and float basic types.

3.4.2 BasebandPacket

BasebandPacket type is specified as a sequence of baseband samples.

The associated declaration is specified as:
typedef sequence <BasebandSample> BasebandPacket;

BasebandPacket is used by pushRxPacket() (see section 3.1.7) and pushTxPacket() (see section
3.1.9).

3.4.3 BlockLength

BlockLength type is specified as a 32-bit unsigned integer number of baseband samples to be
processed by Tx channels or Rx channels during a processing phase.
UndefinedBlockLength is specified as the reserved value specifying an undefined value of
BlockLength.

The associated declarations are specified as:
typedef unsigned long BlockLength;
const BlockLength UndefinedBlockLength = 0xFFFFFF;

BlockLength is used by startBurst() (see section 3.1.3), scheduleRelativeBurst() (see section
3.1.4), scheduleAbsoluteBurst() (see section 3.1.5) and scheduleStrobedBurst() (see section 3.1.6).

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 81
All Rights Reserved

3.4.4 BasebandSample

BasebandSample type is specified as the structure representing baseband samples, with field
valueI for the in-phase component and field valueQ for the quadrature component (see section
1.2.2.1).
The associated declaration is specified as:

struct BasebandSample {IQ valueI, IQ valueQ};

BasebandSample is used by declaration of IQ type (see section 3.4.11).

3.4.5 BurstNumber

BurstNumber type is specified as a 32-bit unsigned integer that specifies a burst number.

The associated declaration is specified as:
typedef unsigned long BurstNumber;

BurstNumber is used by setTuning() (see section 3.1.11) and burstCount attribute (see 3.3.1.1).

3.4.6 CarrierFreq

CarrierFreq type is specified as an unsigned integer that specifies a carrier frequency (fc).

CARRIER_FREQ_TYPE (see section 4.3) specifies if CarrierFreq is 32-bit or 64-bit.

A CarrierFreq value is expressed in hertz (Hz).

UndefinedCarrierFreq is specified as the reserved value specifying an undefined value of
CarrierFreq.

The associated declarations are specified as, if CARRIER_FREQ_TYPE is equal to 32bit:
typedef unsigned long CarrierFreq; // in Hz
const CarrierFreq UndefinedCarrierFreq = 0xFFFFFFFF;

The associated declarations are specified as, if CARRIER_FREQ_TYPE is equal to 64bit:
typedef unsigned long long CarrierFreq; // in Hz
const CarrierFreq UndefinedCarrierFreq = 0xFFFFFFFFFFFFFFFF;

CarrierFreq is used by setTuning() (see section 3.1.11) and retune() (see section 3.1.12).

3.4.7 Delay

Delay type is specified as an unsigned integer that specifies a delay from the start time of an
ongoing processing phase.
DELAY_TYPE (see section 4.3) specifies if Delay is 32-bit or 64-bit.

A Delay value is expressed in nanoseconds (ns).

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 82
All Rights Reserved

UndefinedDelay is specified as the reserved value specifying an undefined value of Delay.

The associated declarations are specified as, if DELAY_TYPE is equal to 32bit:
typedef unsigned long Delay; // in ns
const Delay UndefinedDelay = 0xFFFFFFFF;

The associated declarations are specified as, if DELAY_TYPE is equal to 64bit:
typedef unsigned long long Delay; // in ns
const Delay UndefinedDelay = 0xFFFFFFFFFFFFFFFF;

Delay is used by scheduleRelativeBurst() (see section 3.1.4), scheduleStrobedBurst() (see section
3.1.6) and retune() (see section 3.1.12).

3.4.8 Error

Error type is specified as an enumeration identifying an error.

The associated declaration is specified as:
enum Error {
 errorDelayedTuning,
 errorTuningTimeout,
 errorDelayedFirstSample,
 errorFirstSampleTimeout,
 errorTransmissionUnderflow,
 errorReceptionOverflow,
 errorShorterTransmittedBlock,
 errorLongerTransmittedBlock};

Error is used by notifyError() (see section 3.1.14.1).

3.4.9 Event

Event type is specified as an enumeration identifying an event.

The associated declaration is specified as:
enum Event {
 eventProcessingStart,
 eventProcessingStop,
 eventSilenceStart,
 eventSilenceStop};

Event is used by notifyEvent() (see section 3.1.13.1).

3.4.10 Gain

Gain type is specified as a signed 16-bit integer that specifies a gain (G).

A Gain value is expressed in tenths of decibels (1/10 dB).

UndefinedGain is specified as the reserved value specifying an undefined value of Gain.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 83
All Rights Reserved

The associated declarations are specified as:
typedef short Gain; // in 1/10 dB
const Gain UndefinedGain = 0xFFFF;

Gain is used by setTuning() (see section 3.1.11) and retune() (see section 3.1.12).

3.4.11 IQ

IQ type is specified as the representation of I (in-phase) and Q (quadrature) components of a
baseband sample.
IQ_TYPE (see section 4.3) specifies if IQ type is 16-bit, 32-bit or floating point.

Integer values of IQ shall be signed 2-complement MSB-aligned.

The declaration of IQ is specified as, if IQ_TYPE is equal to 16bit:
typedef short IQ;

The declaration of IQ is specified as, if IQ_TYPE is equal to 32bit:
typedef long IQ;

The declaration of IQ is specified as, if IQ_TYPE is equal to floatingPoint,
typdef float IQ;

IQ is used for declaration of BasebandSample type (see section 3.4.4).

3.4.12 MetaData

TxMetaData and RxMetaData types are specified as structures of unspecified fields optionally
used to attach meta-data to transferred baseband packets.
The associated declarations are user-defined, and shall be specified as follows:

typedef struct TxMetaData {
 <user-defined>};

typedef struct RxMetaData {
 <user-defined>};

TxMetaData is used by pushTxPacket() (see section 3.1.9) and RxMetaData is used by
pushRxPacket() (see section 3.1.8).

3.4.13 PacketLength

PacketLength type is specified as a 32-bit unsigned integer that identifies the length of a packet.

The associated declarations are specified as:
typedef unsigned long PacketLength;

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 84
All Rights Reserved

PacketLength is used by setRxPacketsLength() (see section 3.1.10) and
applicableRxPacketsLength (see section 3.3.1.2).

3.4.14 SampleNumber

SampleNumber type is specified as a 32-bit unsigned integer that specifies a sample number.

The associated declaration is specified as:
typedef unsigned long SampleNumber;

SampleNumber is used by indicateGain() (see section 3.1.15.1) and sampleCount attribute (see
3.3.1.2).

3.4.15 StrobeSource

StrobeSource type is specified as an enumeration that specifies the referenced strobe source for
strobed creation of a burst, as specified in section 3.1.6.
The associated declaration is specified as:

enum StrobeSource {
 ApplicationStrobe,
 TimeRef_PPS,
 GNSS_PPS,
 UserStrobe1,
 UserStrobe2,
 UserStrobe3,
 UserStrobe4};

StrobeSource is used by scheduleStrobedBurst() (see section 3.1.6).

