
Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 1
Hughes Aircraft; http://www.hughesaircraft.com

Radio Device API Addendum:
 Support for TDMA Radios

Version: 11 April 1998; v0.5

Authors: Dave Beyer1

dave@rooftop.com
Rooftop Communications

Jason Erickson
jerickson@CCGATE.HAC.COM
Hughes Aircraft

1 Purpose
This addendum to the Radio Device API provides additional capability in the area of TDMA-oriented
channel access. Some of the added definitions also mention security-related issues. Time-oriented
security algorithms are often tied to the transmit/receive scheduling process. As such, the “RF side” of
this API may be a cryptographic module controlling the radio. <<Still true? Should this be reworded?>>

2 Architecture
The position of the “TDMA Radio Device API” presented here is fundamentally the same as its position
in the core Radio Device API document, at the “Transceiver Frame Control Interface” (TFCI), shown in
Figure 1. However, this document differs slightly from the core specification in the division of
responsibilities between the radio device “below” the API and the protocols “above” the API, in
particular with regard to the precise scheduling of transmission on the channel. In the core specification
all channel scheduling is performed by the protocol software. In contrast, this addendum assumes that
the fine-grain scheduling of packets, and/or dynamic radio waveform characteristics, with tight timing
requirements is performed by hardware or software situated below the API, typically under the
direction of the protocols above. This shift in responsibilities may be appropriate due to reasons that
include:
• channel scheduling requirements that exceed the processor scheduling latency for the operating

system and/or CPU running the protocol software,
• the delay of processing primitives between the radio device and protocols across the API, or
• concerns regarding the red/black security boundary where a crypto-module situated close to the

radio hardware below the API, provides the precise packet scheduling.
For completeness, we list below the functions that this addendum assumes are the responsibility of the
radio device, i.e., situated “below” the TDMA Radio Device API, with the new responsibilities
highlighted by italics:

• RF & IF radio stages (mixers, filters, power amplifiers, low-noise-amplifiers, ...),
• Modulation,

1 This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Small Business
Innovative Research Program (SBIR). Refer to the Acknowledgments section for details

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 2
Hughes Aircraft; http://www.hughesaircraft.com

• Baseband spreading (direct sequence and/or fast frequency hopping),
• Preamble generation, detection, and synchronization,
• Framing (start/stop flags, zero-bit insertion, ...),
• Error detection and/or correction (CRC computation, interleaving, error control coding),

• Real-time transmit/receive hardware control,

• Time-of-Arrival (TOA) measurement, preamble correlation quality measurement, and

• TDMA slot clocking (time slot boundary synchronization and timing).

The TDMA Radio Device API assumes that the following operations are performed by the software
protocols (i.e., “above” the Radio Device API), again with changes to the core specification highlighted
by italics:

• Media Access Control (MAC) protocols that provide direction to the radio device for the
scheduling of packets on the channel (for collision avoidance and fair, efficient use of the channel),

• Link-layer protocols (reliable delivery of packets between neighbors or of local broadcast packets,
fair sharing of link resources among neighbors, discovery and authentication of new neighbors),

• Network-layer protocols (efficient routing free of persistent loops despite mobility and
dynamics, routing and queuing according to the service and priority requirements of the traffic,
efficient multicasting, security of network control traffic), and

• Internetwork-layer protocols (wireless-to-wired Internet routing issues, network management,
Internet-compatible interfaces).

Physical
Radio

Transceiver
Frame

Controller

Link
Controller

LCI TFCI PRINCI

Mobile/
Wireless
Network

Controller

Non-realtime network
 control (e.g., off-loaded onto
 network or user’s host CPU)
Routing
QoS
Multicasting
Neighbor discovery & auth.
Control of power saving mode
Pre-transport conditioning
Network security
Network management client
Network measurements

Continuous framing ops
 (e.g., on dedicated ICs)
Frame synch
Zero-insertion
Transceiver src/dst/bcast
Xmt/Rcv FIFOs
CRC
ECC, BER
Framing statistics

Continuous radio ops
Carrier freq.
Code control / scan
 phase, pkt acquisition
RSSI
Pwr control
Bit & symbol rates
Carrier detect, threshold
Capture detect & threshold

Increasing flexibility/programmability; Increasing general-purpose components

Increasing real-time requirements; Increasing cost sensitivity (less sharing)

