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Abstract—Modulation recognition is a key component of
spectrum environment awareness enabling radios to share
the spectrum more effectively and allowing the regulators
to monitor compliance and identify rogue users.

In this paper we consider the problem of modulation
recognition in circumstances where there is a co-channel
signal. Both the problem where the type of the co-
channel signal is known and the problem of modulation
recognition for both of two unknown interfering signals
are addressed. We use a temporal convolutional neural
network which, for the case of a known co-channel signal
type achieves a classification accuracy in excess of 80% at
a signal-to-interference ratio (SIR) of 0dB. The modulation
recognition of co-channel interfering signals in noise is of
particular interest for spectrum regulation and compliance.
We also show the efficacy of this architecture for the
classical case of modulation recognition of a single signal.
In this case, we can achieve 100% classification accuracy
for signal-to-noise ratio (SNR) levels greater than 0dB.

I. INTRODUCTION

With the increasing demand for wireless data access
and limited supply of radio spectrum, it is expected
that in the future multiple systems will have to coexist
in the same wireless channel. This in turn requires
robust coexistence mechanisms to detect other users and
avoid interfering with them. Identifying the modulation
scheme of received signal(s) is a technique that might
prove useful in such scenario. Historically, modulation
recognition has received considerable attention due to its
various applications in civilian and military communica-
tions [1]. Most of the techniques proposed over the years
and deployed in the field today rely on specific features
of transmitted signals which are derived analytically by
domain experts. The analytical formulations and deci-
sion criteria in such cases are typically dependent on the
specific assumptions made about the radio configuration,
propagation characteristics, and receiver impairments,
and deviations in any of these may either degrade the
algorithm performance or require the analysis to be
repeated. Furthermore, there are situations in practice
where analytical solutions may be cumbersome (if not
impossible) to derive due to the complexity of channel
or transceiver impairments.

Over the past few years, deep neural networks have
proven successful in learning effective representations
of data in domains such as computer vision, thereby

removing the need for feature engineering by experts.
Motivated by this observation, researchers have recently
shown that deep learning can achieve state-of-the-art
performance in modulation classification, without any
expert feature engineering, by directly processing the
raw received I/Q samples [2], [3].

In this work we build upon the results of [2], [3]
by leveraging recent advances in deep learning. More
specifically, we use a deep temporal convolutional net-
work architecture to classify the modulation of digital
radio signals which shows an improved performance
over the convolutional networks used in prior work. We
further show that the same network can be trained to
identify the modulation schemes of co-channel interfer-
ing signals in noise with applications in spectrum regula-
tion and compliance (interference/jammer identification)
and spectrum sharing (coexistence with other users).

The remainder of this paper is structured as follows.
Section II describes the dataset used in this study.
Section III details the deep learning architecture used for
modulation classification while the results are presented
in Section IV. Finally, concluding remarks are provided
in Section V.

II. DATA PREPARATION

For our analysis, we build upon the publicly available
RadioML dataset described in [4] which contains raw
baseband I/Q (time-domain) vectors for several digital
and analog modulations at various SNR levels, sampled
at a rate of 8 samples/symbol. The synthesized data
includes common radio communication impairments
such as multi-path fading, additive white Gaussian noise
(AWGN), frequency offset, and sample timing offset
(see [4] for further details). To train our deep neural
network, we re-synthesize this dataset using GNU Radio
[5] to produce I/Q vectors with an increased length
of 1024 samples (vs. the original 128) which, as we
will show in Section IV, provides a higher classification
accuracy.

For the single-signal case, for each modulation we
generate baseband I/Q vectors at SNR levels ranging
from -20 to 18dB in steps of 2dB. We synthesize 5000
vectors per SNR (100k total per modulation). For the
scenario with co-channel signals, for each I/Q vector



we add a second signal with random phase (uniformly
distributed between 0 and 2π). We synthesize the data
at four SNR levels (-18,-6,6,18 dB) and five SIR levels
(-10,-5,0,5,10 dB) again resulting in 100k I/Q vectors
per class. Both SNR and SIR values are calculated with
the first signal’s power used as reference.