3.4.16 TimeSpec

TimeSpec type is specified as a structure that specifies a value of transceiver time, composed of
32-bit unsigned integer fields for seconds and nanoseconds.
The seconds field value is expressed in seconds (s).
The nanoseconds field value is expressed in nanoseconds (ns).
UndefinedTimeSpec is specified as the reserved value specifying an undefined value of
TimeSpec.

The associated declarations are specified as:
struct TimeSpec {
 unsigned long seconds, // in seconds
 unsigned long nanoseconds}; // in nanoseconds (<1.000.000.000)
const TimeSpec UndefinedTimeSpec = {0xFFFFFFFF, 0xFFFFFFFF};

TimeSpec is used by scheduleAbsoluteBurst() (see section 3.1.5), getCurrentTime() and
getLastStartTime() (see section 3.1.15).

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 85
All Rights Reserved

3.4.17 TuningPreset

TuningPreset type is specified as a 16-bit unsigned integer that identifies a tuning preset.

UndefinedTuningPreset is specified as the reserved value specifying an undefined value of
TuningPreset.

The associated declarations are specified as:
typedef unsigned short TuningPreset;
const TuningPreset UndefinedTuningPreset = 0xFFFF;

TuningPreset is used by setTuning() (see section 3.1.11).

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 86
All Rights Reserved

4 Properties
This section specifies the Transceiver Properties, which characterize a transceiver instance, once
it has been reconfigured in accordance to needs of the supported radio application.

4.1 Introduction

4.1.1 Properties

A property is defined as an attribute of a transceiver instance which value is defined when the
channels have reached the CONFIGURED state.

The value of a property cannot be modified until the channels have exited the CONFIGURED state.

Note: future versions of the specification may enable modification of property values.
The remainder of the section specifies properties and their base name, also denoted <BaseName>.

Depending on cases, a unique property can fully characterize a transceiver instance, or multiple
properties can be required.

4.1.2 Properties naming

The name of a unique property shall be the <BaseName> of the property.

The names of multiple properties are constructed from the <BaseName> of the property with
usage of prefixes or postfixes.
The name of multiple properties that differ between Tx channels and Rx channels shall be
constructed with TX_ and RX_ prefixes added before the <BaseName>.

A property which base name starts with TX_ (resp. RX_) only applies to Tx channels (resp. Rx
channels).
The name of multiple properties that differ according to conditions shall be constructed with the
condition-dependent <Condition> postfixes added after the <BaseName> and a separation
composed of two (2) underscores (__).

Any conditions and associated <Condition> postfixes can be user-defined.

For rapidity properties, section 4.8 specifies standard conditions and <Condition> postfixes.

4.1.3 Portability engineering support

The configuration expectations of a radio application are defined as the properties values of each
used transceiver instance required for correct operation after the CONFIGURED state is reached.

The configuration capabilities of a transceiver implementation are defined as the properties
values possibly supported by the transceiver after the CONFIGURED state is reached.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 87
All Rights Reserved

Porting feasibility can be evaluated through comparison of the radio application’s configuration
expectations with transceiver’s configuration capabilities.
Note: derived specifications may standardize machine readable meta-data for expression of
configuration expectations, enabling automation of porting feasibility evaluations and, for some
advanced implementations, of the configuration of the transceiver instances.

4.1.4 Profiles

A profile of the specification is defined as a standard that specifies values of properties for radio
applications and transceivers to facilitate or even guarantee that porting of any compliant radio
application is feasible on any compliant transceiver implementation.
Note: development of profiles is out of the scope of the specification, but may be standardized by
derived specifications.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 88
All Rights Reserved

4.2 Structure

A structure property is defined as a property that specifies an aspect related to the structure of a
transceiver instance.
Structure properties are specified by the following table:

Base name Type Description See §
TX_CHANNELS unsigned short Applies to: any transceiver instance.

Specifies: number of Tx channels (equal to number of
active instances of SamplesTransmission).

1.2.1

RX_CHANNELS unsigned short Applies to: any transceiver instance.
Specifies: number of Rx channels (equal to number of
active instances of SamplesReception).

1.2.1

DUPLEX Enumeration
(see below)

Applies to: a duplex transceiver (TX_CHANNELS > 0 and
RX_CHANNELS > 0).
Specifies: duplex type of the transceiver instance:
 fullDuplex,
 halfDuplex.

1.2.1

TX_SHAPING Enumeration
(see below)

Applies to: Tx channels.
Specifies: shaping of Tx bursts:
 nominal,
 specific.

1.2.4

TX_SERVICES ActiveServices
(see below)

Applies to: Tx channels.
Specifies: for each service except
SamplesTransmission, if one active instance is
attached to Tx channels.

1.3.3

RX_SERVICES ActiveServices
(see below)

Applies to: Rx channels.
Specifies: for each service except SamplesReception,
if one active instance is attached to Rx channels.

1.3.3

TIME_COUPLING Enumeration
(see below)

Applies to: channels with active instance of
AbsoluteCreation.
Specifies: coupling of transceiver time:
 autonomous: uncorrelated with any other time,
 coupled: identical to another time,
 coupledToTerminalTime: identical to

Terminal Time of Timing Service API (see
[Ref7]).

3.1.5

Table 25 Structure properties

The declaration of DUPLEX is specified as:
enum DUPLEX {fullDuplex, halfDuplex};

The declaration of TX_SHAPING is specified as:
enum TX_SHAPING {nominal, specific};

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 89
All Rights Reserved

The declarations for TX_SERVICES and RX_SERVICES are specified as:
typedef boolean isActive;

typedef struct {
 // Provide services
 isActive reset,
 isActive radioSilence,
 isActive directCreation,
 isActive relativeCreation,
 isActive absoluteCreation,
 isActive strobedCreation,
 isActive termination,
 isActive rxPacketsLengthControl,
 isActive initialTuning,
 isActive retuning,
 isActive gainLocking,
 isActive timeAccess,
 isActive applicationStrobe,

 // Use services
 isActive events,
 isActive errors
 isActive gainChanges,
} ActiveServices;

ActiveServices TX_SERVICES;
ActiveServices RX_SERVICES;

The following consistency conditions apply to fields of TX_SERVICES and RX_SERVICES:
 At least one among directCreation, relativeCreation, absoluteCreation

and strobedCreation is equal to true,
 rxPacketsLengthControl of TX_SERVICES is equal to false,
 timeAccess is equal to false if relativeCreation is equal to false,
 applicationStrobe is equal to false if strobedCreation is equal to false.

The declaration of TIME_COUPLING is specified as:
enum TIME_COUPLING {autonomous, coupled, coupledToTerminalTime};

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 90
All Rights Reserved

4.3 Behavior

A behavior property is defined as a property that specifies an aspect relative to the behavior of a
transceiver instance.
Behavior properties are specified by the following table:

Base name Type Description See §
TUNING_ASSOCIATION Enumeration

(see below)
Applies to: channels with an active instance of
InitialTuning.
Specifies: search condition among stored tuning
parameters sets applicable during INITIATING:
 sequential,
 burstReferencing.

