
Copyright © 2022 The Software Defined Radio Forum Inc – All Rights Reserved

WInnForum Facilities PSMs Mapping Rules

Document WINNF-TR-2008

Version V1.0.1

18 January 2022

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc Page i
All Rights Reserved

TERMS, CONDITIONS & NOTICES

This document has been prepared by the Software Defined Systems (SDS) Harmonized Timing
Service Task Group to assist The Software Defined Radio Forum Inc. (or its successors or assigns,
hereafter “the Forum”). It may be amended or withdrawn at a later time and it is not binding on
any member of the Forum or of the Harmonized Timing Service Task Group.

Contributors to this document that have submitted copyrighted materials (the Submission) to the
Forum for use in this document retain copyright ownership of their original work, while at the
same time granting the Forum a non-exclusive, irrevocable, worldwide, perpetual, royalty-free
license under the Submitter’s copyrights in the Submission to reproduce, distribute, publish,
display, perform, and create derivative works of the Submission based on that original work for
the purpose of developing this document under the Forum's own copyright.

Permission is granted to the Forum’s participants to copy any portion of this document for
legitimate purposes of the Forum. Copying for monetary gain or for other non-Forum related
purposes is prohibited.

THIS DOCUMENT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER,
AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY
DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT
THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR ANY OF ITS
MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY
IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE
WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS
DOCUMENT.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the specification set forth in this document, and to provide
supporting documentation.

This document was developed following the Forum's policy on restricted or controlled information
(Policy 009) to ensure that that the document can be shared openly with other member
organizations around the world. Additional Information on this policy can be found here:
http://www.wirelessinnovation.org/page/Policies_and_Procedures

Although this document contains no restricted or controlled information, the specific
implementation of concepts contain herein may be controlled under the laws of the country of
origin for that implementation. Readers are encouraged, therefore, to consult with a cognizant
authority prior to any further development.

Wireless Innovation Forum ™ and SDR Forum ™ are trademarks of the Software Defined Radio
Forum Inc.

http://www.wirelessinnovation.org/page/Policies_and_Procedures

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc Page ii
All Rights Reserved

Table of Contents
TERMS, CONDITIONS & NOTICES .. i
Table of Contents .. ii
List of Figures ..v
Contributors ... vi
WInnForum Facilities PSMs Mapping Rules ..1
1 Introduction ...1

1.1 Document purpose ...1
1.2 Reference architectural pattern ..1
1.3 Reference definitions ...2
1.4 Conventions ...2

1.4.1 Case conventions ...2
1.4.2 Functional support capability identification ..2

1.5 Conformance ..3
1.5.1 Radio platform items..3
1.5.2 Radio application items..3

2 Native C++ ..4
2.1 General assumptions ..4

2.1.1 Specified interfaces ..4
2.1.2 Architecture assumptions ...4

2.2 Conformance ..5
2.2.1 Radio platform items..5
2.2.2 Radio application items..5

2.3 PIM API mapping ..5
2.3.1 Root namespace ...5
2.3.2 Modules..5
2.3.3 Types ..6
2.3.4 Interface declaration properties..6
2.3.5 API types ..7
2.3.6 Exceptions ..7
2.3.7 Services interfaces ...7
2.3.8 Primitives ...7

2.4 Specialization of PIM unspecified concepts ..7
2.4.1 Access capabilities ...7
2.4.2 Entry in CONFIGURED state ...8

2.5 Referenced PIM version ..8
2.6 Facade class ...8

2.6.1 activeServicesInitialized method ...9
2.6.2 activeServicesReleased method ...10
2.6.3 Services access principles ..11
2.6.4 Explicit services access ..12
2.6.5 Generic services access ..15

2.7 Header files ..19
2.7.1 Code formatting style ...19
2.7.2 Reference configuration file for code formatting ..20

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc Page iii
All Rights Reserved

3 SCA ...23
3.1 General assumptions ..23

3.1.1 Specified interfaces ..23
3.1.2 Architecture assumptions ...23

3.2 Conformance ..24
3.2.1 Radio platform items..24
3.2.2 Radio application items..24

3.3 PIM API mapping ..24
3.3.1 Root namespace ...24
3.3.2 Modules..24
3.3.3 Types ..25
3.3.4 Interface declaration properties..25
3.3.5 API types ..25
3.3.6 Exceptions ..25
3.3.7 Services interfaces ...25
3.3.8 Services primitives ...25

3.4 PIM attributes mapping..26
3.4.1 Mapping approach ...26
3.4.2 Types ..26

3.5 SCA PSM management interfaces ...26
3.5.1 SCA management façade ...27
3.5.2 SCA functional ports..27
3.5.3 SCA 2.2.2 management interfaces ...27
3.5.4 SCA 4.1 management interfaces ..29
3.5.5 PSM specific behaviors..31

3.6 Specialization of PIM unspecified concepts ..31
3.6.1 Access capabilities ...31
3.6.2 CONFIGURED state ...31

3.7 SCA functional ports ..31
3.7.1 Service-wise assignment ..32
3.7.2 Services group-wise assignment ..32
3.7.3 Ports implementation ...32
3.7.4 Assignment mismatch ..32

3.8 SCA PSM properties ..33
3.8.1 Versions properties ..33

3.9 IDL files ...33
3.9.1 Service interface declarations ..33
3.9.2 Types declarations ...33
3.9.3 Files naming ...34

4 FPGA ..35
4.1 General assumptions ..35
4.2 Conformance ..36

4.2.1 Radio platform items..36
4.2.2 Radio application items..36

4.3 PIM API mapping ..36
4.3.1 Interface declaration properties..36

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc Page iv
All Rights Reserved

4.3.2 Modules..36
4.3.3 Types ..36
4.3.4 API types ..37
4.3.5 Exceptions ..37
4.3.6 Services interfaces ...37
4.3.7 Services primitives ...37

4.4 Specialization of PIM unspecified concepts ..41
4.4.1 Access capabilities ...41

4.5 Referenced PIM version ..41
4.6 VHDL packages ...41

5 References ...42
5.1 Referenced documents ...42

END OF THE DOCUMENT ...43

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc Page v
All Rights Reserved

List of Figures
Figure 1 Reference architectural pattern .. 1
Figure 2 Positioning of native C++ functional interfaces ... 4
Figure 3 Class diagram of a native C++ façade .. 9
Figure 4 Class diagram of explicit services access .. 12
Figure 5 Class diagram of generic services access .. 16
Figure 6 Architecture concepts for SCA PSMs ... 24
Figure 7 SCA 2.2.2 PSM management interfaces .. 28
Figure 8 SCA 4.1 PSM management interfaces ... 30
Figure 9 Positioning of FPGA functional interfaces ... 35
Figure 10 Typical RST signal synchronisms ... 38
Figure 11 Exceptions notification mechanism ... 40

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc Page vi
All Rights Reserved

Contributors
The following individuals and their organization of affiliation are credited as Contributors to
development of the specification, for having been involved in the work group that developed the
draft then approved by WInnForum member organizations:
 Marc Adrat, FKIE,
 Guillaume Delbarre, DGA,
 David Hagood, Cynosure,
 Olivier Kirsch, KEREVAL,
 Frederic Le Roy, ENSTA Bretagne,
 Francois Levesque, NordiaSoft,
 Chuck Linn, L3Harris,
 David Murotake, HiKE,
 Eric Nicollet, Thales Communications & Security,
 Kevin Richardson, MITRE,
 Sarvpreet Singh, Viavi Solutions.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 1
All Rights Reserved

WInnForum Facilities PSMs Mapping Rules
1 Introduction

1.1 Document purpose

This document specifies the mapping rules for development of PSM specifications derived from
PIM specifications of facilities of the Wireless Innovation Forum, based on the general approach
described by Principles for WInnForum Facility Standards [Ref1].
In light of the principles established [Ref1] the document addresses the following access
paradigms:
 Native C++ (see section 2),
 SCA (see section 3),
 FPGA (see section 4).

1.2 Reference architectural pattern

The reference architectural pattern introduced by section 3.1 of [Ref1] is applied for all access
paradigms, and can be illustrated as follows:

Processing node

Radio application

Application
component

Service interfaces of the API
Specified for an access paradigm supported by the processing node

Functional support
capability

Façade

Figure 1 Reference architectural pattern

A radio application is possibly composed of a number of application components distributed
across a composition of processing nodes.
The radio platform implements a number functional support capabilities, accessible on a number
of processing nodes through software interfaces presented by façades.
The façades are the software parts of a functional support capability implementation that present
a number of service interfaces for employment by application components.
The set of service interfaces supported by a façade belongs to the API specified by the PIM
specification of the considered functional support capability, and is derived by the PSM
specification according to the applied access paradigm.
Nothing prevents a given processing node to support more than one access paradigm.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 2
All Rights Reserved

1.3 Reference definitions

The following definitions from Principles for WInnForum Facility Standards [Ref1] are applied:

Topic Used definitions
Base concepts radio application, application component, radio platform, functional

support capability
Architecture concepts façade, access paradigm, processing node
WInnForum facilities facility, PIM specification, PSM specification
Services service, service interface, provide service, use service, services group
Primitives primitive, type, exception
Attributes attribute, property

Table 1 Definitions from Principles for WInnForum Facility Standards

1.4 Conventions

1.4.1 Case conventions

The following case conventions are applicable:
 Pascal case: ThisIsMyExample, ScaIsAnAcronym,
 Snake case: this_is_my_example, sca_is_an_acronym,
 Screaming snake case: THIS_IS_MY_EXAMPLE, SCA_IS_AN_ACRONYM,
 Camel case: thisIsMyExample, scaIsAnAcronym.