Realtime subnet control
 (e.g., on dedicated radio CPU)
MAC-layer scheduling
Control of radio characteristics
 (subnet controller also possible)
Link-layer acks/nacks
Link-layer queueing
Use Transceiver src/dst
 addresses for link addresses
Routing/QoS cache table
 for forwarding in multihop nets
Link measurements

The “Protocols” The “Radio Device”

Figure 1: Position of the Radio Device API

Application
&

Middleware

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 3
Hughes Aircraft; http://www.hughesaircraft.com

3 Logical Functionality

3.1 Primitives
Examples of new variable primitives include: the TDMA schedule and the current TDMA
synchronization state (e.g., Search, Passive, Active, Silent). Examples of new asynchronous signals
include cryptographic statusing signals.

3.2 Data Packet Handling
To support the additional per-packet control and status requirements of TDMA radios, the core
specification’s packet information structure must be extended to add the following:

• Slot number that the radio device should use for packet transmissions, or to report slot number
of packet receptions.

• Offset into slot (in usecs) to use for packet transmissions or to report packet receptions.

• The duration, in slots, during which reception should be attempted for a receive packet buffer.

 “Continuous transmission bursts” can still be used to specify that packets without specified transmit
times are to be transmitted end-to-end in a continuous transmission with respect to the protocol
software’s view. However, these transmissions may actually be divided by the radio over many slots in
the currently active TDMA schedule, with the decision on whether or not to saddle packets across slot
boundaries dependent on the radio implementation.
More often with a TDMA radio, the protocol software will instead specify the transmit time (slot and
offset in the current schedule) for each packet, rather than use the “burst” mode.

3.3 TDMA Schedules

3.3.1 Schedule Types

TDMA schedules are defined by a limited set of slots, numbered from 0 to the number of slots in the
schedule minus 1. For a repeating schedule, the sum of the durations of all of the slots in the schedule is
called the schedule’s cycle-period. The TDMA schedules are defined as one of the following two types:

• Packet Timing Schedule which provides the means for the protocols and radio device to communicate
precisely-timed packet transmission and reception opportunities, and

• Radio Characteristics Schedule which specifies the radio’s transmit and receive waveform
characteristics for each slot in the schedule (unless overridden by radio waveform characteristics
specified in a transmit or receive packet information structure, see below).

Multiple schedules of each type can be communicated across the API, with each schedule being
identified by its schedNum, which must be unique for all current schedules (regardless of their types). At
most, one schedule of each type may be active at any time. For the protocols to specify the TDMA
timing of packet transmissions or receptions, a Packet Timing Schedule must be active. The schedule(s)
are typically determined by the protocols, and are written to the radio device using the
TRadioCmdSched primitive.

Packet transmissions can be scheduled to start in a certain slot, and optionally also at a certain offset (in
usecs) from the start of the slot. As explained above, radio or waveform characteristics that accompany
the RadioCmdXmtPkt operation in the packet information structure will override those specified by the

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 4
Hughes Aircraft; http://www.hughesaircraft.com

RadioVars and the schedule. In addition, for radio devices that support it, the protocol software may
use RadioCmdRcvPkt operations to attempt packet receptions at a particular time and with particular
radio or waveform characteristics. This may be done instead of, or in addition to, simply posting
“unspecified” packet receive buffers to be filled with any receive packets, as is the only method for the
core Radio Device API.

3.3.2 Schedule Timing

All TDMA schedule timing is based on the periodic Logical Synchronization Strobe (or simply, the strobe)
which resides in, and is maintained by, the radio device.

The process of synchronizing the strobe may be accomplished in a number of ways (see Figure
<tdma1>) such as:
• Embedded synchronization hardware and/or software running transparently in the radio device,

perhaps using a “beacon” signal,
• Reception of timing pulses from an attached GPS device,
• Reception of timing pulses broadcast onto a cable tapped by a number of co-located radios, or
• Synchronization protocols run by the software above the API, possibly with control packets between

nodes in the network, and then initializing and maintaining the strobe in the radio device using
TRadioVarStrobe and TRadioVarStrobeAdj primitives.

Timing information about the strobe (the strobe period, the current strobe count, the offset into the
current strobe period) is available through the TRadioVarStrobe primitive.