2.3.2

AGC Enumeration
(see below)

Applies to: Rx channels.
Specifies: nature of the implemented AGC:
 noAGC,
 earlyControl,
 permanentControl.

2.3.1

ALC Enumeration
(see below)

Applies to: Tx channels.
Specifies: nature of the implemented ALC:
 noALC,
 activeALC.

2.3.1

TUNING_TIMEOUT unsigned long Applies to: channels with an active instance of
InitialTuning, if
ERRORS.errTuningDelayed.reaction is equal to
mitigating.
Specifies: timeout value, in nanoseconds (ns), for
triggering of errorTuningTimeout.

3.1.14

1ST_SAMPLE_TIMEOUT unsigned long Applies to: Tx channels with at least one active instance
of timely creation services, if
ERRORS.err1stSampleDelayed.reaction is equal
to mitigating.
Specifies: timeout value, in nanoseconds (ns), for
triggering of error1stSampleTimeout.

3.1.14

Table 26 Behavior properties

The declaration of TUNING_ASSOCIATION is specified as:
enum TUNING_ASSOCIATION {sequential, burstReferencing};

The declaration of AGC is specified as:
enum AGC {noAGC, startupAGC, permanentAGC};

The declaration of ALC is specified as:
enum ALC {noALC, activeALC};

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 91
All Rights Reserved

4.4 Notifications

A notification property is defined as a property that specifies an aspect relative to notifications
made by a transceiver instance to the radio application.
Notification properties are specified by the following table:

Base name Type Description See §
EXCEPTIONS_SUPPORT boolean Applies to: all channels.

Specifies: if exceptions are supported.
3.2

EXCEPTIONS Structure
(see below)

Applies to: all channels.
Specifies: an exceptionHandling field for each
standard exception, which specifies the reaction to
occurrences of the exception and if the exception is
raised to the radio application with the exception
notification mechanism.

3.2

EVENTS Structure
(see below)

Applies to: channels with an active instance of Events.
Specifies: an isNotified field for each event, which
specifies if occurrences are notified to the radio
application with notifyEvent().

3.1.13

ERRORS Structure
(see below)

Applies to: channels with an active instance of Errors.
Specifies: an errorHandling field for each error,
which specifies the reaction to occurrences of the error
and if occurrences are notified to the radio application
with notifyError().

3.1.14

Table 27 Notification properties

The declarations for ERRORS are specified as:
typedef struct{
 enum reaction {fatal, reset, mitigation},
 boolean isNotified}
errorHandling;

struct ERRORS {
 errorHandling error1stSampleDelayed,
 errorHandling error1stSampleTimeout,
 errorHandling errorBurstOverlap,
 errorHandling errorRxOverflow,
 errorHandling errorShorterTxBlock,
 errorHandling errorTxUnderflow,
 errorHandling errorTuningDelayed,
 errorHandling errorTuningTimeout};

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 92
All Rights Reserved

The declarations for EXCEPTIONS are specified as:
typedef struct{
 enum reaction {fatal, resetting, callIgnoring}}
 boolean isRaised}
exceptionHandling;

struct EXCEPTIONS {
 // General exceptions
 exceptionHandling NoAlternateReferencing,
 exceptionHandling NoOngoingProcessing,
 exceptionHandling StrobeSource,

 // Range exceptions
 exceptionHandling MaxBlockLength,
 exceptionHandling MinBlockLength,
 exceptionHandling MaxCarrierFreq,
 exceptionHandling MinCarrierFreq,
 exceptionHandling MaxFromOngoing,
 exceptionHandling MinFromOngoing,
 exceptionHandling MinFromPrevious,
 exceptionHandling MaxFromPrevious,
 exceptionHandling MaxFromStrobe,
 exceptionHandling MinFromStrobe,
 exceptionHandling MaxGain,
 exceptionHandling MinGain,
 exceptionHandling MaxNanoseconds,
 exceptionHandling MaxRxPacketsLength,
 exceptionHandling MaxTuningPreset,
 exceptionHandling MaxTxPacketsLength

 // MILT exceptions
 exceptionHandling AbsoluteMILT,
 exceptionHandling RelativeMILT,
 exceptionHandling RetuningMILT,
 exceptionHandling TuningMILT,
 exceptionHandling TxPacketsMILT};

The declarations for EVENTS are specified as:
typedef boolean isNotified;

struct EVENTS {
 isNotified eventProcessingStart,
 isNotified eventProcessingStop,
 isNotified eventSilenceStart,
 isNotified eventSilenceStop};

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 93
All Rights Reserved

4.5 Interface declaration

An interface declaration property is defined as a property that specifies an aspect relative to the
declaration of a service interface.
Interface declaration properties are specified by the following table:

Base name Type Description See §
CARRIER_FREQ_TYPE Enumeration

(see below)
Applies to: CarrierFreq type.
Specifies: type used (32-bit or 64-bit).

3.4.6

DELAY_TYPE Enumeration
(see below)

Applies to: Delay type.
Specifies: type used (32-bit or 64-bit).

3.4.7

IQ_TYPE Enumeration
(see below)

Applies to: IQ type.
Specifies: type used (16-bit, 32-bit or floating point).

3.4.11

TX_META_DATA boolean Specifies if user-defined meta-data are attached to the Tx
packets forwarded to Tx channels.

3.1.9

RX_META_DATA boolean Specifies if user-defined meta-data are attached to the Rx
packets obtained from Rx channels.

3.1.8

Table 28 Interface declaration properties

The associated declarations are specified as:
enum CARRIER_FREQ_TYPE {int32, int64};
enum DELAY_TYPE {int32, int64};
enum IQ_TYPE {int16, int32, float32};

4.6 Initialization

An initialization property is defined as a property that specifies the conditions to be met by a
transceiver instance when the CONFIGURED state is reached by its Tx channels and Rx channels.

Initialization properties are specified by the following table:

Base name Type Description See §
INIT_RX_PACKETS_LENGTH PacketLength

(see § 3.4.12)
Applies to: all Rx channels.
Specifies: initial value of
applicableRxPacketsLength.

3.3.1

INIT_CARRIER_FREQ CarrierFreq

(see § 3.4.6)
Applies to: channels with no active instance of
InitialTuning.
Specifies: the value of
applicableCarrierFreq at beginning of the
first burst.

3.3.2

INIT_GAIN Gain

(see § 3.4.10)
Applies to: channels with no active instance of
InitialTuning.
Specifies: the value of applicableGain at
beginning of first burst.

3.3.2

Table 29 Initialization properties

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 94
All Rights Reserved

4.7 Parameters validity

A parameter validity property is defined as a property that specifies the validity conditions
applicable to a parameter of a primitive of a service interface.
Parameters validity properties are specified by the following table:

Base name Type Description See §
MIN_BLOCK_LENGTH
MAX_BLOCK_LENGTH

BlockLength
(see § 3.4.3)

Applies to: requestedLength not equal to
UndefinedBlockLength in a call to a creation
operation.
Specifies: minimum and maximum value.

3.1.3
3.1.4
3.1.5
3.1.6
3.1.7

ALTERNATE_REFERENC
ING

boolean Applies to: requestedAlternate in a call to
scheduleRelativeBurst().
Specifies: if true value is supported.