III. DEEP TEMPORAL CONVOLUTIONAL NETWORK

Deep recurrent neural networks (RNN) have been
traditionally preferred over CNNs for machine learning
tasks involving a sequence (e.g., machine translation,
language modeling, and audio synthesis) [6]. Recently
though, certain deep convolutional architectures such
as WaveNet [7] and ByteNet [8] have shown state-
of-the-art results in some sequence problems beating
RNNs. Motivated by this observation, in recent work
we successfully applied a deep temporal convolutional
network (TCN), similar to the one defined in [9], for
the problem of detecting the presence of radio signals
in noise (spectrum sensing) using raw time-domain
sequences of I/Q samples [10]. In this work, we leverage
the same architecture for the modulation classification
of co-channel radio signals. This is typically much
more challenging than the binary classification problem
tackled in [10] as we are interested in detecting not only
the presence of signal(s) but also the exact modulation
scheme being used.

A prominent feature of the TCN architecture is its
use of dilated causal convolutions with increasing di-
lation factors to achieve a larger receptive field without
requiring many layers. This is shown in Fig. 1 with three
layers of dilated causal convolutions with dilation factors
of d = 1, 2, and 4 (for d = 1, the dilated convolution
reduces to a regular convolution).

Fig. 2 shows the overall architecture of the TCN
which is formed by using K stacks, each containing L
residual blocks with increasing dilation factors for the
1D causal convolutions. Within each residual block (Fig.
2a), the dilated convolution layer is followed by rectified
linear unit (ReLU) activation, weight normalization for
faster convergence [11], and dropout to help avoid over-
fitting [12]. Similar to the original WaveNet architecture,
we use skip connections as shown in Fig. 2.

TABLE I
TCN PARAMETERS

Description Value
No. Stacks 3
No. Filters 64
Kernel Size 8

Dilations 2, 4, 16, 256
Dropout 0.5

Optimizer Adam
Batch Size 300

Table I summarizes the configuration used for training
of the deep temporal convolutional network. We use

Fig. 1. Dilated causal convolutions with increasing dilation factors
(denoted by d) effectively increase the receptive field of a convolu-
tional network with less complexity [9]

three stacks as shown in Fig. 2 (K = 3) each containing
four residual blocks (with dilation factors of 2, 4, 16, and
256, respectively). We also use 50% dropout within each
residual block. Training is done using Adam optimizer
with mini-batches of size 300.

IV. PERFORMANCE EVALUATION

As described in Section II, the dataset consists of
100k vectors of baseband I/Q vectors per class. We use
80% of the data for training, 10% for validation, and
10% for final testing of the trained model. We train the
network on an NVIDIA Tesla V100 using the Adam
optimizer, binary cross-entropy as the evaluation metric,
and an early stopping patience of 10 epochs. The code
uses Keras [13] with a Tensorflow [14] backend, with
portions of the code derived from [15].

A. Single-Signal Classifier

First, we compare the performance of the proposed
TCN architecture against the convolutional LSTM net-
work (CLDNN) proposed in [3] for the task of identify-
ing the modulation of a single signal in noise. We focus
on the subset of 8 digitally modulated signals for which
the CLDNN performs better. These include BPSK,
QPSK, 8PSK, PAM4, QAM16, QAM64, CPFSK, and
GFSK.

Fig. 3 shows the classification accuracy as a function
of SNR for different architectures with the original
sample length of 128 that was used in [3] (short-duration
dataset). We compare the performance of CLDNN with
two TCN architectures using different sets of dilation
factors. We observe that all networks perform closely
with the TCN-based classifiers having a bit of advantage
at higher SNRs. It is also worth noting that increasing the
receptive field of the TCN (via higher dilation factors) is
not helping much in this case due to the relatively short
duration of each I/Q vector which limits the effective
kernel size of the convolution for high dilation factors.



Fig. 2. (a) Configuration of a single residual block, (b) Overall TCN architecture with K stacks and L residual blocks per stack with di
denoting the dilation factor of ith block

Fig. 3. Single-signal classification accuracy vs. SNR for short-duration
dataset

For the longer-duration dataset with 1024 samples
per vector, all architectures perform better while at the
same time the performance gap between them starts to
widen. Specifically, as shown in Fig. 4, the TCN archi-
tecture with dilation factors of (2,4,16,256) outperforms
CLDNN at all SNR levels above -18dB, achieving 100%
classification accuracy for SNRs greater than 0dB. Using
a smaller receptive field for the TCN has no discernible
impact at high SNRs but degrades the performance up
to 4dB at SNRs below 2dB.