1.4.2 Functional support capability identification

A functional support capability can be identified using a tag (typically an acronym or an
abbreviation of the full name of the functional support capability).
In order for functional support capabilities tags to have at least three characters, the letter “F”,
standing for “facility”, may be added. This is for instance the case for “time service”, which tag is
“TSF”.
The possible formal identifiers for functional support capabilities are specified as follows:
 <FSC_TAG>: screaming snake case of the functional support capability tag (e.g., used for

prefixes identifiers),
 <FscTag>: Pascal case of the functional support capability tag (e.g., used for version

identification properties),
 <fsc_tag>: Snake case of the functional support capability tag (e.g., used for VHDL

constructs of the FGPA PSM),
 <FscFull>: Pascal case of the functional support capability name (e.g., used for main

namespaces).

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 3
All Rights Reserved

The following table gives examples of application of the previous rule:

Functional support
capability

Possible formal identifiers

<FSC_TAG> <FscTag> <fsc_tag> <FscFull>

Time service TSF Tsf tsf TimeService

Transceiver XCVR Xcvr xcvr Transceiver

Table 2 Examples of functional support capability formal identifiers

1.5 Conformance

1.5.1 Radio platform items

A façade is conformant with a PSM specification if it implements the service interfaces and
complies with any PSM-specific additional requirements.

1.5.2 Radio application items

An application component is conformant with the PSM specification if it can use façades
conformant with the PSM specification, without using any non-standard service interface for the
functional support capability.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 4
All Rights Reserved

2 Native C++
The native C++ access paradigm is defined as an access paradigm based on direct native C++
connection between application components and façades.
It is based on two C++ versions: C++ 11 (see [Ref2]) and C++ 2003 (see [Ref3]).
A native C++ PSM specification is defined as a standard specifying, according to the native C++
access paradigm, interfaces between instances of radio applications and instances of the addressed
functional support capability.

2.1 General assumptions

2.1.1 Specified interfaces

The C++ interfaces specified by a native C++ PSM specification are native C++ functional
interfaces.
The native C++ functional interfaces are defined as C++ interfaces derived from the service
interfaces of a PIM specification.

2.1.2 Architecture assumptions

A native C++ node is defined as a processing node supporting the Native C++ access paradigm.
A native C++ façade is defined as a façade of a functional support capability instance that runs
within a native C++ node.
A native C++ instance is defined as a functional support capability instance with at least one of
its façades being a native C++ façade.
A native C++ application component is defined as a module of a radio application implemented
in a native C++ node that employs at least one native C++ façade.
The following figure illustrates the positioning of native C++ functional interfaces:

Native C++ node

Radio application

Native C++
application
component

Native C++ functional
interfaces

Functional support
capability

Native C++
façade

Figure 2 Positioning of native C++ functional interfaces

A native C++ application component can:
 Be a component of the radio application running in the same native C++ node,
 A proxy of a component of the radio application running in a remote processing node.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 5
All Rights Reserved

In the proxy case, the remote component complies with a PSM specification that may be:
 The native C++ PSM specification, if the remote processing node is another native C++

node,
 Another PSM specification, if the remote processing node is not a native C++ node.

The proxy uses a connectivity mechanism between the native C++ node and the remote processing
node that can typically be standard compliant (e.g. MHAL Communication Service, MOCB,
CORBA), or be a proprietary solution.

2.2 Conformance

2.2.1 Radio platform items

A native C++ façade is conformant with the native C++ PSM specification of a functional
support capability if it provides an implementation of the Facade class and its related service
interfaces.

2.2.2 Radio application items

A native C++ application component is conformant with the native C++ PSM specification if it
can use native C++ façades conformant with the native C++ PSM specification, without using
any non-standard service interface for the functional support capability.

2.3 PIM API mapping

The mapping generally complies, for C++11 [Ref2] or later, and for C++03 [Ref3] when
applicable, with the IDL to C++11 language mapping standardized by the OMG [Ref4].
Exceptions are identified and justified, typically for implementation efficiency or specification
simplicity.
For C++03 features not covered by [Ref4] specific mapping decisions have been taken.

2.3.1 Root namespace

The root namespace for the functional support capability of interest is specified as
WInnF_Cpp::<FscFull>.

The WInnF_Cpp:: namespace is common to all native C++ PSMs root namespaces.

Example: WInnF_Cpp::TimeService.

2.3.2 Modules

The services groups modules specified by PIM specifications map to C++ namespaces defined in
WInnF_Cpp::<FscFull> namespace, keeping the modules names.

Example: WInnF_Cpp::TimeService::SystemTimeAccess.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 6
All Rights Reserved

2.3.3 Types

This section focuses on the Ultra-Lightweight (ULw) profile specified by IDL Profiles for
Platform-Independent Modeling of SDR Applications [Ref5] extended with the long long and
unsigned long long types.

The corresponding IDL keywords for Basic Types map to C++ types as follows.
The boolean type maps to the C++ native type bool.

The boolean constants TRUE and FALSE map to the C++ native bool constants true and
false.

Each other basic type maps to the corresponding type of <cstdint> (stdint.h):

IDL Basic Type C++ type of <cstdint>
(stdint.h)

octet uint8_t
short int16_t

unsigned short uint16_t

long int32_t

unsigned long uint32_t

long long int64_t

unsigned long long uint64_t

Table 3 Basic types mapping to <cstdint> types

The IDL keywords for Constructed Types map to C++ concepts as follows:
 typedef maps to the C++ typedef,
 struct maps to the C++ struct,
 enum maps to:

o For C++03, the C++ enum,
o For C++11, the C++ enum class.

The IDL keyword sequence (a Template Type) maps to C++ concepts as follows:
 For C++03, classes defined according to the OMG C++ language mapping rules of

[Ref4] section 5.15,
 For C++11, the class std::vector.

2.3.4 Interface declaration properties

The interface declaration properties specified by PIM specifications map to C++ preprocessor
identifiers or integer constants, which names are the interface declaration properties names
prefixed by <FSC_TAG>_.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 7
All Rights Reserved

2.3.5 API types

The API types specified by PIM specifications map to C++ types, whose names are identical to
PIM names.

2.3.6 Exceptions

The exceptions specified by PIM specifications map to C++ exception classes inheriting from the
exceptions defined in <stdexcept>.

2.3.7 Services interfaces

The service interfaces specified by PIM specifications map to C++ interface classes, keeping the
service interfaces names of the PIM.

2.3.8 Primitives

The primitives specified by PIM specifications map to C++ member methods of the service
interfaces of the native C++ PSM, which has signatures created by applying the C++ language
mapping rules [Ref4] of the Object Management Group (OMG).

2.4 Specialization of PIM unspecified concepts

This section specifies, for Native C++, concepts of the PIM specification whose complete
specifications are deferred to PSM specifications.

2.4.1 Access capabilities

2.4.1.1 Functional support capability access
The Facade class (see section 2.6) provides functional support capability access.

One instance of the Facade class is implemented by each Native C++ processing node involved
in implementation of a functional support capability.
Those instances enable native C++ application components to access to the services available on
each individual native C++ façade.

2.4.1.2 Services access
The Facade class (see section 2.6) provides services access to the services implemented by a
native C++ façade.
The services access can be explicit or generic.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 8
All Rights Reserved

2.4.2 Entry in CONFIGURED state

The activeServicesInitialized() method of the Facade class (see section 2.5) enables a native C++
application component to indicate, before an instance of the functional support capability enters
in the CONFIGURED state, that all calls on the Facade for services access are completed.

2.5 Referenced PIM version

<FSC_TAG>_PIM_VERSION is specified as a preprocessing-defined value indicating the version
of the PIM specification from which a native C++ PSM specification is derived.
For versions specified in the 3-digits VX.Y.Z form, <FSC_TAG>_PIM_VERSION is the
hexadecimal value resulting from the concatenation of one octet for each of the X, Y, and Z digits.
Example values of <FSC_TAG>_PIM_VERSION are:

PIM specification version <FSC_TAG>_PIM_VERSION
value

V1.0.0 0x010000

V2.0.0 0x020000

V3.4.10 0x03040A

Table 4 Examples of <FSC_TAG>_PIM_VERSION values

2.6 Facade class

The Facade class is specified as a class providing native C++ application components with
access to native C++ façades.
For functional support capabilities featuring the CONFIGURED state, the Facade class owns
activeServicesInitialized() and activeServicesReleased() methods.
The Facade class also owns at least one of the following interfaces for services access:
ExplicitServicesAccess (see section 2.6.4) or GenericServiceAccess (see section
2.6.5).
The preprocessing variables EXPLICIT_SERVICES_ACCESS and
GENERIC_SERVICES_ACCESS specify if explicit or generic services access is implemented.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 9
All Rights Reserved

The Facade class is represented by the following class diagram:

<<Virtual>> ServicesAccess

1..*

Facade Facade

•activeServicesInitialized()
•activeServicesReleased()

1..*
or

<<Virtual>> ServicesAccess

For functional support capabilities with no
CONFIGURED state (e.g. time service)

For functional support capabilities featuring the
CONFIGURED state (e.g. transceiver)

Figure 3 Class diagram of a native C++ façade

A native C++ node needs to implement one instance of Facade for each native C++ façade it
implements.
The lifecycle of the Facade instances is unspecified.