3.1.4

MIN_FROM_PREVIOUS
MAX_FROM_PREVIOUS

Delay
(see § 3.4.7)

Applies to: requestedDelay in a call to
scheduleRelativeBurst().
Specifies: minimum and maximum value.

3.1.4

STROBE_SOURCES Structure
(see below)

Applies to: requestedStrobeSource in
scheduleStrobedBurst().
Specifies: for each boolean field attached to a strobe
source, if the corresponding value of
requestedStrobeSource is supported.

3.1.6

MIN_FROM_STROBE
MAX_FROM_STROBE

Delay
(see § 3.4.7)

Applies to: requestedDelay in a call to
scheduleStrobedBurst().
Specifies: minimum and maximum value.

3.1.6

MAX_PACKETS_LENGTH PacketLength
(see § 3.4.12)

Applies to: length of txPacket in a call to pushTxPacket()
or requestedLength in a call to setRxPacketsLength().
Specifies: maximum value.
Note: minimum value is constant and equal to 1.

3.1.9
3.1.10

MAX_TUNING_PRESET TuningPreset
(see § 3.4.14)

Applies to: requestedPreset in a call to setTuning().
Specifies: maximum value.
Note: minimum value is constant and equal to 1.

3.1.11

MIN_CARRIER_FREQ
MAX_CARRIER_FREQ

CarrierFreq
(see § 3.4.6)

Applies to: requestedFrequency not equal to
UndefinedCarrierFreq in a call to setTuning() or
retune().
Specifies: minimum and maximum value.

3.1.11
3.1.12

MIN_GAIN
MAX_GAIN

Gain
(see § 3.4.10)

Applies to: requestedGain not equal to UndefinedGain
in a call to setTuning() or retune().
Specifies: minimum and maximum value.

3.1.11
3.1.12

MIN_FROM_ONGOING
MAX_FROM_ONGOING

Delay
(see § 3.4.7)

Applies to: requestedDelay in a call to retune().
Specifies: minimum and maximum value.

3.1.12

Table 30 Parameters validity properties

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 95
All Rights Reserved

The declaration of STROBE_SOURCES is specified as:
typedef boolean isSupported;

struct STROBE_SOURCES {
 isSupported ApplicationStrobe,
 isSupported TimeRef_PPS,
 isSupported GNSS_PPS,
 isSupported UserStrobe1,
 isSupported UserStrobe2,
 isSupported UserStrobe3,
 isSupported UserStrobe4};

4.8 Rapidity

A rapidity property is defined as a property that specifies the rapidity of execution of a transceiver
instance.
Rapidity properties are specified as indicated in the following table:

Base name Type Description See §
INTER-PROCESSING unsigned long Applies to: channels.

Specifies: minimum time, in nanoseconds (ns), between:
 Termination time of a burst (a StopProcessing

transition),
 Activation time of the next burst

(StartProcessing transition).

1.2.6

INTER-BURST unsigned long Applies to: channels.
Specifies: minimum time, in nanoseconds (ns), between:
 Stop time of a burst (end of its core burst, at its

start time plus block length / 𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵),
 Start time of the next burst (end of its core burst).

1.2.6

TUNING_DURATION unsigned long Applies to: channels with an active instance of Tuning.
Specifies: maximum duration, in nanoseconds (ns), of
the TUNING state.

2.3.1

RETUNING_DURATION unsigned long Applies to: channels with an active instance of
Retuning.
Specifies: maximum duration, in nanoseconds (ns), of
the RETUNING state.

2.3.4

EARLY_AGC_DELAY unsigned long Applies to: Rx channels with AGC equal to
earlyControl.
Specifies: delay available after start time of a Rx burst
for the AGC to have set the receive gain.

2.3.1

Table 31 Rapidity properties

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 96
All Rights Reserved

Tuning conditions are specified as indicated in the following table:

<Condition> postfix Condition
NO_TUNING_CHANGE Applies to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of channels

with an active instance of InitialTuning.
Condition: the applicable tuning parameters set specifies no tuning change
(requestedTuningPreset is equal to undefinedTuningPreset, requestedCarrierFreq
is equal to UndefinedCarrierFreq and requestedDelay is equal to
UndefinedDelay).

NEW_TUNING_PRESET Applies to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of channels
with an active instance of InitialTuning.
Condition: the applicable tuning parameters set specifies a new tuning preset
(requestedTuningPreset is not equal to undefinedTuningPreset).

NEW_FREQUENCY Applies to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of channels
with an active instance of InitialTuning and RETUNING_DURATION of channels with
an active instance of Retuning.
Condition: the applicable tuning parameters set specifies a new frequency with no
tuning preset change (requestedTuningPreset is equal to undefinedTuningPreset
and requestedCarrierFreq is not equal to UndefinedCarrierFreq).

NEW_GAIN Applies to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of channels
with an active instance of InitialTuning and RETUNING_DURATION of channels with
an active instance of Retuning.
Condition: the applicable tuning parameters set specifies a new gain with no other
change (requestedTuningPreset is equal to undefinedTuningPreset,
requestedCarrierFreq is equal to UndefinedCarrierFreq and requestedDelay is
not equal to UndefinedDelay).

Table 32 Tuning conditions

See section 2.3.2.1.3 for further information regarding applicable tuning parameters set.
Duplex conditions are specified as indicated in the following table:

<Condition> postfix Condition
TX-TX Applicable to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of all Tx

channels.
Condition: the consecutive bursts are Tx bursts.

RX-RX Applicable to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION all Rx
channels.
Condition: the consecutive bursts are Rx bursts.

TX-RX Applicable to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION of half-
duplex transceivers.
Condition: the previous burst is a Tx burst and the next burst is a Rx burst.

RX-TX Applicable to: INTER-BURST, INTER-PROCESSING and TUNING-DURATION half-
duplex transceivers.
Condition: the previous burst is a Tx burst and the next burst is a Rx burst.

Table 33 Duplex conditions

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 97
All Rights Reserved

4.9 Storage

A storage property is defined as a property that specifies the number of calls to certain operations
a transceiver instance can store before blocking further calls until storage is freed.
Storage properties are specified by the following table:

Base name Type Description See §
CREATION_STORAGE unsigned

short
Applies to: all Tx channels and Rx channels.
Specifies: maximum number of creation operations calls
the transceiver instance can store.

3.1.3
3.1.4
3.1.5
3.1.6

TUNING_STORAGE unsigned
short

Applies to: channels with an active instance of
InitialTuning.
Specifies: maximum number of setTuning() calls the
transceiver instance can store.

3.1.11

TX_BASEBAND_STORAGE unsigned long Applies to: Tx channels.
Specifies: maximum number of baseband samples the
transceiver instance can store for each active instance of
SamplesTransmission.

3.1.9

Table 34 Storage properties

4.10 Levels

A level property is defined as a property that specifies the range of signal levels at the boundary
of channels.
Level properties are specified by the following table:

Base name Type Description See §
TX_MIN_BASEBAND_LEVEL
TX_MAX_BASEBAND_LEVEL

short Applies to: Tx channels.
Specifies: minimum and maximum values of the level
of baseband signal at input of Tx channels, in tenth of
decibels relative to full scale (1/10 dBFS).