For the scenarios with co-channel signals that follow
next, we only show results for the TCN with higher
dilation factors as it provided the best performance on
the longer-duration dataset.

Fig. 4. Single-signal classification accuracy vs. SNR for long-duration
dataset

B. Interference Classifier

We extend the analysis of single-signal modulation
classification to the case where the modulation of the
desired signal is known and fixed while there might
be a potential interferer whose modulation needs to be
identified. This scenario is of particular interest in the
spectrum regulation and compliance context where there
is a need to identify unauthorized use of a channel which
is licensed to a specific user. We use the class label
notation (a,b) to indicate I/Q vectors consisting of co-
channel modulations a and b. It is worth emphasizing
that the training is done with respect to a fixed type
of incumbent user, the type of the fixed signal is not
a direct input to the inference. Thus this represents an
example of a classifier tuned to a specific impairment



Fig. 5. Confusion matrix for interference classification across the full
SIR range when the desired signal is GFSK modulated

that would be difficult to deal with analytically.
Fig. 5 and 6 show the confusion matrices of the TCN-

based classifier for two different cases where the desired
(known) signal uses GFSK and QPSK modulations,
respectively. In each case, the performance is averaged
over all five SIR levels with a fixed SNR of 10dB.
To account for the situation with no interference, the
final class in each dataset constitutes the signal of
interest only (with channel impairments and receiver
noise added). We use a total of 180k vectors (20k per
class) with a 80/10/10 split for training, validation, and
testing, respectively.

We observe that in both cases the interference modu-
lation is classified with high accuracy. As expected, there
is some confusion between QAM16 and QAM64 which
might require more symbols to be distinguished from
each other. When both signals are QPSK-modulated,
there is also some confusion with 8PSK being detected
as the interferer’s modulation.

Fig. 7 shows the classification accuracy as a function
of SIR. As intuitively expected, the classifier becomes
more accurate at lower SIRs as it would be easier to
identify a stronger interference source.

It is sometimes of interest to visualize what the
deep neural networks are learning. One approach is to
extract the (typically high-dimensional) activations of a
given layer within the architecture and project it into
two or three dimensions for visualization. There are
several methods for achieving this with perhaps the most
well-known being the t-SNE [16]. In this paper, we
apply a recently-proposed technique known as Uniform
Manifold Approximation and Projection (UMAP) [17]
which has been shown to be faster than t-SNE while

Fig. 6. Confusion matrix for interference classification across the full
SIR range when the desired signal is QPSK modulated

Fig. 7. Classification accuracy vs. SIR for different desired-signal
modulations

producing competitive projections. In particular, UMAP
projection tries to preserve structure of the data in the
original higher-dimensional space as far as possible.
This in turn allows one to interpret proximity of samples
in the resulting 2D plane as similarity in the original
higher-dimensional space.

We re-train the TCN with a dense (embedding) layer
of size 32 added before its final output layer. This
(slightly more complex) network reaches similar accu-
racy as the original while allowing us to peek inside
the representations learned by the network. The 32-
dimensional embedding vector is calculated for each of
the samples in the test dataset and passed onto UMAP
for projection into a 2D plane. Fig. 8 shows the 2D
UMAP projection (with color-coded classes) for the case
of desired signal having GFSK modulation. Inspecting



Fig. 8. 2D UMAP projection of TCN embeddings with GFSK-
modulated desired signal

overlapping classes in Fig. 8 shows the same patterns
as the confusion matrix of Fig. 5. Moreover, we are
able to visualize how the proposed deep neural network
perceives different classes in terms of their similarity.
For instance, in Fig. 8 a BPSK-modulated interference
is most similar to one with PAM4 modulation. While
the network is distinguishing these two classes well, one
might expect them to be at a higher risk of confusion
as the SIR is increased further.