A native C++ node needs to provide the native C++ application components with visibility to the
available Facade instances. How such visibility is given is unspecified.

2.6.1 activeServicesInitialized method

2.6.1.1 Overview
activeServicesInitialized() commands the native C++ façade to proceed to the CONFIGURED state.

A precondition to call activeServicesInitialized() is that the native C++ application component
has access to the required services implemented by the native C++ façade.

2.6.1.2 Associated properties
Not applicable.

2.6.1.3 Declaration
The C++ primitive of the operation is specified as:

void activeServicesInitialized();

2.6.1.4 Parameters
None.

2.6.1.5 Returned value
None.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 10
All Rights Reserved

2.6.1.6 Originator
Native C++ application component.

2.6.1.7 Exceptions
The exceptions of the operation are specified by the following table:

Name Condition
UninitializedServiceException The native C++ application component did not

access to at least one service instantiated by the
native C++ façade.

AlreadyInConfiguredStateException The native C++ façade is already in CONFIGURED
state.

Table 5 activeServicesInitialized() exceptions

2.6.2 activeServicesReleased method

2.6.2.1 Overview
activeServicesReleased() commands the native C++ façade to exit from the CONFIGURED state.

A precondition to call activeServicesReleased() is that the native C++ application component will
no longer use the services implemented by the native C++ façade.

2.6.2.2 Associated properties
Not applicable.

2.6.2.3 Declaration
The C++ primitive of the operation is specified as:

void activeServicesReleased();

2.6.2.4 Parameters
None.

2.6.2.5 Returned value
None.

2.6.2.6 Originator
Native C++ application component.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 11
All Rights Reserved

2.6.2.7 Exceptions
The exceptions of the operation are specified by the following table:

Name Condition
NotInConfiguredException The façade is not in CONFIGURED state.

Table 6 activeServicesReleased() exceptions

2.6.3 Services access principles

2.6.3.1 Provide services access
The native C++ application components access to the employed provide services thanks to a “get”
method returning a pointer to an instance of the service interface implemented by the native C++
façade.
The native C++ façade ensures that the returned pointer stays valid:
 If the functional support capability features the CONFIGURED state, until it has exited the

CONFIGURED state,
 Otherwise, until the functional support capability is not to be used any further.

The native C++ façade keeps exclusive ownership of the provide service referenced by the
returned pointer.
The native C++ application component is not responsible for releasing the provide service, and
may not attempt to modify or delete the pointer.

2.6.3.2 Use services access
The employed use services of native C++ façades access to native C++ application component
thanks to a “set” method taking as input a pointer to an instance of the service interface
implemented by the native C++ application component.
The native C++ application component ensures that the passed pointer stays valid:
 If the functional support capability features the CONFIGURED state, until it has exited the

CONFIGURED state,
 Otherwise, until the functional support capability is not to be used any further.

The native C++ application component keeps exclusive ownership of the use service referenced
by the passed pointer.
The native C++ application component is not responsible for releasing the use service, and may
not modify or delete the pointer until the use service is released.

2.6.3.3 Standard services access
Two standard solutions for services access: explicit and generic.
An implementation of a functional support capability needs to comply with at least one of those,
in order to discourage use of proprietary approaches that hampers interoperability.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 12
All Rights Reserved

2.6.4 Explicit services access

2.6.4.1 Overview
An explicit services access is specified as a solution for services access with primitives names
explicitly reflecting the names of available services.
It is suitable for constrained native C++ nodes where avoidance of program memory overheads is
critical or where dynamic cast is not available.
The solution corresponds to value Explicit of ActiveServicesAccess property.

The pattern for explicit services access is represented by the following class diagram:

<< interface >>
ExplicitServicesAccess

• get<ProvideService1>()
• get<ProvideService2>()
• …

• set<UseService1>()
• set<UseService2>()
• …

Figure 4 Class diagram of explicit services access

2.6.4.2 ExplicitServicesAccess interface
The ExplicitServicesAccess class owns one member method of the form
get<ProvideService>() per provide service and one member method of the form
set<UseService>() per use service.

2.6.4.2.1 get<ProvideService> methods

2.6.4.2.1.1 Overview
Each get<ProvideService>() returns a pointer referencing the instance of ProvideService
interface implemented by the native C++ façade.

2.6.4.2.1.2 Associated properties
Not applicable.

2.6.4.2.1.3 Declaration
The C++ signature of the methods are specified as:

<ProvideService1>* get<ProvideService1>();
<ProvideService2>* get<ProvideService2>();
…

2.6.4.2.1.4 Parameters
None.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 13
All Rights Reserved

2.6.4.2.1.5 Returned value
If an instance of a provide service is available, the method returns a <ProvideService>*
pointer to its service interface.
Otherwise, the function returns NULL.

2.6.4.2.1.6 Originator
Native C++ application component.

2.6.4.2.1.7 Exceptions
The exceptions of the methods are specified by the following table:

Name Condition
UnavailableServiceException The service is not available.

Table 7 get<ProvideService>() exceptions

2.6.4.2.1.8 Behavior requirements
A native C++ façade needs to, on a call to a get<ProvideService>():

 If no instance of the provide service is available:
o If exceptions are supported, throw UnavailableServiceException,
o If exceptions are not supported, set the return value to NULL,

 If the provide service is available, set the return value with a reference to its service
interface,

 Return the call,
 Keep the provide service active at least until the instance of the functional support

capability has exited the CONFIGURED state, if applicable.

2.6.4.2.2 set<UseService> method

2.6.4.2.2.1 Overview
set<UseService>() passes a pointer used by the façade to reference the instance of a UseService
implemented by the native C++ application component.

2.6.4.2.2.2 Associated properties
Not applicable.

2.6.4.2.2.3 Declaration
The C++ signature of the methods are specified as:

void set<UseService1>(<UseService1>* reference);
void set<UseService2>(<UseService2>* reference);
…

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 14
All Rights Reserved

2.6.4.2.2.4 Parameters
Name Type Description

reference <UseService>* Reference of the use service implemented by the native C++
application component.

Table 8 Specification of set<UseService>() parameters

2.6.4.2.2.5 Returned value
None.

2.6.4.2.2.6 Originator
Native C++ application component.

2.6.4.2.2.7 Exceptions
The exceptions of the methods are specified by the following table:

Name Condition
UnavailableServiceException The service is not available.
InvalidReferenceException The pointer type is not compatible with the service

interface class.

Table 9 set<UseService>() exceptions

2.6.4.2.2.8 Behavior requirements
A native C++ façade needs to, on a call to a set<UseService>():

 If no instance of the use service is available:
o If exceptions are supported, throw UnavailableServiceException.

 If the use service is available, use reference to set a pointer of the native C++ façade
to reference the service interface implemented by the native C++ application
component,

o Throw InvalidReferenceException exception in case of a type mismatch,
 Return the call,
 Use the referenced service interface until the instance of the functional support

capability implementation exits the CONFIGURED state, if applicable.

Note: this implies that the native C++ application component remains valid until the functional
support capability exits the CONFIGURED state, if applicable.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 15
All Rights Reserved

2.6.4.3 <FSC_TAG>_ExplicitServicesAccess.hpp
The content of <FSC_TAG>_ExplicitServicesAccess.hpp is specified as:

#ifndef <FSC_TAG>_EXPLICIT_SERVICES_ACCESS
#define <FSC_TAG>_EXPLICIT_SERVICES_ACCESS

namespace WInnF_Cpp
{
 namespace <FscFull>
 {
 namespace ActiveServicesAccess
 {
 // Access to specific active services
 class ExplicitServicesAccess
 {
 public:
 // Provide services instances
 // <services group 1>
 virtual <Interface 1> *get<Interface 1>()
 = 0;
 virtual <Interface 2> *get<Interface 2>()
 = 0;

 // <services group 2>
 virtual <Interface 3> *get<Interface 3>()
 = 0;

 // Use services
 // <services group 3>
 virtual void set<Interface 4>(
 <Interface 4> *reference) = 0;
 virtual void set<Interface 5>(
 <Interface 5> *reference) = 0;

 virtual ~ExplicitServicesAccess() NOEXCEPT {}
 };
 } // namespace ActiveServicesAccess
 } // namespace <FscFull>
} // namespace WInnF_Cpp
#endif // ifndef <FSC_TAG>_EXPLICIT_SERVICES_ACCESS

2.6.5 Generic services access

2.6.5.1 Overview
A generic services access is specified as a solution for services access with a generic syntax, which
facilitates insertion of additional services and takes advantage of C++ RTTI features such as
dynamic_cast<>.
It is suitable for high-end native C++ nodes where the processing resources overhead of RTTI
features are not an issue and where compilers fully support RTTI.
The solution corresponds to value Generic of ActiveServicesAccess property.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 16
All Rights Reserved

Generic services access is represented by the following class diagram:

<< interface >>
GenericServicesAccess

• getProvideService()
• setUseService()

Object

Figure 5 Class diagram of generic services access

2.6.5.2 Object class
Each service implemented by a native C++ façade needs to extend the Object class:

class Object {
 public:
 virtual ~Object() {}};

2.6.5.3 GenericServicesAccess interface
The GenericServicesAccess class enables native C++ application components to access to
all implemented services.
The GenericServicesAccess class contains getProvideService() and setUseService().

2.6.5.3.1 getProvideService Operation

2.6.5.3.1.1 Overview
getProvideService() returns to the native C++ application component a reference to a provide
service instantiated by the native C++ façade.