2.3.1

RX_MIN_RADIO_LEVEL
RX_MAX_RADIO_LEVEL

short Applies to: Rx channels.
Specifies: minimum and maximum values of the level
of radio signal at input of Rx channels, in tenth of
decibels relative to one milliwatt (1/10 dBm).

2.3.1

RX_MIN_BASEBAND_LEVEL
RX_MAX_BASEBAND_LEVEL

short Applies to: Rx channels.
Specifies: minimum and maximum values of the level
of baseband signal at output of Rx channels, in tenth of
decibels relative to full scale (1/10 dBFS).

2.3.1

Table 35 Level properties

4.11 Channelization

A channelization property is defined as a property that specifies each tuning preset supported by
a transceiver instance.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 98
All Rights Reserved

Channelization properties are specified by the following table:

Base name Type Description See §
CHANNEL_MASK Structure

(see below)
Applies to: all tuning presets.
Specifies: the channel mask for the transfer function, to
be respected during the PROCESSING state.

2.3.1

SAMPLING_FREQ_ACC unsigned long Applies to: channels.
Specifies: accuracy of the baseband sampling frequency,
in hertz (Hz), to be respected during the PROCESSING
state.

2.3.1

CARRIER_FREQ_ACC CarrierFreq Applies to: channels.
Specifies: accuracy of the carrier frequency, to be
respected during the PROCESSING state.

2.3.1

GAIN_ACC Gain Applies to: channels.
Specifies: accuracy of the gain, to be respected during
the PROCESSING state.

2.3.1

Table 36 Channelization properties

One property instance of CHANNEL_MASK is specified for each value of tuning preset between 1
and MAX_TUNING_PRESET (see section 4.7).

The associated names are specified as:
 CHANNEL_MASK if MAX_TUNING_PRESET is equal to 1,
 CHANNEL_MASK_<PresetNumber> if MAX_TUNING_PRESET is greater than 1.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 99
All Rights Reserved

The fields of channel masks are specified by the following figure:

−𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵/2

𝑀𝑜𝑑𝑢𝑙𝑒𝑒 (dB)

𝑓𝑓 (Hz)

.channelBandwidth

.maxRipple

.upperRejectionGain

.lowerRejectionFreq

.upperRejectionFreq

�𝑯(𝒇)�

.lowerRejectionGain

.lowerRejectionSlope

.lowerRejectionSlope.upperRejectionSlope

𝐺𝐺𝑟𝑜𝑢𝑝 𝑑𝑒𝑒𝑙𝑎𝑦 (ns)

𝑓𝑓 (Hz)
0

𝑟𝑒𝑒𝑓𝑓

.channelBandwidth

.groupDelayDistorsion

−
𝟏
𝟐𝝅 .

𝒅(𝐚𝐫𝐠 𝑯 𝒇)
𝒅𝒇

0

�𝑯(𝟎)�

ripple = max - min

max

min

+𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵/2

−𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵/2 +𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵/2

Figure 56 Specification of fields of channel masks

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 100
All Rights Reserved

The declaration for CHANNEL_MASK is specified as, taking the previous figure as reference for
specification of the structure’s fields:

typedef struct {
 // Sampling frequency
 unsigned long basebandSamplingFreq, // in Hz

 // Useful signal
 unsigned long channelBandwidth, // in Hz
 unsigned short ripple, // in thenth of dB
 unsigned short groupDelayDistorsion, // in ns

 // Proximity protection
 unsigned short lowerRejectionFreq, // in Hz
 unsigned short lowerRejectionGain, // in dB
 unsigned short lowerRejectionSlope, // in dB/kHz

 unsigned short upperRejectionFreq, // in Hz
 unsigned short upperRejectionGain, // in dB
 unsigned short upperRejectionSlope // in dB/kHz
} ChannelMask;

4.12 Temporal accuracy

A temporal accuracy property is defined as a property that specifies the temporal accuracy of a
transceiver instance.
The type of a temporal accuracy property is specified as unsigned long.

Temporal accuracy properties are specified by the following table:

Base name Description See §
START_TIME_ACC Applies to: channels with at least one active instance of a timely creation

service.
Specifies: maximum absolute difference, in nanoseconds (ns), between:
 Actual start time of a created burst,
 Start time specified by the creation operation.

2.3.2

CURRENT_TIME_ACC Applies to: channels with an active instance of TimeAccess.
Specifies: maximum absolute difference, in nanoseconds (ns), between:
 Actual return time of getCurrentTime(),
 Returned currentTime value.

3.1.15

LAST_START_TIME_ACC Applies to: channels with an active instance of TimeAccess.
Specifies: maximum absolute difference, in nanoseconds (ns), between:
 Actual start time of the last burst,
 Returned lastStartTime value.

3.1.15

Table 37 Temporal accuracy properties

4.13 Invocation lead time

The invocation lead time of a provide service primitive is defined as the time elapsing, in
nanoseconds (ns), between invocation of the primitive by the radio application and occurrence
within the transceiver instance of the future related event.

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 101
All Rights Reserved

The invocation lead time property of a provide service is defined as a property that specifies the
minimum value of invocation lead time supported by the service.
The type of an invocation lead time property is specified as unsigned long.

Invocation lead time properties are specified by the following table:

Base name Provide service primitive (Future) Related event See §
RELATIVE_MILT RelativeCreation.

scheduleRelativeBurst()
Start time of the burst. 3.1.4

ABSOLUTE_MILT AbsoluteCreation.
scheduleAbsoluteBurst()

Start time of the burst. 3.1.5

STROBED_MILT StrobedCreation.
scheduleStrobedBurst()

Start time of the burst. 3.1.6

TX_PACKET_MILT SamplesTransmission.
pushTxPacket()

First sample of the pushed packet is used
by up-conversion.

3.1.9

BLOCK_LENGTH_MILT Termination.
setBlockLength

Stop time of the ongoing processing phase.
If value of requestedLength is not equal to
UndefinedBlockLength

3.1.7

TUNING_MILT InitialTuning.
setTuning()

Usage of the creation operation of the
burst by CreationControl.

3.1.11

RETUNING_MILT Retuning.retune() Start of the RETUNING state.
If value of requestedDelay is not equal to
UndefinedDelay

3.1.12

Table 38 Invocation lead time properties

4.14 Invocation delay

The invocation delay of a use service primitive is defined as the time elapsing, in nanoseconds
(ns), between occurrence within a transceiver instance of the past related event and invocation of
the primitive by the transceiver instance.
The invocation delay property of a use service is defined as a property that specifies the maximum
value of invocation delay guaranteed by the service.
The type of an invocation delay property is specified as unsigned long.

Invocation delay properties are specified by the following table:

Base name Use service primitive (Past) Related event See §
PUSH_RX_PACKET_MID SamplesReception.

pushRxPacket()
Down-conversion outputs the last sample
of the pushed packet.