C. Mixed-Signal Classifier

In Section IV-B we considered two co-channel signals
where one of the signals’ modulation was known and
fixed. In what follows we analyze the performance of
TCN for a co-channel scenario where neither of the two
signals’ modulation is a priori known. We consider all
possible pairwise combinations of BPSK, QPSK, 8PSK,
QAM16, QAM64, CPFSK, and GFSK (21 classes) as
well as possibility of having a single signal (7 classes)
or pure AWGN noise, resulting in a total of 29 classes.

The TCN network is trained, as before, using an
Adam optimizer which converges after approximately
90 hours using a single NVIDIA Tesla V100. The
confusion matrix averaged over all SNR and SIR values
is depicted in Fig. 9 showing good overall performance
with QAM16 and QAM64 being the main sources of
confusion as before. Fig. 10 shows the confusion matrix
for SIR and SNR of -10 and 18 dB, respectively.
Comparing with the average confusion matrix in Fig. 9,
we see much better overall classification performance.
Specifically, single modulated signals and pure noise
are almost perfectly classified. Classification accuracy
of co-channel signals is also significantly improved,
although there is still some residual confusion due to
the QAMs. It is interesting to note that with a strong
QPSK interference (SIR of -10dB), both QAM16 and
QAM64 signals are often being classified as 8PSK.

Fig. 9. Confusion matrix for mixed-signal classification across the
full SNR and SIR range

Fig. 10. Confusion matrix for mixed-signal classification at SIR =
-10dB and SNR = 18dB

In the performance evaluations so far, we have been
choosing the Softmax output index with the highest
probability as the detected class. Rather than reporting
the single class with the highest Softmax activation as
the predicted class, sometimes one might be interested
in soft prediction where all Softmax outputs are reported
and treated as probabilities of individual classes. In this
case, it is more appropriate to look at the distribution
of true class label’s rank among all soft predictions.
This distribution is plotted in Fig. 11 showing that the
probability of the true modulation pair being in the top-



Fig. 11. Probability distribution of true label’s rank among the
predicted labels

1 and top-5 outputs is approximately 43% and 75%,
respectively.

Finally, as in Section IV-B, we re-train the network
with an embedding layer of size 32 added before the
output layer. Fig. 12 shows the 2-dimensional UMAP
projection of the 32-dimensional embedding vectors
for test data at SNR and SIR of 18 and -10 dB,
respectively. It is interesting to note that I/Q vectors
corresponding to pure noise are clustered together and
are surrounded by clusters of data points representing the
single-signal classes. The data points corresponding to
pairs of co-channel signals are placed further away from
the noise and seem to be grouped together according
to the modulation scheme of the interfering signal. Of
note is also the GFSK modulation which, based on the
TCN embeddings, shows the least proximity/similarity
to other modulations.

V. CONCLUDING REMARKS

In this paper we have identified and described prob-
lems of modulation recognition in situations where there
is co-channel interference as well as noise. These include
the problem of identifying the modulation type of a
signal interfering with a signal of a known type and the
identification of modulation types for two unknown in-
terfering signals. We also consider the classical problem
of modulation recognition for a single signal in noise.
For all of these problems we have shown the efficacy
of a temporal convolutional network architecture as a
classifier. For the classical case, we achieve essentially
100% accuracy at an SNR of 0dB. For the problem
with two signals, one of which is of known type, we
correctly identify the unknown second signal type more
than 80% of the time at an SIR of 0dB. For the case
of classifying two unknown signals, both signals were
correctly classified 43% of the time averaging over
a range of signal power ratios from -10 to 10 dB.
Visualization techniques based on UMAP were used to

show the clustering of the signal types achieved by the
temporal convolutional network.

A major motivating factor in the consideration of co-
channel interference analysis described in this paper is
its potential role in future spectrum management and
regulation. If regulatory agencies are to manage the lim-
ited (and much in demand) spectrum resource more ef-
fectively, it is anticipated that they will increasingly need
to understand what is actually happening in the spectrum
both in frequency and geography. To do this will require
the capability to make observations/measurements and
to analyze the results and implications of those mea-
surements. In particular, efficient geographical packing
of channel assignments requires understanding of co-
channel interference under specific circumstances. This
research is, in part, intended to support this understand-
ing. Also, a future data-driven regulatory regime is likely
to require more active enforcement mechanisms that
would be enhanced with better understanding of the
co-channel activity situation. This would include issues
around both interferers and jammers.
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