2.6.5.3.1.2 Associated Properties
None.

2.6.5.3.1.3 Declaration
The C++ signature of the operation is specified as:

Object *getProvideService(const char *serviceName);

2.6.5.4 Parameters
Name Type Description

serviceName const char * Name of the provide service to return a reference on.

Table 10 Specification of getProvideService() parameters

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 17
All Rights Reserved

2.6.5.4.1.1 Return value
Pointer to Object, to be dynamically cast (using dynamic_cast<>) to the appropriate interface.

2.6.5.4.1.2 Originator
Native C++ application component.

2.6.5.4.1.3 Exceptions
The exceptions of the primitive are specified by the following table:

Name Condition
UnavailableServiceException The service is not available.

Table 11 getProvideService() exceptions

2.6.5.4.1.4 Behavior requirements
A native C++ façade needs to, on a call to getProvideService():

 Search for serviceName among the service interfaces names of implemented provide
services,

 If no instance of provide service corresponding to serviceName is available:
o If exceptions are supported, throw UnavailableServiceException,
o If exceptions are not supported, set the return value to NULL,

 If a provide service corresponding to serviceName is available, set the return value with
a reference to its service interface,

 Return the call,
 Keep the provide service active at least until the instance of the functional support

capability has exited the CONFIGURED state, if applicable.

2.6.5.4.2 setUseService Operation

2.6.5.4.2.1 Overview
setUseService() specifies to the native C++ façade a valid reference to a use service implemented
by the native C++ application component.

2.6.5.4.2.2 Associated Properties
None.

2.6.5.4.2.3 Declaration
The C++ signature of the primitive is specified as:

void setUseService(const char *serviceName, Object *useService);

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 18
All Rights Reserved

2.6.5.4.2.4 Parameters
Name Type Description

serviceName const char * Name of the use service to which a reference is specified.
useService Object * Object reference to the native C++ application component

implemented the specified use service.

Table 12 Specification of setUseService() parameters

2.6.5.4.2.5 Return value
None.

2.6.5.4.2.6 Originator
Native C++ application component.

2.6.5.4.2.7 Exceptions
The exceptions of the primitive are specified by the following table:

Name Condition
UnavailableServiceException The service is not available.
InvalidReferenceException The pointer / reference type is not compatible with

the service class.
Table 13 setUseService() exceptions

2.6.5.4.2.8 Behavior requirements
A native C++ façade needs to, on a call to setUseService():

 Search for serviceName among the service interfaces names of implemented use
services,

 If no instance of use service corresponding to serviceName is available:
o If exceptions are supported, throw UnavailableServiceException.

 If a use service corresponding to serviceName is available, use useService to make a
dynamic cast (using dynamic_cast<>) to reference the service interface implemented
by the native C++ application component,

o Throw InvalidReferenceException exception in case of types mismatch,
 Return the call,
 Use the referenced service interface until the instance of the functional support

capability implementation exits the CONFIGURED state, if applicable.

Note: this implies that the native C++ application component remains valid until the functional
support capability exits the CONFIGURED state, if applicable.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 19
All Rights Reserved

2.6.5.5 <FSC_TAG>_GenericServicesAccess.hpp
The <FSC_TAG>_GenericServicesAccess.hpp file shall be used with no user adaptation.

The content of <FSC_TAG>_GenericServicesAccess.hpp is specified as:
#ifndef <FSC_TAG>_GENERIC_SERVICES_ACCESS
#define <FSC_TAG>_GENERIC_SERVICES_ACCESS

#include "<FSC_TAG>_Types.hpp"

namespace WInnF_Cpp
{
 namespace <FscFull>
 {
 namespace ActiveServicesAccess
 {
 class Object
 {
 public:
 virtual ~Object() NOEXCEPT {}
 };

 class GenericServicesAccess
 {
 public:
 // Access to active provide services
 virtual Object *getProvideService(
 const char *serviceName) = 0;

 // Access to active use services
 virtual void setUseService(
 const char *serviceName,
 Object *useService) = 0;

 virtual ~GenericServicesAccess() NOEXCEPT {}
 };
 } // namespace ActiveServicesAccess
 } // namespace <FscFull>
} // namespace WInnF_Cpp
#endif // ifndef <FSC_TAG>_GENERIC_SERVICES_ACCESS

2.7 Header files

2.7.1 Code formatting style

The code formatting convention used for native C++ header files (*.hpp) comply with Allman
style formatting [Ref6], complemented with C++ specific additions.
The following code snippet gives an example of classes declarations using Allman style:

class SomeClass
{
 public:
 virtual ~SomeClass(){};
 virtual void MemberOne() = 0;
};

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 20
All Rights Reserved

2.7.2 Reference configuration file for code formatting

In order to avoid detailed specification of the Allman style convention, the clang-format tool
(http://clang.llvm.org/) is used.
Usage of the following configuration file, created with a couple of edits on top of the default
configuration file provided by the tool for Allman style, is recommended:

Language: Cpp
AccessModifierOffset: -2
AlignAfterOpenBracket: Align
AlignConsecutiveMacros: true
AlignConsecutiveAssignments: true
AlignConsecutiveBitFields: true
AlignConsecutiveDeclarations: true
AlignEscapedNewlines: Right
AlignOperands: Align
AlignTrailingComments: true
AllowAllArgumentsOnNextLine: true
AllowAllConstructorInitializersOnNextLine: false
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortEnumsOnASingleLine: true
AllowShortBlocksOnASingleLine: Never
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: Empty
AllowShortLambdasOnASingleLine: All
AllowShortIfStatementsOnASingleLine: Never
AllowShortLoopsOnASingleLine: false
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: false
AlwaysBreakTemplateDeclarations: MultiLine
BinPackArguments: false
BinPackParameters: false
BreakBeforeBinaryOperators: None
BreakBeforeBraces: Allman
BreakBeforeInheritanceComma: false
BreakInheritanceList: BeforeColon
BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
BreakConstructorInitializers: BeforeColon
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: true
ColumnLimit: 80
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: false
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: true
DeriveLineEnding: true
DerivePointerAlignment: false
DisableFormat: false
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
ForEachMacros:
 - foreach
 - Q_FOREACH
 - BOOST_FOREACH
IncludeBlocks: Preserve

http://clang.llvm.org/

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 21
All Rights Reserved

IncludeCategories:
 - Regex: '^"(llvm|llvm-c|clang|clang-c)/'
 Priority: 2
 SortPriority: 0
 - Regex: '^(<|"(gtest|gmock|isl|json)/)'
 Priority: 3
 SortPriority: 0
 - Regex: '.*'
 Priority: 1
 SortPriority: 0
IncludeIsMainRegex: '(Test)?$'
IncludeIsMainSourceRegex: ''
IndentCaseLabels: false
IndentCaseBlocks: true
IndentGotoLabels: true
IndentPPDirectives: BeforeHash
IndentExternBlock: AfterExternBlock
IndentWidth: 3
IndentWrappedFunctionNames: false
InsertTrailingCommas: None
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: true
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: All
ObjCBinPackProtocolList: Auto
ObjCBlockIndentWidth: 2
ObjCBreakBeforeNestedBlockParam: true
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: true
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 19
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyBreakTemplateDeclaration: 10
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 1000
PointerAlignment: Right
ReflowComments: true
SortIncludes: true
SortUsingDeclarations: true
SpaceAfterCStyleCast: false
SpaceAfterLogicalNot: false
SpaceAfterTemplateKeyword: false
SpaceBeforeAssignmentOperators: true
SpaceBeforeCpp11BracedList: false
SpaceBeforeCtorInitializerColon: true
SpaceBeforeInheritanceColon: true
SpaceBeforeParens: ControlStatements
SpaceBeforeRangeBasedForLoopColon: true
SpaceInEmptyBlock: false
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 1
SpacesInAngles: false
SpacesInConditionalStatement: false
SpacesInContainerLiterals: true
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
SpaceBeforeSquareBrackets: false

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 22
All Rights Reserved

Standard: Latest
StatementMacros:
 - Q_UNUSED
 - QT_REQUIRE_VERSION
TabWidth: 8
UseCRLF: false
UseTab: Never
WhitespaceSensitiveMacros:
 - STRINGIZE
 - PP_STRINGIZE
 - BOOST_PP_STRINGIZE
...

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 23
All Rights Reserved

3 SCA
The SCA access paradigm is defined as an access paradigm based on SCA connections between
application components and façades.
It is based on two SCA versions: SCA 2.2.2 (see [Ref7]) and SCA 4.1 (see [Ref8]).
An SCA PSM specification is defined as a standard specifying, according to the SCA access
paradigm, interfaces between instances of radio applications and instances of the addressed
functional support capability.

3.1 General assumptions

3.1.1 Specified interfaces

The SCA interfaces specified by an SCA PSM specification are functional interfaces and
management interfaces.
The SCA PSM functional interfaces are defined as SCA interfaces used between radio
applications and instances of functional support capabilities.
The SCA PSM functional interfaces are mapped from the PIM specification according to the rules
specified in section 3.3.
The SCA PSM management interfaces are defined as the subset of the SCA standard interfaces
used for configuration and management of SCA instances of a functional support capability.
The SCA PSM management interfaces are selected from the standard SCA 2.2.2 or SCA 4.1
interfaces as specified in section 3.5.