3.1.8

NOTIFY_EVENT_MID Events.
notifyEvent()

The notified error occurs. 3.1.13

NOTIFY_ERROR_MID Errors.
notifyError()

The notified error is detected. 3.1.14

INDICATE_GAIN_MID GainChanges.
indicateGain()

The indicated Gain starts to be applied in
application of an AGC algorithm decision.

3.1.15

Table 39 Invocation delay properties

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 102
All Rights Reserved

4.15 Worst-case execution time (WCET)

The worst case execution time (WCET) of a service primitive is defined as the maximum length
of time, in nanoseconds (ns), possibly taken between the invocation and the return of the primitive.
The WCET property of a primitive of a provide service is defined as a property that specifies the
maximum value of the WCET of the primitive.
The WCET property of a primitive of a use service is defined as a property that specifies the
maximum value of the WCET of the primitive for correct real-time behavior of the transceiver
instance.
The type of a WCET property is specified as unsigned long.

WCET properties of primitives of provide services are specified by the following table:

Base name Related primitive See §
RESET_WCET Reset::reset() 3.1.1
START_SILENCE_WCET RadioSilence::startRadioSilence() 3.1.2
STOP_SILENCE_WCET RadioSilence::stopRadioSilence() 3.1.2
DIRECT_WCET DirectCreation::startBurst() 3.1.3
RELATIVE_WCET RelativeCreation::scheduleRelativeBurst() 3.1.4
ABSOLUTE_WCET AbsoluteCreation::scheduleAbsoluteBurst() 3.1.5
STROBED_WCET StrobedCreation::scheduleStrobedBurst() 3.1.6
BLOCK_LENGTH_WCET Termination::setBlockLength() 3.1.7
STOP_BURST_WCET Termination::stopBurst() 3.1.7
TX_PACKET_WCET SamplesTransmission::pushTxPacket() 3.1.9
RX_PACKETS_LENGTH_WCET RxPacketsLengthControl::setRxPacketsLength() 3.1.10
TUNING_WCET InitialTuning::setTuning() 3.1.11
RETUNING_WCET Retuning::retune() 3.1.12
LOCK_GAIN_WCET GainLocking::lockGain() 3.1.15
UNLOCK_GAIN_WCET GainLocking::unlockGain() 3.1.16
CURRENT_TIME_WCET TimeAccess::getCurrentTime() 3.1.17
LAST_START_TIME_WCET TimeAccess::getLastStartTime() 3.1.17
TRIGGER_STROBE_WCET ApplicationStrobe::triggerStrobe() 3.1.18

Table 40 WCET properties of provide operations

WCET properties of primitives of use services are specified by the following table:

Base name Related primitive See §
RX_PACKET_WCET SamplesReception::pushRxPacket() 3.1.8
EVENTS_WCET Events::notifyEvent() 3.1.13
ERRORS_WCET Errors::notifyError() 3.1.14
GAIN_CHANGE_WCET GainChanges::indicateGain() 3.1.15

Table 41 WCET properties of use operations

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 103
All Rights Reserved

5 References

5.1 Referenced documents

[Ref1] The Fast Guide to Model Driven Architecture, Cephas Consulting Corp, 2006
http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf

[Ref2] Communication Systems, Simon Haykin, John Whiley & Sons, Inc, 2001

[Ref3] Digital and Analog Communication Systems, L.W. Couch, 8th edition, Pearson, 2013

[Ref4] OMG Unified Modeling Language (OMG UML), The Object Management Group,

formal/2015-03-01, Version 2.5, March 2015
http://www.omg.org/spec/UML/2.5

[Ref5] IDL Profiles for Platform-Independent Modeling of SDR Applications, The Wireless
Innovation Forum, WINNF-14-S-0016, Version 2.0.2, 12 June 2015
https://sds.wirelessinnovation.org/specifications-and-recommendations
https://winnf.memberclicks.net/assets/work_products/Specifications/winnf-14-s-0016-v2.0.2.pdf

[Ref6] Application Interface Definition Language Platform Independent Model Profiles, SCA 4.1
Appendix E-1, Joint Tactical Networking Center, 20 August 2015
http://www.public.navy.mil/jtnc/sca/Documents/SCAv4_1_Final/SCA_4.1_App_E-
1_ApplicationIdlPimProfiles.pdf

[Ref7] Joint Tactical Radio System Standard Timing Service Application Program Interface, Joint
Tactical Networking Center, Version 1.4.4, 26 June 2013
http://www.public.navy.mil/jtnc/sca/Documents/SCA_APIs/API_1.4.4_20130626_TimingService.pdf

The URLs above were successfully accessed at release date.

http://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf
http://www.omg.org/spec/UML/2.5
https://sds.wirelessinnovation.org/specifications-and-recommendations
https://winnf.memberclicks.net/assets/work_products/Specifications/winnf-14-s-0016-v2.0.2.pdf
http://www.public.navy.mil/jtnc/sca/Documents/SCA_APIs/API_1.4.4_20130626_TimingService.pdf

Software Defined Systems Committee
Transceiver PIM

WINNF-TS-0008-V2.1.1

Copyright © 2009-2022 The Software Defined Radio Forum Inc. Page 104
All Rights Reserved

END OF THE DOCUMENT

	TERMS, CONDITIONS & NOTICES
	Table of Contents
	List of Figures
	List of Tables
	Contributors
	Standard history
	Transceiver Facility PIM Specification
	1 Introduction
	1.1 Specification approach
	1.1.1 Model Driven Architecture (MDA)
	1.1.2 Implementation feedback collection
	1.1.3 Conventions
	1.1.4 Document structure

	1.2 Transceiver concepts
	1.2.1 Channels
	1.2.1.1 Tx channels
	1.2.1.2 Rx channels
	1.2.1.3 Transceiver categories

	1.2.2 I/O signals
	1.2.2.1 Baseband signal
	1.2.2.2 Radio signal

	1.2.3 Processing phases
	1.2.4 Transmission
	1.2.4.1 Boundary signals
	1.2.4.2 Start and stop times
	1.2.4.3 Transmit transfer function
	1.2.4.4 Transmit gain
	1.2.4.5 Tx shaping

	1.2.5 Reception
	1.2.5.1 Boundary signals
	1.2.5.2 Start and stop times
	1.2.5.3 Receive transfer function
	1.2.5.4 Receive gain

	1.2.6 Inter-burst characterization
	1.2.7 Transceiver time

	1.3 Transceiver API
	1.3.1 Services
	1.3.2 Services groups
	1.3.3 Implementation of services
	1.3.3.1 Access capabilities
	1.3.3.2 Tx channels services
	1.3.3.3 Rx channels services

	2 Services
	2.1 Provide services
	2.2 Use services
	2.3 States machines
	2.3.1 Channels
	2.3.1.1 States
	2.3.1.1.1 CONFIGURED
	2.3.1.1.2 OPERATING
	2.3.1.1.3 IDLE
	2.3.1.1.4 TUNING
	2.3.1.1.5 PROCESSING
	2.3.1.1.6 RESETTING