The following two rules defines how the strobes and schedules must relate:

1. All schedules must be started on a Logical Synchronization Strobe.

2. All schedule-cycle lengths must be an integral multiple of the Logical Synchronization Strobe
period. 2

2 For ease of implementation, we may want to modify rule 2. to be one of the following: “All schedule slot durations must be
an integral multiple of the Logical Synchronization Strobe period.” (As in Jason’s original draft.), and/or, “If the last slot of a

Embedded
synchronization

in radio

Periodic pulse
from attached

GPS device

Shared
synchronization

pulse cable

Protocol-driven
synchronization
(TRadioVarStrobe..)

Possible
Synchronization

Mechanisms

Logical
Synchronization

Strobe

Figure <tdma1>: Logical Synchronization Strobe

Some synchronization method is used to
produce the "logical sync strobe," the
maintenance and periodic generation of which
becomes the responsibility of the radio device.

stobe offset strobe period

(Current Time)

Time

i i+1 i+2 i+3 i+4 i+5
strobe count

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 5
Hughes Aircraft; http://www.hughesaircraft.com

Therefore, the start and end boundaries of all schedules will coincide with the Logical Synchronization
Strobes.

In a simple case, all of the slots in the schedule are defined with a duration equal to the strobe period.
Because there are an integral number of slots in a schedule, the schedule cycle boundaries will coincide
with strobes (see Figure <tdma2>). In another simple case, a schedule is defined with a cycle period
exactly equal to the strobe period (see Figure <tdma3>).

The strobe is “logical” in the sense that it may not actually refer to the physical channel directly. Figure
<tdma4> presents an example where 40% of the physical channel is actually being used for “traditional
broadcast voice” and embedded control traffic, by the radio device, or other process(es) independently
and transparently to the protocols above the Radio Device API.

repeating schedule does not coincide (within some round-off error margin) with a Logical Synchronization Strobe boundary,
then this last slot will be automatically extended to the next Strobe, when the schedule will be restarted at slot 0.”

Slot 0 Slot 1Slot 4 Slot 5 Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

Logical
Synch
Strobe

Packet
Timing

Schedule

Figure <tdma2>: Example of Simple TDMA Scheduling
(For TDMA packet timing with slot boundaries coincident with strobes)

cycle m cycle m+1 cycle m+2

Slot 0 Slot 1Slot 4 Slot 5 Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

Packet
Timing

Schedule

i i+1 i+2 i+3 i+4 i+5

cycle m cycle m+1 cycle m+2

Figure <tdma3>: Second example of Simple TDMA Scheduling
(For TDMA packet timing with one schedule-cycle per strobe)

Logical
Synch
Strobe

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 6
Hughes Aircraft; http://www.hughesaircraft.com

In addition, the capability to run both the packet timing and radio characteristics schedules
simultaneously allows for quite sophisticated radio schedules to be specified by the protocols. For
example, the slots of one schedule may be defined to exactly coincide with the entire schedule-cycle of
the other schedule; i.e., one schedule may be “embedded” in the other. Figure <tdma5> presents an
example where the packet timing schedule is embedded within the radio characteristics schedule.

3.4 Precedence for Radio Waveform Characteristics
The following precedence is used by the radio device to determine the current settings for the radio’s
waveform characteristics:

Highest precedence Characteristics specified in a packet information structure for
an active packet transmission or reception attempt.

Middle precedence Characteristics specified in the current slot of an active Radio
Characteristics schedule.

Lowest precedence Characteristics specified by the persistent radio state
variables (RadioVar… primitives).

Also, as in the core Radio Device API, packet transmissions have precedence over receptions.

Logical
Synchronization

Strobe

Figure <tdma4>: Example Mapping from Physical Channel to Logical Sync Strobe
(where 40% of channel is reserved for "traditional broadcast voice" & embedded control)

i i+1 i+2 i+3 i+4 i+5

Physical
Channel
Slotting

Broadcast
Voice

Radio
API

Radio
API

Embedded
Control

Radio
API

Broadcast
Voice

Radio
API

Radio
API

Embedded
Control

500 kbps physical channel.