3.1.2 Architecture assumptions

An SCA node is defined as a processing node that supports the SCA access paradigm.
An SCA façade is defined as a façade of a functional support capability instance that runs within
an SCA node and conforms to the associated SCA PSM specification.
An SCA façade is composed of one or several SCA components.
An SCA instance is defined as functional support capability instance with at least one of its
façades being an SCA façade.
An SCA application component is defined as an SCA application component running in an SCA
node.
An SCA application is defined as a radio application with at least one of its components being an
SCA application component.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 24
All Rights Reserved

The following figure illustrates the previous concepts:

SCA node

SCA application

Functional interfaces
(mapped from the PIM
specification)

SCA instance

SCA PSM interfaces

Management interfaces
(derived from the SCA)

SCA
application
component

SCA
façade

Figure 6 Architecture concepts for SCA PSMs

3.2 Conformance

3.2.1 Radio platform items

An SCA façade is conformant with the SCA PSM specification of a functional support capability
if it provides an SCA implementation of service interfaces.

3.2.2 Radio application items

An SCA application component is conformant with the SCA PSM specification of a functional
support capability if it can use SCA façades conformant with the SCA PSM specification, without
using any non-standard service interface for the functional support capability.

3.3 PIM API mapping

3.3.1 Root namespace

The SCA PSM root namespace for a functional support capability is specified as
WInnF_Sca::<FscFull>.

The WInnF_Sca:: namespace is common to all SCA PSMs root namespaces.

Example: WInnF_Sca::TimeService.

3.3.2 Modules

The services groups modules specified by a PIM specification map to SCA namespaces defined
in WInnF_Sca::<FscFull>, keeping the modules names.

Example: WInnF_Sca::TimeService::SystemTimeAccess.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 25
All Rights Reserved

3.3.3 Types

The IDL keywords for Basic Types, Constructed Types and Template Types used by the PIM
specification map to same keywords in SCA PSM specifications.

3.3.4 Interface declaration properties

Using the concept of interface declaration properties, a PIM specification can specify, if needed,
options in the signature of primitives of service interfaces.
Support of such options in IDL implies to specify different IDL files, distinguishing in the file
name the selected options, in order to avoid, for interoperability across ORBs, multiple definitions
in the same IDL interface.
It is therefore desirable that SCA PSM specifications limit the number of service interfaces options
to the greatest extent, while keeping the options that enable significant savings in execution
resources usage.

3.3.5 API types

The API types specified by a PIM specification map to same IDL types in the derived SCA PSM
specification.

3.3.6 Exceptions

The exceptions specified by a PIM specification map to same IDL exceptions in the derived SCA
PSM specification.
EXCEPTIONS_SUPPORT is always equal to true, meaning the exceptions mechanism of IDL is
always used.
The IDL of an SCA PSM specification declares all the possibly supported exceptions, those mapped
from the PIM specification and those specific to the SCA PSM specification.
EXCEPTIONS is left for implementer usage as specified in the PIM specification.

3.3.7 Services interfaces

The service interfaces specified by a PIM specification map to same IDL service interfaces in the
derived SCA PSM specification.

3.3.8 Services primitives

The primitives specified by a PIM specification map to same IDL primitives in the derived SCA
PSM specification.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 26
All Rights Reserved

3.4 PIM attributes mapping

3.4.1 Mapping approach

An attribute specified by a PIM specification maps to an SCA Property specified by an SCA PSM
specification if a case for its implementation by an SCA instance is identified.
The PIM attributes of categories capabilities and properties map to SCA Properties in accordance
with the types mapping rules specified in section 3.4.2.
Since PIM attributes of type variables are only accessed via access primitives, they don’t need to
be mapped to PSM level SCA Properties.

3.4.2 Types

3.4.2.1 Simple types
PIM attributes with a simple type map to SCA Properties of the PSM specification as follows:

 Name: same as the mapped PIM attribute,
 Type: SCA type corresponding to the PIM attribute type.

3.4.2.2 Enumerated types
PIM attributes with an enumerated type map to SCA Properties of the PSM specification as
follows:

 Name: same as the mapped PIM attribute,
 Type: SCA long type,
 Reserved values: specified for the possible enumeration values.

3.4.2.3 Structure types
PIM attributes with a structure type map to one simple SCA Property of the PSM specification for
each field of the structure.

3.4.2.4 Constants
For constant values of signed types, the signed number representation is used in IDL declarations
instead of the hexadecimal representation (e.g. -12 instead of 0xFFFFFFF4), in order to be
supported by more IDL compilers.
For constant values of structured types, elementary scalar constants are specified for each field, in
order to be supported by more IDL compilers.

3.5 SCA PSM management interfaces

The SCA PSM management interfaces enable control of:

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 27
All Rights Reserved

 The life cycle of an SCA instance,
 The transitions with the CONFIGURED state of the SCA instance, if applicable,
 The connection of SCA functional ports with implemented services.

SCA applications should avoid usage of SCA PSM management interfaces.
The SCA PSM management interfaces for SCA 2.2.2 and SCA 4.1 are different.
The property <FscTag>ScaVersion (see section 3.8.1.2) indicates the used SCA version.

3.5.1 SCA management façade

The SCA management façade of an SCA instance is defined as its unique SCA façade that supports
SCA PSM management interfaces.
The SCA management façade needs to at least provide the SCA PSM management interfaces
specified for the used version of SCA.
An SCA instance may have other SCA façades than its SCA management façade.
In such case, the SCA management façade hides away any implementation details related to the
other SCA components, and can be an SCA Aggregate Device.

3.5.2 SCA functional ports

An SCA functional port is defined as an SCA port of an SCA façade that implements one or several
service interfaces specified by the PIM specification.
A “provide” SCA functional port connects an SCA application component to a provide service of
an SCA façade.
A “use” SCA functional port connects a use service of an SCA façade to an SCA application
component.
The SCA PSM management interfaces enable SCA application components and SCA façades to be
connected to each other using SCA functional ports.

3.5.3 SCA 2.2.2 management interfaces

This section specifies normative content applicable in case SCA 2.2.2 is used.

3.5.3.1 Software interfaces
The SCA 2.2.2 PSM management interfaces are specified as the SCA 2.2.2 interface CF::Device
and the interfaces it inherits from (CF::LifeCycle, CF::PortSupplier, CF::PropertySet,
CF::TestableObject and CF::Resource).

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 28
All Rights Reserved

The following figure, extracted from [Ref7], identifies the SCA 2.2.2 PSM management interfaces
and their inheritance relationships:

<<interface>>
CF::Resource

identifier : string

start() : void
stop(): void

<<interface>>
CF::Device

…

allocateCapacity(Properties) : boolean
deallocateCapacity: void

<<interface>>
CF::LifeCycle

initialize() : void
releaseObject(): void

<<interface>>
CF::PortSupplier

getPort(string) : Object

<<interface>>
CF::PropertySet

query(Properties) : void
configure(Properties) : void

<<interface>>
CF::TestableObject

runTest(unsigned long: Properties) : void

Figure 7 SCA 2.2.2 PSM management interfaces

SCA 2.2.2 main specification [Ref7] specifies the SCA 2.2.2 PSM management interfaces in the
following sections:

 CF::LifeCycle: section 3.1.3.1.2,
 CF::PortSupplier: section 3.1.3.1.4,
 CF::PropertySet: section 3.1.3.1.5,
 CF::TestableObject: section 3.1.3.1.3,
 CF::Resource: section 3.1.3.1.6,
 CF::Device: section 3.1.3.3.1.

3.5.3.2 Behavior requirements
The specified behaviors are standard SCA 2.2.2 behaviors extended by PSM-specific behaviors.
A number of aspects are explicitly left unspecified.

3.5.3.2.1 LifeCycle
An SCA management façade needs to implement the initialize() and releaseObject() operations of
the SCA 2.2.2 CF::LifeCycle interface according to the standard behavior.

3.5.3.2.2 PortSupplier
An SCA management façade needs to implement the getPort() operation of the SCA 2.2.2
CF::PortSupplier interface according to its standard behavior.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 29
All Rights Reserved

An SCA management façade needs to implement the getPort() operation so that it can return the
SCA functional ports of all provide services.
All SCA management façades need to implement the connectPort() and disconnectPort()
operations of the SCA 2.2.2 CF::PortSupplier interface according to the standard behavior.

All SCA management façades need to implement the connectPort() and disconnectPort()
operations so that they can connect and disconnect the SCA functional ports of all use services.

3.5.3.2.3 PropertySet
An SCA management façade needs to implement the configure() and query() operations of the
SCA 2.2.2 CF::PropertySet interface according to the standard behavior.

The set of supported Configure properties is unspecified.

3.5.3.2.4 TestableObject
An SCA management façade needs to implement the runTest() operation of the SCA 2.2.2
CF::TestableObject interface according to the standard behavior.

The set of supported tests is unspecified.

3.5.3.2.5 Resource
An SCA management façade needs to implement the start() and stop() operations of the SCA 2.2.2
CF::Resource interface according to the standard behavior.

Section 3.5.5 specifies additional requirements applicable to start() and stop() implementations.
The value of the identifier attribute is unspecified.

3.5.3.2.6 Device
An SCA management façade needs to implement the allocateCapacity() and deallocateCapacity()
operations of the SCA 2.2.2 CF::Device interface according to the standard behavior.

The set of supported Capacity properties is unspecified.

3.5.4 SCA 4.1 management interfaces

This section specifies normative content applicable in case SCA 4.1 is used.