	2.3.1.2 Transitions
	2.3.1.2.1 ResetCompleted
	2.3.1.2.2 TuningStart
	2.3.1.2.3 TuningStop
	2.3.1.2.4 ProcessingStart
	2.3.1.2.5 ProcessingStop
	2.3.1.2.6 RuntimeReset

	2.3.2 CreationControl
	2.3.2.1 States
	2.3.2.1.1 AWAITING
	2.3.2.1.2 CREATING
	2.3.2.1.3 INITIATING
	2.3.2.1.4 SCHEDULING
	2.3.2.1.5 ACTUATING

	2.3.2.2 Transitions
	2.3.2.2.1 CreationStart
	2.3.2.2.2 InitiationCompleted
	2.3.2.2.3 SchedulingCompleted
	2.3.2.2.4 CreationCompleted

	2.3.3 RadioSilence
	2.3.3.1 States
	2.3.3.1.1 NORMAL
	2.3.3.1.2 RADIO_SILENCE

	2.3.3.2 Transitions
	2.3.3.2.1 RadioSilenceStart
	2.3.3.2.2 RadioSilenceStop

	2.3.4 Retuning
	2.3.4.1 States
	2.3.4.1.1 TUNED
	2.3.4.1.2 RETUNING

	2.3.4.2 Transitions
	2.3.4.2.1 RetuningStart
	2.3.4.2.2 RetuningStop

	2.4 Services groups description
	2.4.1 Transceiver::Management
	2.4.1.1 Transceiver::Management::Reset Interface Description
	2.4.1.2 Transceiver::Management::RadioSilence Interface Description

	2.4.2 Transceiver::BurstControl
	2.4.2.1 Transceiver::BurstControl::DirectCreation Interface Description
	2.4.2.2 Transceiver::BurstControl::RelativeCreation Interface Description
	2.4.2.3 Transceiver::BurstControl::AbsoluteCreation Interface Description
	2.4.2.4 Transceiver::BurstControl::StrobedCreation Interface Description
	2.4.2.5 Transceiver::BurstControl::Termination Interface Description

	2.4.3 Transceiver::BasebandSignal
	2.4.3.1 Transceiver::BasebandSignal::SamplesReception Interface Description
	2.4.3.2 Transceiver::BasebandSignal::SamplesTransmission Interface Description
	2.4.3.3 Transceiver::BasebandSignal::RxPacketsLengthControl Interface Description

	2.4.4 Transceiver::Tuning
	2.4.4.1 Transceiver::Tuning::InitialTuning Interface Description
	2.4.4.2 Transceiver::Tuning::Retuning Interface Description

	2.4.5 Transceiver::Notifications
	2.4.5.1 Transceiver::Notifications::Events Interface Description
	2.4.5.2 Transceiver::Notifications::Errors Interface Description

	2.4.6 Transceiver::GainControl
	2.4.6.1 Transceiver::GainControl::GainChanges Interface Description
	2.4.6.2 Transceiver::GainControl::AGCActivation Interface Description

	2.4.7 Transceiver::TransceiverTime
	2.4.7.1 Transceiver::TransceiverTime::TimeAccess Interface Description

	2.4.8 Transceiver::Strobing
	2.4.8.1 Transceiver::Strobing::ApplicationStrobe Interface Description

	3 Service primitives and attributes
	3.1 Service primitives
	3.1.1 Transceiver::Management::Reset
	3.1.1.1 reset Operation
	3.1.1.1.1 Overview
	3.1.1.1.2 Associated properties
	3.1.1.1.3 Declaration
	3.1.1.1.4 Parameters
	3.1.1.1.5 Returned value
	3.1.1.1.6 Originator
	3.1.1.1.7 Exceptions
	3.1.1.1.8 Behavior requirements

	3.1.2 Transceiver::Management::RadioSilence
	3.1.2.1 startRadioSilence Operation
	3.1.2.1.1 Overview
	3.1.2.1.2 Associated properties
	3.1.2.1.3 Declaration
	3.1.2.1.4 Parameters
	3.1.2.1.5 Returned value
	3.1.2.1.6 Originator
	3.1.2.1.7 Exceptions
	3.1.2.1.8 Behavior requirements

	3.1.2.2 stopRadioSilence Operation
	3.1.2.2.1 Overview
	3.1.2.2.2 Associated properties
	3.1.2.2.3 Declaration
	3.1.2.2.4 Parameters
	3.1.2.2.5 Returned value
	3.1.2.2.6 Originator
	3.1.2.2.7 Exceptions
	3.1.2.2.8 Behavior requirements

	3.1.3 Transceiver::BurstControl::DirectCreation
	3.1.3.1 startBurst Operation
	3.1.3.1.1 Overview
	3.1.3.1.2 Associated properties
	3.1.3.1.3 Declaration
	3.1.3.1.4 Parameters
	3.1.3.1.5 Return value
	3.1.3.1.6 Originator
	3.1.3.1.7 Exceptions
	3.1.3.1.8 Behavior requirements

	3.1.4 Transceiver::BurstControl::RelativeCreation
	3.1.4.1 scheduleRelativeBurst Operation
	3.1.4.1.1 Overview
	3.1.4.1.2 Associated properties
	3.1.4.1.3 Declaration
	3.1.4.1.4 Parameters
	3.1.4.1.5 Return value
	3.1.4.1.6 Originator
	3.1.4.1.7 Exceptions
	3.1.4.1.8 Behavior requirements

	3.1.5 Transceiver::BurstControl::AbsoluteCreation
	3.1.5.1 scheduleAbsoluteBurst Operation
	3.1.5.1.1 Overview
	3.1.5.1.2 Associated properties
	3.1.5.1.3 Declaration
	3.1.5.1.4 Parameters
	3.1.5.1.5 Return value
	3.1.5.1.6 Originator
	3.1.5.1.7 Exceptions
	3.1.5.1.8 Behavior requirements

	3.1.6 Transceiver::BurstControl::StrobedCreation
	3.1.6.1 scheduleStrobedBurst Operation
	3.1.6.1.1 Overview
	3.1.6.1.2 Associated properties
	3.1.6.1.3 Declaration
	3.1.6.1.4 Parameters
	3.1.6.1.5 Return value
	3.1.6.1.6 Originator
	3.1.6.1.7 Exceptions
	3.1.6.1.8 Behavior requirements

	3.1.7 Transceiver::BurstControl::Termination
	3.1.7.1 setBlockLength operation
	3.1.7.1.1 Overview
	3.1.7.1.2 Associated properties
	3.1.7.1.3 Declaration
	3.1.7.1.4 Parameters
	3.1.7.1.5 Return value
	3.1.7.1.6 Originator
	3.1.7.1.7 Exceptions
	3.1.7.1.8 Behavior requirements

	3.1.7.2 stopBurst operation
	3.1.7.2.1 Overview
	3.1.7.2.2 Associated properties
	3.1.7.2.3 Declaration
	3.1.7.2.4 Parameters
	3.1.7.2.5 Return value
	3.1.7.2.6 Originator
	3.1.7.2.7 Exceptions
	3.1.7.2.8 Behavior requirements