300 kbps logical channel. for Radio Device API protocols; i.e., maximum RadioVarBitRate is 300 kbps

2000 usecs

3333 usecs

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 7
Hughes Aircraft; http://www.hughesaircraft.com

Slot 0
Freq 8

Slot 1
Freq 21

Slot 4
Freq 17

Slot 5
Freq 14

Slot 0
Freq 8

Slot 1
Freq 21

Slot 2
Freq 13

Slot 3
Freq 4

Slot 4
Freq 17

Slot 5
Freq 14

9 10 Slot 0 1Slot 0 1 3 4 6 852 7 9 10

Logical
Synch
Strobe

Radio
Characteristics

Schedule

Packet
Timing

Schedule

cycle m cycle m+1 cycle m+2

Figure <tdma5>: Example of Sophisticated TDMA Scheduling
(Independent characteristics and packet schedules, with one embedded in the other)

cycle n cycle n+1 cycle n+2

i i+1 i+2 i+3 i+4

Note that all schedules are actually set
relative to the sync strobe. Here, we show
the packet schedule in relation to the
characteristics schedule to illustrate how
one of the schedules can be "embedded"
into the other's cycle.

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 8
Hughes Aircraft; http://www.hughesaircraft.com

4 Primitive Descriptions

4.1 Commands
This section lists the new and extended or modified synchronous commands that can be issued by the
protocols to the radio.

RadioCmdReset Command
Requirement: Mandatory

Qualifiers:
Data:

Description: A command used to reset the radio. Any receive or transmit
packet buffers should be returned to the protocols using the
RadioSigRcvPkt and RadioSigXmtPkt signals with an error
qualifier indicating that no packet data was actually received
or transmitted. If performed through a function call, the
function should “block” until the reset operation has
completed. If the radio is providing channel synchronization
functionality, it should revert back to the ‘unsynchronized’
state.

RadioCmdRcvPkt Command
Requirement: Mandatory

Qualifiers: chNum
Data: A packet buffer and its associated protocol buffer handle, Slot

#, offset, duration, Radio WF mode & characteristics.
Description: Command to pass a buffer to the radio to be used for received

packet data, and optionally to specify reception timing. Slot #
could be used to specify the ‘time’ in an active packet timing
schedule at which reception should be initiated. Duration
specifies the time over which reception should be attempted
(in slots). If no packet is received, RadioSigRcvPkt is used to
return the packet buffer to the protocols with a
RadioRetPktRcvFail error code. WF mode and characteristics
are used to specify the set of receiver parameters to be used.
Section A.1.1.

RadioCmdXmtPkt Command
Requirement: Mandatory

Qualifiers: chNum
Data: A packet buffer and its associated protocol buffer handle, Slot

#, offset, Radio WF mode & characteristics.
Description: Command to transmit a packet, and specify transmit timing.

Slot # and offset specify the ‘time’ in an active packet timing
schedule at which transmission should be initiated. WF mode
and characteristics is used to specify the set of transmitter
parameters to be used. See Section A.1.1.

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 9
Hughes Aircraft; http://www.hughesaircraft.com

TRadioCmdSched Command
Requirement: Mandatory

Qualifiers: chNum
Data: schedNum, schedType, slot duration(s), num of slots in sched,

radio WF characteristics for each slot, periodic or one-time flag.
Description: Command used to communicate a TDMA schedule between

the protocols and the radio. schedType identifies the type of
schedule being communicated, as one of:
T_RADIO_SCHED_PKT (for packet timing schedules);
T_RADIO_SCHED_CHAR (for radio characteristics scheds);
or T_RADIO_SCHED_BOTH (for a schedule to be used for
both purposes). These schedule(s) are used to define the RF
channel as a discrete set of time slots that are provide
opportunities to xmt or rcv packets under tight timing
restrictions, and/or to determine the radio xmt and rcv
characteristics during each slot. Refer to the Section A.1.2 for
more information.

TRadioCmdSchedRelease Command
Requirement: Highly desirable

Qualifiers: chNum
Data: schedNum

Description: Commands the radio device to “release access” of the memory
containing the specified schedule number (e.g., clear any
pointers that refer to this memory, but do not perform any
operating system “free()” operations on any pointers received
from the protocols!)

TRadioCmdSchedStart Command
Requirement: Mandatory

Qualifiers: chNum
Data: schedNum, strobeCount,

immediateFlag, slotNum, slotOffset, inheritFlag
Description: Start (or restart) a schedule at the specified slot and at the

occurrence of the strobeCount sync strobe. However, if the
immediateFlag is set, the schedule start immediately at either
the specified slot and offset, or by inheriting those of the
currently active schedule (if any), depending on inheritFlag.

TRadioCmdSchedStop Command
Requirement: Mandatory

Qualifiers: chNum
Data:

Description: Stop the currently active TDMA schedule.