3.5.4.1 Software interfaces
The SCA 4.1 PSM management interfaces are specified as the SCA 4.1 interfaces
CF::LifeCycle, CF::PortAccessor and CF::ControllableInterface.

Usage of other SCA 4.1 standard interfaces is unspecified.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 30
All Rights Reserved

SCA 4.1 main specification [Ref8] specifies the SCA 4.1 PSM management interfaces in the
following sections:

 CF::LifeCycle: section 3.1.3.2.1.3,
 CF::PortAccessor: section 3.1.3.2.1.2,
 CF::ControllableInterface: section 3.1.3.2.1.6.

The following figure, extracted from [Ref8], identifies the SCA 4.1 PSM management interfaces:

<<interface>>
CF::ControllableInterface

started : boolean

start() : void
stop(): void

<<interface>>
CF::LifeCycle

initialize() : void
releaseObject() : void

<<interface>>
CF::PortAccessor

connectUsesPorts(Connections) : void
disconnectPorts(Disconnections) : void
getProvidesPorts(Connections) : void

DeviceComponent

Figure 8 SCA 4.1 PSM management interfaces

3.5.4.2 Behavior requirements
The specified behaviors are standard SCA 4.1 behaviors completed by PSM-specific behaviors.

3.5.4.2.1 LifeCycle
An SCA management façade needs to implement the initialize() and releaseObject() operations of
the SCA 4.1 CF::LifeCycle interface according to the standard behavior.

3.5.4.2.2 PortAccessor
An SCA management façade needs to implement the connectUsesPorts(), disconnectPorts() and
getProvidesPorts() operations of the SCA 4.1 CF::PortAccessor interface according to their
standard behavior.
An SCA management façade may implement getProvidesPorts() operation so that it can return the
SCA functional ports of all provide services.
An SCA management façade needs to implement the connectUsesPorts() and disconnectPorts()
operations so that they can connect and disconnect the SCA functional ports of all use services.

3.5.4.2.3 ControllableInterface
An SCA management façade needs to implement the start() and stop() operations of the SCA 4.1
CF::ControllableInterface interface according to the standard behavior.
Section 3.5.5 specify additional requirements applicable to start() and stop() implementations.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 31
All Rights Reserved

3.5.5 PSM specific behaviors

3.5.5.1 start()
start() indicates to an SCA instance that any external configuration (including any ports
connection) is completed prior to usage by a radio application.
The start() implementation needs to trigger an SCA instance to enter the CONFIGURED state of its
state machine, if applicable.
The start() implementation returns once the transition to CONFIGURED state is completed, if
applicable.

3.5.5.2 stop()
stop() indicates to an SCA instance that it is no longer used by a radio application.
The stop() implementation may trigger an SCA instance to exit from the CONFIGURED state, if
applicable.

3.6 Specialization of PIM unspecified concepts

This section specifies, for SCA, concepts of the PIM specification whose complete specifications
are deferred to PSM specifications.

3.6.1 Access capabilities

3.6.1.1 Functional support capability access
The SCA management façade of an SCA instance provides functional support capability access.

3.6.1.2 Services access
The SCA functional ports provides services access to the services implemented by an SCA
instance.

3.6.2 CONFIGURED state

The SCA start() and stop() operations of the SCA PSM management interfaces (see section 3.5.5)
enable SCA application components to trigger the transitions to and from the CONFIGURED state,
if applicable.

3.7 SCA functional ports

There are two possibilities to assign functional interfaces to SCA functional port.
The choice between those assignment possibilities is up to the implementer.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 32
All Rights Reserved

3.7.1 Service-wise assignment

A service-wise assignment is defined as the assignment approach where each service interface is
assigned to a dedicated SCA port.
Benefits of service-wise assignment are support for finer-grained optionality (exhaustive support
of all possible option) and ports of the model reflecting the used services.

3.7.2 Services group-wise assignment

A services group-wise assignment is defined as the assignment approach where all the service
interfaces of a services group are assigned to a dedicated SCA port.
In case a services group has optional services not supported by an implementation, a services
group-wise assignment would not present the un-implemented services.
Benefits of services group-wise assignment are easier use with fewer connections, possibly some
minor savings in code size and XML manual writing effort, and possibly some minor runtime
performance improvements, especially with SCA 2.2.2.

3.7.3 Ports implementation

The SCA functional ports need to support connections to all services of an SCA instance of a
functional support capability with the radio application.
The PSM specifications may only specify indicative names for SCA functional ports.
The SCA functional ports connections need to be specified by the Software Assembly Descriptor
(SAD) file (see [Ref7] and [Ref8]) of the radio application.
For services group-wise assignment, provide ports need to support multiple port connections to
enable usage by an object applying service-wise assignment.
In an SCA 4.1 dynamic uses port creation context, the implementer needs to be concerned about
the overhead for each created dynamic port.

3.7.4 Assignment mismatch

An assignment mismatch is a situation where a radio application and a radio platform do not
follow the same assignment approach.
Since connecting an SCA port with services group-wise assignment to an SCA port with service-
wise assignment is not possible, ports refactoring is needed. It is recommended to make the needed
refactoring on the radio application side.
Since connecting an SCA port with service-wise assignment to an SCA port with services group-
wise assignment is possible, mismatch situations can be handled by making multiple connections.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 33
All Rights Reserved

3.8 SCA PSM properties

An SCA PSM property is defined as an SCA property attached to an SCA instance of a functional
support capability.

3.8.1 Versions properties

3.8.1.1 Referenced PIM version
The <FscTag>PimVersion SCA PSM property is specified as an integer indicating the version
of the PIM specification of a functional support capability from which an SCA PSM specification
is derived.
The defined values for <FscTag>PimVersion are specified as:

PIM specification version Value
V1.0.0 0x010000

Table 14 <FscTag>PimVersion defined values

3.8.1.2 SCA versions
The <FscTag>ScaVersion SCA PSM property is specified as an integer indicating the used
SCA version.
The defined values for <FscTag>ScaVersion are specified as:

SCA version Value
2.2.2 0x020202

4.1 0x040100

Table 15 <FscTag>ScaVersion defined values

3.9 IDL files

3.9.1 Service interface declarations

Each service interface of the SCA PSM has one dedicated IDL file. This enables implementers to
adjust the size of the created binaries to the set of interfaces actually implemented by each façade.
The names of the specified IDL files are the concatenation of the IDL modules names with the
IDL interface name.

3.9.2 Types declarations

The types declarations required for the service interfaces are contained in dedicated IDL files
specified on a per services groups basis.
The names of the specified IDL files are the concatenation of the IDL modules names with Types
postfix.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 34
All Rights Reserved

3.9.3 Files naming

The IDL files are named using Pascal case, with a prefix Sca<FscTag> followed by
<FileDescription> name and the .idl extension.

Examples: ScaTsfTypes.idl and ScaTsfSpecificTimeHandling.idl.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 35
All Rights Reserved

4 FPGA

4.1 General assumptions

FPGA functional interfaces are defined as the FPGA interfaces derived from the service
interfaces of a PIM specification.
An FPGA PSM specification is defined as a specification that standardizes FPGA functional
interfaces between instances of radio applications and functional support capabilities.
An FPGA node is defined as an FPGA of a radio platform providing radio applications with
FPGA functional interfaces related to one or several functional support capabilities.
An FPGA façade is defined as a façade of a functional support capability instance that executes
within an FPGA node.
An FPGA applicative module is defined as a module of a radio application implemented in an
FPGA node that employs at least one FPGA façade.
The following figure illustrates the positioning of FPGA functional interfaces:

FPGA node

Radio application

FPGA
applicative

module

FPGA functional interfaces

Functional support
capability

FPGA
façade

Figure 9 Positioning of FPGA functional interfaces

The FPGA applicative module can:
 Be a component of the radio application running in the same FPGA node,
 A proxy of a component of the radio application running in a remote processing node.

In the proxy case, the remote component conforms with a PSM specification that may be:
 The FPGA PSM specification, if the remote processing node is another FPGA node,
 Another PSM specification, if the remote processing node is not an FPGA node.

The proxy uses a connectivity mechanism between the FPGA node and the remote processing
node that can typically be a standard (e.g. MHAL Communication Service, MOCB), an FPGA
extension of CORBA, or a proprietary solution.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 36
All Rights Reserved

4.2 Conformance

4.2.1 Radio platform items

An FPGA façade is conformant with the FPGA PSM specification of a functional support
capability if it provides an FPGA implementation of service interfaces.

4.2.2 Radio application items

An FPGA applicative module is conformant with the FPGA PSM specification of a functional
support capability if it can use FPGA façades conformant with the FPGA PSM specification,
without using any non-standard service interface for the functional support capability.

4.3 PIM API mapping

4.3.1 Interface declaration properties

The interface declaration properties specified by a PIM specification map to conditional
declarations depending on value of constants.

4.3.2 Modules

The root module and services groups modules of a PIM specification map to no concept.

4.3.3 Types

The IDL keywords for Basic Types used by a PIM specification map to the following concepts:
 boolean maps to 1-bit signal,
 short and unsigned short map to a 16-bit vector,
 long and unsigned long map to a 32-bit vector,
 unsigned long long map to a 64-bit vector.

The default representation is unsigned.
For signed types, the mention “signed” reminds that a signed representation is applied.
float maps to no standard PSM concept.