	3.1.8 Transceiver::BasebandSignal::SamplesReception
	3.1.8.1 pushRxPacket Operation
	3.1.8.1.1 Overview
	3.1.8.1.2 Associated properties
	3.1.8.1.3 Declaration
	3.1.8.1.4 Parameters
	3.1.8.1.5 Return value
	3.1.8.1.6 Originator
	3.1.8.1.7 Exceptions
	3.1.8.1.8 Behavior requirements

	3.1.9 Transceiver::BasebandSignal::SamplesTransmission
	3.1.9.1 pushTxPacket Operation
	3.1.9.1.1 Overview
	3.1.9.1.2 Associated properties
	3.1.9.1.3 Declaration
	3.1.9.1.4 Parameters
	3.1.9.1.5 Return value
	3.1.9.1.6 Originator
	3.1.9.1.7 Exceptions
	3.1.9.1.8 Behavior requirements

	3.1.10 Transceiver::BasebandSignal::RxPacketsLengthControl
	3.1.10.1 setRxPacketsLength operation
	3.1.10.1.1 Overview
	3.1.10.1.2 Associated properties
	3.1.10.1.3 Declaration
	3.1.10.1.4 Parameters
	3.1.10.1.5 Return value
	3.1.10.1.6 Originator
	3.1.10.1.7 Exceptions
	3.1.10.1.8 Behavior requirements

	3.1.11 Transceiver::Tuning::InitialTuning
	3.1.11.1 setTuning Operation
	3.1.11.1.1 Overview
	3.1.11.1.2 Associated properties
	3.1.11.1.3 Declaration
	3.1.11.1.4 Parameters
	3.1.11.1.5 Return value
	3.1.11.1.6 Originator
	3.1.11.1.7 Exceptions
	3.1.11.1.8 Behavior requirements

	3.1.12 Transceiver::Tuning::Retuning
	3.1.12.1 retune Operation
	3.1.12.1.1 Overview
	3.1.12.1.2 Associated properties
	3.1.12.1.3 Declaration
	3.1.12.1.4 Parameters
	3.1.12.1.5 Return value
	3.1.12.1.6 Originator
	3.1.12.1.7 Exceptions
	3.1.12.1.8 Behavior requirements

	3.1.13 Transceiver::Notifications::Events
	3.1.13.1 notifyEvent Operation
	3.1.13.1.1 Overview
	3.1.13.1.2 Associated properties
	3.1.13.1.3 Declaration
	3.1.13.1.4 Parameters
	3.1.13.1.5 Return value
	3.1.13.1.6 Originator
	3.1.13.1.7 Exception
	3.1.13.1.8 Behavior requirements

	3.1.14 Transceiver::Notifications::Errors
	3.1.14.1 notifyError Operation
	3.1.14.1.1 Overview
	3.1.14.1.2 Associated properties
	3.1.14.1.3 Declaration
	3.1.14.1.4 Parameters
	3.1.14.1.5 Return value
	3.1.14.1.6 Originator
	3.1.14.1.7 Exceptions
	3.1.14.1.8 Behavior requirements

	3.1.15 Transceiver::GainControl::GainChanges
	3.1.15.1 indicateGain Operation
	3.1.15.1.1 Overview
	3.1.15.1.2 Associated properties
	3.1.15.1.3 Declaration
	3.1.15.1.4 Parameters
	3.1.15.1.5 Return value
	3.1.15.1.6 Originator
	3.1.15.1.7 Exceptions
	3.1.15.1.8 Behavior requirements

	3.1.16 Transceiver::GainControl::GainLocking
	3.1.16.1 lockGain Operation
	3.1.16.1.1 Overview
	3.1.16.1.2 Associated properties
	3.1.16.1.3 Declaration
	3.1.16.1.4 Parameters
	3.1.16.1.5 Returned value
	3.1.16.1.6 Originator
	3.1.16.1.7 Exceptions
	3.1.16.1.8 Behavior requirements

	3.1.16.2 unlockGain Operation
	3.1.16.2.1 Overview
	3.1.16.2.2 Associated properties
	3.1.16.2.3 Declaration
	3.1.16.2.4 Parameters
	3.1.16.2.5 Returned value
	3.1.16.2.6 Originator
	3.1.16.2.7 Exceptions
	3.1.16.2.8 Behavior requirements

	3.1.17 Transceiver::TransceiverTime::TimeAccess
	3.1.17.1 getCurrentTime Operation
	3.1.17.1.1 Overview
	3.1.17.1.2 Associated properties
	3.1.17.1.3 Declaration
	3.1.17.1.4 Parameters
	3.1.17.1.5 Return value
	3.1.17.1.6 Originator
	3.1.17.1.7 Exceptions
	3.1.17.1.8 Behavior requirements

	3.1.17.2 getLastStartTime Operation
	3.1.17.2.1 Overview
	3.1.17.2.2 Declaration
	3.1.17.2.3 Parameters
	3.1.17.2.4 Return value
	3.1.17.2.5 Originator
	3.1.17.2.6 Exceptions
	3.1.17.2.7 Behavior requirements

	3.1.18 Transceiver::Strobing::AppplicationStrobe
	3.1.18.1 triggerStrobe Operation
	3.1.18.1.1 Overview
	3.1.18.1.2 Associated properties
	3.1.18.1.3 Declaration
	3.1.18.1.4 Parameters
	3.1.18.1.5 Returned value
	3.1.18.1.6 Originator
	3.1.18.1.7 Exceptions
	3.1.18.1.8 Behavior requirements

	3.2 Exceptions
	3.2.1 Specification
	3.2.2 Associated properties
	3.2.3 Behavior requirements

	3.3 Attributes
	3.3.1 Channels attributes
	3.3.1.1 burstCount
	3.3.1.2 applicableRxPacketsLength

	3.3.2 Processing attributes
	3.3.2.1 applicableTuningPreset
	3.3.2.2 applicableCarrierFreq
	3.3.2.3 applicableGain
	3.3.2.4 applicableLength
	3.3.2.5 sampleCount

	3.4 Types
	3.4.1 Base assumptions
	3.4.2 BasebandPacket
	3.4.3 BlockLength
	3.4.4 BasebandSample
	3.4.5 BurstNumber
	3.4.6 CarrierFreq
	3.4.7 Delay
	3.4.8 Error
	3.4.9 Event
	3.4.10 Gain
	3.4.11 IQ
	3.4.12 MetaData
	3.4.13 PacketLength
	3.4.14 SampleNumber
	3.4.15 StrobeSource
	3.4.16 TimeSpec
	3.4.17 TuningPreset

	4 Properties
	4.1 Introduction
	4.1.1 Properties
	4.1.2 Properties naming
	4.1.3 Portability engineering support
	4.1.4 Profiles

	4.2 Structure
	4.3 Behavior
	4.4 Notifications
	4.5 Interface declaration
	4.6 Initialization
	4.7 Parameters validity
	4.8 Rapidity
	4.9 Storage
	4.10 Levels
	4.11 Channelization
	4.12 Temporal accuracy
	4.13 Invocation lead time
	4.14 Invocation delay
	4.15 Worst-case execution time (WCET)

	5 References
	5.1 Referenced documents

	END OF THE DOCUMENT