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 10
Hughes Aircraft; http://www.hughesaircraft.com

4.2 Variables
This section lists the new and extended or modified radio state variables.3

RadioVarRcvPreCorr Variable4

Requirement: Highly Desirable
Qualifiers: get, chNum

Data: Preamble Correlation Quality
Description: This value represents the correlation quality of a received DS

SS signal, in terms of units or a table index as defined within
the radio-specific header file.

RadioVarWFMode Variable <<still needs to be defined better, as part of
ASPEN/WNR, then may move to core API>>

Requirement: Optional
Qualifiers: get/set, chNum

Data: Waveform mode (coded value)
Description: The radio-specific header file will contain a standard definition

of its custom RF capabilities. One approach is to have a
standard set of waveform modes that combine modulation,
spreading, etc. attributes into a list of available waveform
modes. A single variable can be used to represent a MODEM
configuration that provides the desired performance.

TRadioVarSyncState Variable
Requirement: Mandatory

Qualifiers: get, chNum
Data: TDMA synchronization status

Description: A read-only variable that provides the current TDMA strobe
synchronization state (e.g. Search, Passive, Active, Silent).

TRadioVarStrobe Variable
Requirement: Highly Desirable

Qualifiers: set/get, chNum
Data: Current strobe count, strobe offset, strobe period.

Description: Set or get the current timing of the Logical Synchronization
Strobe. If all control of the strobe is owned by the radio
device, attempts to set this primitive will result in
RadioRetInvQual being returned.

3 TRadioVarClk and TRadioVarClkAdj were replaced by TRadioVarStrobe and TRadioVarStrobeAdj. The system clock is
handled elsewhere, though may still want to add primitives to adjust timing of strobe relative to the system clock??
4 If RadioVarPreCorr variable is only used in conjunction with a received packet (in the DevPktInfo struct), then this should
be stated here. I.e., it be illegal to query this variable as a persistent variable “get” operation.

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 11
Hughes Aircraft; http://www.hughesaircraft.com

TRadioVarStrobeAdj Variable
Requirement: Highly Desirable

Qualifiers: inc, chNum
Data: Positive or negative adjustment value for the strobe offset in

usecs.
Description: This command can be used to adjust the radio’s strobe timing.

If the adjustment crosses a strobe boundary, the strobe count
is adjusted as well. This capability is mandatory if the radio
does not have embedded TDMA synchronization logic. If all
control of the strobe is owned by the radio device, attempts to
inc this will result in RadioRetInvQual being returned.

4.3 Asynchronous Signals
This section lists the new and extended or modified asynchronous signals that can be generated by the
TDMA radio device.5

RadioSigRcvPkt Signal
Requirement: Mandatory

Qualifiers: isr, chNum
Data: Rcv’d pkt buffer, associated protocol buffer handle, and

associated Rx Slot # & offset.
Description: A signal generated when a packet has been received. The

protocol buffer handle is equal to that used in the
corresponding RadioCmdRcvPkt command. This signal is
also used, with the RadioRetPktRcvFail return code, to return
a receive packet buffer to the protocols before it has been filled
in with received packet data (due, for example, to a
RadioCmdReset).

RadioSigXmtPkt Signal
Requirement: Mandatory

Qualifiers: isr, chNum
Data: Xmt’d pkt buffer, associated protocol buffer handle, and

associated Tx Slot # & offset.
Description: A signal generated when a packet has completed transmission.

The protocol buffer handle is equal to that used in the
corresponding RadioCmdXmtPkt command. This signal is also
used, with the RadioRetPktXmtFail return code, to return a
transmit packet buffer to the protocols before the data has
been actually transmitted (due, for example, to a
RadioCmdReset).

5 “Cryptographic Statusing” signal was mentioned in intro, but no signal was listed here. Should there be?

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 12
Hughes Aircraft; http://www.hughesaircraft.com

TRadioSigSyncEvent Signal
Requirement: Highly Desirable (for radios that control synchronization)

Qualifiers: isr, chNum
Data: New TDMA synchronization status

Description: A signal that indicates an asynchronous change in the radio’s
TDMA synchronization state.