The IDL keywords for Constructed Types used by a PIM specification map to the following
concepts:

 typedef maps to types declarations,
 struct maps to structures declarations, when supported,
 enum maps to a vector which size is equal to the number of bits required to encode all

enumerated values.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 37
All Rights Reserved

The IDL keywords for Template Types listed by a PIM specification is sequence, which maps
to a set of RTL signals enabling transfer of a number of elements equal to the sequence length,

4.3.4 API types

Each API type specified by a PIM specification maps to a PSM API type.
For RTL, no formal identifier is used in column “Format”.
For VHDL, the name of a PSM API type is a snake-case identifier defined as follows:

 Snake-case transformation of the PIM API type name,
 Followed by postfix _type.

4.3.5 Exceptions

The exceptions specified by a PIM specification map to the exceptions RTL signals specified in
section 4.3.7.3.5.
Usage of exceptions RTL signals is not mandatory.

4.3.6 Services interfaces

The service interfaces of by a PIM specification map to no formalized concept.
When a service interface has several primitives, a note introduced by “To be implemented with
the other FPGA primitives (…)” indicates which other FPGA primitives are to be jointly
implemented.

4.3.7 Services primitives

An FPGA primitive is defined as the FPGA interface derived from a primitive specified by a PIM
specification.
An FPGA primitive is specified for each primitive of the PIM specification, as an RTL (Register-
Transfer Level) [Ref9] digital interface specified in two steps:

 Specification of the RTL signals,
 Specification of the associated chronogram.

The specification is independent from the programming language used (e.g. VHDL or Verilog).

4.3.7.1 RTL signals origin
The origin of an RTL signal is defined as the FPGA module controlling the signal.
The origin can either be an FPGA applicative module or an FPGA façade.
The caller is defined as the FPGA module making calls to an FPGA primitive.
The callee is defined as the FPGA module receiving calls made to an FPGA primitive.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 38
All Rights Reserved

For an FPGA primitive of a provide service, the caller is the FPGA applicative module and the
callee is the FPGA façade.
For an FPGA primitive of a use service, the caller is the FPGA façade and the callee is the FPGA
applicative module.

4.3.7.2 Primitive prefix
A primitive prefix is defined as the prefix used to name all the signals of the RTL signals set of an
FPGA primitive.
A primitive prefix concatenates:
 The <FSC_TAG>_ field, identifying the functional support capability of interest,
 The <instNum>_ field, optionally identifying instances of functional support capability

in case there are more than one (starting count from 1),
 The <PRIM_NAME>_ field, identifying the FPGA primitive using a screaming snake case

transcription of the primitive name in the PIM specification.

4.3.7.3 Base RTL signals

4.3.7.3.1 Structural RTL signals
The structural RTL signals are defined as the RTL signals conveying clock and reset attached to
all FPGA primitives.
The structural RTL signals are specified by the following table:

RTL signal name
<FSC_TAG>_<instNum>_<PRIM_NAME>_ +

Origin Format Specification

CLK FPGA
façade

1-bit
signal

Clock attached
to the FPGA
primitive.

RST FPGA
façade

1-bit
signal

Hardware reset
propagation to
the FPGA
primitive.

Table 16 Structural RTL signals

The synchronism of the RTL signal RST is unspecified.

The following figure illustrates two typical synchronisms for reset:

CLK

RST reset command depends on CLK

<FSC_TAG>_{<instNum>_}_{<PRIM_NAME>}_+…

RST reset command is independent from CLK

synchronous

asynchronous

Figure 10 Typical RST signal synchronisms

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 39
All Rights Reserved

4.3.7.3.2 Semantics RTL signals
The semantics RTL signals are defined as the RTL signals supporting semantics aspects of an
FPGA primitive.
The semantics RTL signals are specified by the following table:

RTL signal name
<FSC_TAG>_<instNum>_<PRIM_NAME>_ +

Origin Format Usage case Specification

EN Caller 1-bit
signal

No in parameter
and no explicit
return.

The FPGA primitive
is called.

RDY Callee 1-bit
signal

Blocking
behavior.

The callee is ready to
receive a new call on
the FPGA primitive.

Table 17 Semantics RTL signals

4.3.7.3.3 Parameters RTL signals
The parameters RTL signals are defined as the RTL signals supporting in parameters, out
parameters, and explicit return situations.
The parameters RTL signals are specified by the following table:

RTL signal name
<FSC_TAG>_<instNum>_<PRIM_NAME>_ +

Origin Format Usage case Specification

EN_IN Caller 1-bit
signal

in param(s) or
explicit return.

The FPGA primitive
is called.
Validates in
param(s).

DATA_IN.<param_n> Caller param_n
format

in param(s). Value of nth in
param.

EN_OUT Callee 1-bit
signal

Explicit return. The FPGA primitive
returns.
Validates out
param(s).

DATA_OUT.<param_n> Callee param_n
format

out param(s). Value of nth out
param.

Table 18 Parameters RTL signals

<param_n> is the snake case transcription of the parameter name in the PIM specification.

4.3.7.3.4 Sequence RTL signals
The sequence RTL signals are defined as the RTL signals supporting one in parameter of type
sequence< type_spec>.

A data item is defined as the elementary piece of information conveyed by a parameter of type
sequence.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 40
All Rights Reserved

The sequence RTL signals are specified by the following table:

RTL signal name
<FSC_TAG>_<instNum>_<PRIM_NAME>_ +

Origin Format Usage case Specification

<TYPE_SPEC>_FIRST Caller 1-bit signal The data item is the
first of the sequence.

<TYPE_SPEC>_LAST Caller 1-bit signal The data item is the
last of the sequence.

<TYPE_SPEC>_EN Caller 1-bit signal Validation of the
data item

<TYPE_SPEC>_DATA Caller <type_spec>
format

 Value of the data
item.

<TYPE_SPEC>_RDY Callee 1-bit signal The callee makes
flow control.

The callee is ready
to accept a new data
item.

Table 19 Sequence RTL signals

4.3.7.3.5 Exceptions RTL signals
The exceptions RTL signals are defined as the RTL signals supporting notification of exceptions.
Support of exceptions RTL signals is optional.
The exceptions RTL signals are specified by the following table:

RTL signal name
<FSC_TAG>_<instNum>_<PRIM_NAME>_ +

Origin Format Usage case Specification

IRQ_<EXCEPTION_NAME> Callee 1-bit
signal

Exception
notification

Indicates the
exception was
detected.

Table 20 Exceptions RTL signals

<EXCEPTION_NAME> is the screaming snake case transcription of the exception name in the PIM
specification.
The following figure specifies the exceptions notification mechanism:

CLK

IRQ_<EXCEPTION_NAME> Exception is notified

<FSC_TAG>_{<instNum>_}_{<PRIM_NAME>}_+…

Figure 11 Exceptions notification mechanism

4.3.7.4 Stream-oriented primitives
Mapping of stream-oriented FPGA primitives will be addressed in a future version of the
document.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 41
All Rights Reserved

4.4 Specialization of PIM unspecified concepts

This section specifies, for FPGA, concepts of the PIM specification whose complete specification
are deferred to PSM specifications.

4.4.1 Access capabilities

4.4.1.1 Functional support capability access
Handling of FPGA façades during development of FPGA layouts enables FPGA applicative
modules to access to FPGA façades.

4.4.1.2 Services access
Usage of the FPGA interfaces during development of FPGA layouts enables FPGA applicative
modules to be connected to the services implemented by FPGA façades.

4.5 Referenced PIM version

<FSC_TAG>_PIM_VERSION is specified as an FPGA constant indicating the version of the PIM
specification from which an FPGA PSM specification is derived.
For PIM specifications versions specified in the 3-digits VX.Y.Z form,
<FSC_TAG>_PIM_VERSION is the hexadecimal value resulting from the concatenation of one
hexadecimal octet for each digit.
Example values of <FSC_TAG>_PIM_VERSION are:

PIM specification version <FSC_TAG>_PIM_VERSION value
V1.0.0 0x010000

V2.0.0 0x020000

V3.4.10 0x03040A

Table 21 Examples of <FSC_TAG>_PIM_VERSION values

4.6 VHDL packages

Normative concepts specified for VHDL programming (see [Ref10]) are VHDL packages.
The specified packages need to be compiled in a library named <fsc_tag>_api.
A VHDL package named pkg_<fsc_tag>_api_types.vhd is specified for declaration of
types.
A VHDL package named pkg_<fsc_tag>_operations_parameters.vhd is specified for
parameters of FPGA primitives.
Other VHDL packages can be specified as needed.

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 42
All Rights Reserved

5 References

5.1 Referenced documents

[Ref1] Principles for WInnForum Facility Standards, The Wireless Innovation Forum, WINNF-
TR-2007, V1.0.0, 13 October 2020
https://sds.wirelessinnovation.org/specifications-and-recommendations
https://winnf.memberclicks.net/assets/work_products/Reports/WINNF-TR-2007-V1.0.0.pdf

[Ref2] Information technology – Programming languages – C++, ISO/IEC 14882:2011
http://www.cplusplus.com/

[Ref3] Information technology – Programming languages – C++, ISO/IEC 14882:2003
http://www.cplusplus.com/

[Ref4] IDL to C++11 Language Mapping, The Object Management Group, Version 1.2, August
2015
http://www.omg.org/spec/CPP11/1.2

[Ref5] IDL Profiles for Platform-Independent Modeling of SDR Applications, The Wireless
Innovation Forum, WINNF-14-S-0016, V2.0.2, 12 June 2015
 https://sds.wirelessinnovation.org/specifications-and-recommendations
https://winnf.memberclicks.net/assets/work_products/Specifications/winnf-14-s-0016-v2.0.2.pdf

[Ref6] Allman style section of the Wikipedia article “Indentation style”
https://en.wikipedia.org/wiki/Indentation_style

[Ref7] The Software Communications Architecture Specification, v2.2.2, Joint Program
Executive Office (JPEO) - Joint Tactical Radio System (JTRS), 15 May 2006
https://www.jtnc.mil/Resources-Catalog/Category/16990/sca/

[Ref8] The Software Communications Architecture Specification, version 4.1, Joint Tactical
Networking Center (JTNC), 20 August 2015
https://www.jtnc.mil/Resources-Catalog/Category/16990/sca/

[Ref9] Register-transfer level, Wikipedia
https://en.wikipedia.org/wiki/Register-transfer_level

[Ref10] Standard VHDL Language Reference Manual, IEEE, 2002
http://ieeexplore.ieee.org/document/1003477/

The URLs above were successfully accessed at release date.

https://sds.wirelessinnovation.org/specifications-and-recommendations
https://winnf.memberclicks.net/assets/work_products/Reports/WINNF-TR-2007-V1.0.0.pdf
http://www.cplusplus.com/
http://www.cplusplus.com/
http://www.omg.org/spec/CPP11/1.2
https://sds.wirelessinnovation.org/specifications-and-recommendations
https://en.wikipedia.org/wiki/Indentation_style
https://www.jtnc.mil/Resources-Catalog/Category/16990/sca/
https://www.jtnc.mil/Resources-Catalog/Category/16990/sca/
https://en.wikipedia.org/wiki/Register-transfer_level
http://ieeexplore.ieee.org/document/1003477/

Software Defined Systems Committee
PSMs Mapping Rules

WINNF-TR-2008-V1.0.1

Copyright © 2022 The Software Defined Radio Forum Inc. Page 43
All Rights Reserved

END OF THE DOCUMENT

	WInnForum Facilities PSMs Mapping Rules
	TERMS, CONDITIONS & NOTICES
	Table of Contents
	List of Figures
	Contributors
	WInnForum Facilities PSMs Mapping Rules
	1 Introduction
	1.1 Document purpose
	1.2 Reference architectural pattern
	1.3 Reference definitions
	1.4 Conventions
	1.4.1 Case conventions
	1.4.2 Functional support capability identification

	1.5 Conformance
	1.5.1 Radio platform items
	1.5.2 Radio application items

	2 Native C++
	2.1 General assumptions
	2.1.1 Specified interfaces
	2.1.2 Architecture assumptions

	2.2 Conformance
	2.2.1 Radio platform items
	2.2.2 Radio application items

	2.3 PIM API mapping
	2.3.1 Root namespace
	2.3.2 Modules
	2.3.3 Types
	2.3.4 Interface declaration properties
	2.3.5 API types
	2.3.6 Exceptions
	2.3.7 Services interfaces
	2.3.8 Primitives

	2.4 Specialization of PIM unspecified concepts
	2.4.1 Access capabilities
	2.4.1.1 Functional support capability access
	2.4.1.2 Services access

	2.4.2 Entry in CONFIGURED state

	2.5 Referenced PIM version
	2.6 Facade class
	2.6.1 activeServicesInitialized method
	2.6.1.1 Overview
	2.6.1.2 Associated properties
	2.6.1.3 Declaration
	2.6.1.4 Parameters
	2.6.1.5 Returned value
	2.6.1.6 Originator
	2.6.1.7 Exceptions

	2.6.2 activeServicesReleased method
	2.6.2.1 Overview
	2.6.2.2 Associated properties
	2.6.2.3 Declaration
	2.6.2.4 Parameters
	2.6.2.5 Returned value
	2.6.2.6 Originator
	2.6.2.7 Exceptions

	2.6.3 Services access principles
	2.6.3.1 Provide services access
	2.6.3.2 Use services access
	2.6.3.3 Standard services access

	2.6.4 Explicit services access
	2.6.4.1 Overview
	2.6.4.2 ExplicitServicesAccess interface
	2.6.4.2.1 get<ProvideService> methods
	2.6.4.2.1.1 Overview
	2.6.4.2.1.2 Associated properties
	2.6.4.2.1.3 Declaration
	2.6.4.2.1.4 Parameters
	2.6.4.2.1.5 Returned value
	2.6.4.2.1.6 Originator
	2.6.4.2.1.7 Exceptions
	2.6.4.2.1.8 Behavior requirements

	2.6.4.2.2 set<UseService> method
	2.6.4.2.2.1 Overview
	2.6.4.2.2.2 Associated properties
	2.6.4.2.2.3 Declaration
	2.6.4.2.2.4 Parameters
	2.6.4.2.2.5 Returned value
	2.6.4.2.2.6 Originator
	2.6.4.2.2.7 Exceptions
	2.6.4.2.2.8 Behavior requirements

	2.6.4.3 <FSC_TAG>_ExplicitServicesAccess.hpp

	2.6.5 Generic services access
	2.6.5.1 Overview
	2.6.5.2 Object class
	2.6.5.3 GenericServicesAccess interface
	2.6.5.3.1 getProvideService Operation
	2.6.5.3.1.1 Overview
	2.6.5.3.1.2 Associated Properties
	2.6.5.3.1.3 Declaration

	2.6.5.4 Parameters
	2.6.5.4.1.1 Return value
	2.6.5.4.1.2 Originator
	2.6.5.4.1.3 Exceptions
	2.6.5.4.1.4 Behavior requirements
	2.6.5.4.2 setUseService Operation
	2.6.5.4.2.1 Overview
	2.6.5.4.2.2 Associated Properties
	2.6.5.4.2.3 Declaration
	2.6.5.4.2.4 Parameters
	2.6.5.4.2.5 Return value
	2.6.5.4.2.6 Originator
	2.6.5.4.2.7 Exceptions
	2.6.5.4.2.8 Behavior requirements

	2.6.5.5 <FSC_TAG>_GenericServicesAccess.hpp

	2.7 Header files
	2.7.1 Code formatting style
	2.7.2 Reference configuration file for code formatting

	3 SCA
	3.1 General assumptions
	3.1.1 Specified interfaces
	3.1.2 Architecture assumptions

	3.2 Conformance
	3.2.1 Radio platform items
	3.2.2 Radio application items

	3.3 PIM API mapping
	3.3.1 Root namespace
	3.3.2 Modules
	3.3.3 Types
	3.3.4 Interface declaration properties
	3.3.5 API types
	3.3.6 Exceptions
	3.3.7 Services interfaces
	3.3.8 Services primitives

	3.4 PIM attributes mapping
	3.4.1 Mapping approach
	3.4.2 Types
	3.4.2.1 Simple types
	3.4.2.2 Enumerated types
	3.4.2.3 Structure types
	3.4.2.4 Constants

	3.5 SCA PSM management interfaces
	3.5.1 SCA management façade
	3.5.2 SCA functional ports
	3.5.3 SCA 2.2.2 management interfaces
	3.5.3.1 Software interfaces
	3.5.3.2 Behavior requirements
	3.5.3.2.1 LifeCycle
	3.5.3.2.2 PortSupplier
	3.5.3.2.3 PropertySet
	3.5.3.2.4 TestableObject
	3.5.3.2.5 Resource
	3.5.3.2.6 Device

	3.5.4 SCA 4.1 management interfaces
	3.5.4.1 Software interfaces
	3.5.4.2 Behavior requirements
	3.5.4.2.1 LifeCycle
	3.5.4.2.2 PortAccessor
	3.5.4.2.3 ControllableInterface

	3.5.5 PSM specific behaviors
	3.5.5.1 start()
	3.5.5.2 stop()

	3.6 Specialization of PIM unspecified concepts
	3.6.1 Access capabilities
	3.6.1.1 Functional support capability access
	3.6.1.2 Services access

	3.6.2 CONFIGURED state

	3.7 SCA functional ports
	3.7.1 Service-wise assignment
	3.7.2 Services group-wise assignment
	3.7.3 Ports implementation
	3.7.4 Assignment mismatch

	3.8 SCA PSM properties
	3.8.1 Versions properties
	3.8.1.1 Referenced PIM version
	3.8.1.2 SCA versions

	3.9 IDL files
	3.9.1 Service interface declarations
	3.9.2 Types declarations
	3.9.3 Files naming

	4 FPGA
	4.1 General assumptions
	4.2 Conformance
	4.2.1 Radio platform items
	4.2.2 Radio application items

	4.3 PIM API mapping
	4.3.1 Interface declaration properties
	4.3.2 Modules
	4.3.3 Types
	4.3.4 API types
	4.3.5 Exceptions
	4.3.6 Services interfaces
	4.3.7 Services primitives
	4.3.7.1 RTL signals origin
	4.3.7.2 Primitive prefix
	4.3.7.3 Base RTL signals
	4.3.7.3.1 Structural RTL signals
	4.3.7.3.2 Semantics RTL signals
	4.3.7.3.3 Parameters RTL signals
	4.3.7.3.4 Sequence RTL signals
	4.3.7.3.5 Exceptions RTL signals

	4.3.7.4 Stream-oriented primitives

	4.4 Specialization of PIM unspecified concepts
	4.4.1 Access capabilities
	4.4.1.1 Functional support capability access
	4.4.1.2 Services access

	4.5 Referenced PIM version
	4.6 VHDL packages

	5 References
	5.1 Referenced documents

	END OF THE DOCUMENT