4.4 Return Codes
<<no change>>

4.5 Summary of Primitives
<<no change>>

5 Radio- Specific Characteristics
<<no change>>

6 Acknowledgments
The development of this document was supported by … xxxxx.… . by the Defense Advanced Research
Projects Agency (DARPA) through the Global Mobile (GloMo) program’s Wireless Internet Gateways
(WINGS) project (contract no. DAAB07-95-C-D157) … .

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 13
Hughes Aircraft; http://www.hughesaircraft.com

A. Generic Device Driver Implementation of Radio Device API
A.1 Commands, Variables and Signals

A.1.1 Packet Transmission and Reception

For the Generic Device Driver implementation, every packet Xmt and Rcv primitive for TDMA radios
uses the following TRadioDevPktInfo structure:6

typedef struct tRadioDevPktInfo {
RadioDevPktInfo radioPktInfo; // must be first

uint32 signature; // Identifies this type for debugging

uint32 slotNum; // xmt or rcv slot number of pkt sched (or
 // T_RADIO_SLOT_NUM_UNUSED)

uint32 slotOffset; // offset into slot in usecs (or
 // T_RADIO_SLOT_OFFSET_UNUSED)

uint32 rcvDuration; // The duration, in slots, during which
 // reception should be attempted (or
 // T_RADIO_SLOT_RCV_DURATION_UNUSED)
} TRadioDevPktInfo;

A.1.2 Specification of TDMA schedule
The TRadioCmdSched command primitive uses the structure described below to allow the protocols to
specify a TDMA schedule to the radio device. By using the “schedNum” field, the protocols can specify
more than one schedule (such as a schedule for each of a series of “slow” frequency hopping patterns).
The protocols would then be able to dynamically switch among the various schedules. The memory
used for these structures must remain accessible by the radio device and shouldn’t be modified by the
protocols until it is released with a TRadioCmdSchedRelease command for this schedule number.

The TRadioCmdSched command uses the following structures to convey a new TDMA schedule to the
radio device:

6 Deleted “logical channel number” in favor of “charGroup” number and “WFMode” settings. E.g., slow frequency hopping
is handled above the API, or by setting a radio characteristics schedule which is then run below the API.

Radio Device API Addendum WORKING DRAFT 11 April 1998; v0.5
Support for TDMA Radios

Rooftop Communications Corp.; http://www.rooftop.com Page 14
Hughes Aircraft; http://www.hughesaircraft.com

 typedef struct tRadioSched {
uint32 signature; // Identifies this type for debugging

uint32 schedType; // One of: T_RADIO_SCHED_PKT,
 // T_RADIO_SCHED_CHARS, or
 // T_RADIO_SCHED_BOTH

uint32 numSlots; // The number of slots in the schedule

uint32 oneTime; // If TRUE, the schedule is to be only run
 // to the end (through the last slot), before
 // stopping and converting to the persistent
 // radio characteristic variables. Otherwise

 // the schedule is to be repeated
 // continuously until commanded by the

 // protocols to stop or switch schedules.

uint32 slotDuration; // The duration of each slot in the schedule
 // in usecs, unless this field is 0, in which case
 // the slot durations may be variable, and will

 // be specified in the durations[] array below.

TRadioSlotInfo slotInfo[numSlots]; // Information for each slot
 } TRadioSched;

typedef struct tRadioSlotInfo {
uint32 signature; // Identifies this type for debugging

uint32 duration; // slot duration in usecs (used if default slot
 // duration (in TRadioSched) is 0, else ignored)

uint32 fwdSlotNum; // slot number to xmt any packets rcv’d in this
 // slot or T_RADIO_SLOT_NUM_UNUSED.

 // If there is also a RadioCmdPktRcv pkt buffer
 // posted for this slot, then the pkt will both be
 // forwarded, and passed up to the protocols.

uint32 fwdSlotOffset; // fowarding slot offset or
 // T_RADIO_SLOT_OFFSET_UNUSED

uint32 fwdMacAdr; // Dest MAC address to use for forwarded
 // packekts.

uint32 charGroup; // The groupNum, set previously using the
 // RadioVarGroup primitive variable, that defines
 // the radio characteristics to use for this slot,
 // or RADIO_CHAR_GROUP_UNUSED.

 uint32 charModsNum; // Number of characteristics modifiers
 // in charMods[] array

DevChar charMods[RADIO_SLOT_CHAR_MODS_MAX];
 // List of radio characteristics used for this
 // slot. These modifiers have precedence
 // over the charGroup specified, if any.
} TRadioSlotInfo;

