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Outline » Benefits for cross-layering.

 Cognitive radios as enablers for cross-layer
systems.

« QoE-based resource allocation with Deep Q-
learning.

* Transfer learning for accelerated learning of Deep
Q-Networks.

« Uncoordinated multi-agent Deep Q-learning with
non-stationary environments.
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Why Cross-
Layer
Approach?
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 Ubiquitous computing requires pervasive
connectivity,

» under different wireless environment,

» With heterogeneous network
Infrastructure and traffic mix.

 User-centric approach translates to QoE
metrics:

» an end-to-end yardstick.
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Obstacle to
Cross-Layer
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« Wireless devices development is divided into different
teams, each specialized in implementing one layer or sub-
layer in a specific processor (e.g. main CPU or baseband
radio processor).
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Cognitive Radios
as Cross-Layer

Enablers
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 Wireless network environment as a
multi-layer entity.

» Cognitive engine in a cognitive radio
senses and interacts with the
environment through measuring and
acting on the multi-layered
environment.
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» A primary network (PN) owns a portion of the spectrum.

StUdy Case . » A secondary network (SN) simultaneously transmits over the
same portion of the spectrum.

U nderlay DSA « Transmissions in secondary network are at a power such that the

interference they create on the primary network remains below a
tolerable threshold.
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Primary network access point.
Interference from secondary to primary.

Secondary network terminal - SU (cognitive radio).

Transmission in secondary network.

Secondary network access point.
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m » Heterogeneous traffic mix: interactive video streams (high
Use r'Centrlc bandwidth demand, delay constraint) and regular data (FTP).

Secondary + Performance: measured as Quality of Experience (QoE)
— following the user-centric approach to network design and
Netwo rk management advocated in 5G systems

« Chosen QoE metric: Mean Opinion Score MOS

gre] MOS | Quality | impairment |
Data MOS: Qp = alog, (b Tgs)(l — pese)) ; -‘é’ 5 Excellent Imperceptible
' 1 g 4 Good Perceptible but not annoying
C . | © . . :
i : — = | © 3 Fair Slightly annoying
- S oor nnoying
_ < 1 Bad Very annoying
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Problem
Setup

 Cross-layer resource allocation problem.
* For an underlay DSA SN,

 choose:
—transmitted bit rate (i.e. source compression for video),
—transmit power,

» such that the QoE for end users is maximized
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« Use multi-agent Deep Q-Network (DQN) to solve problem.
 An efficient realization of Reinforcement Learning (RL).

Solution Based

on Deep - An SU learns the actions (parameters setting) by following a
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Reinforcement PELEive Cyeie
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t ty Lty Uy i from action space:
rewar > >
‘0/1" - SU power feasibility R: ’,[4_ {,[Bls’l'Nif'A’}
‘0/1’ - Underlay DSA interference condition (targe )
‘0/1° — Layer 2 outgoing queue delay Environment e
Ri: ' J, | if It_|_1—|—Lt+1+O%+1 > ()
t w1y (ag, s¢) + worb(ag, s¢), otherwise,
\_'_I
Layer 2 MOS

Delay



RIT

Deep
Q-Network
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« Estimate the Q-action value function — calculation of the
expected discounted reward to be received when taking actiona
when the environment is in state x; attime :
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Frequency Frequency

Frequency

Sharing

Experlence  Limited changes in wireless environment
when a newcomer SU joins an already
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Transfer
Learning
Results

 Accelerated learning without performance penalty.
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An Issue
With the

Standard
DQN
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» Scenario: Uncoordinated multi-agent power allocation. CRs
maximize their throughput while keeping relative throughput

change in PN below limit.

« Standard DQN may not converge due to non-stationary

environment.
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Algorithm 1 Uncoordinated Distributed Multi-agent DQN

Uncoordinated
Multi-Agent
DQN

(Acknowledgement to 10:
Ankita Tondwalkar) 11:

12:
13:
14:
15:

16:

17:
18:

19:

20:

A o

Set parameters

p € (0,1) : Experimentation probability

A € (0,1) : Inertia

~ € (0,1) : Discount factor

Learning rate «, €= - where v € (3,1);
Initialize policy 7y € II (arbitrary)

Sense state xg

Initialization of the neural network for action-value function @); with random

weights 6;

for 0<k< K do
for Iterate t = ¢y, tx + 1, - ,tpy1 — 1 do

(kth. exploration phase)

Ti(ze), wp. 1—p

any a € A, w.p. p/|A|
Receive reward Ry
Sense state z441; ny = number of visits to (x4, ay)

Exploration phase: do action exploration only
ay = occasionally — generate near-stationary environment

Update the state xﬁl and the reward R;"”.
(i) (

batch backpropagation

Q(az, a) < Q(z,a;6;), vV, a.

every c step update array in memory with target action-value function:

Near-standard DQN (no

Update parameters () of action-value function Q(s; ,ati);ﬁi), mini-| replay memory, target

action-values stored in
array.

and for

T, = {7 €Il': Q},, (5,7 (x)) > max,: Qf, , (s,0") — &, for all s}

; {w}i, w.p. A
T = . . _
k+1 i i (1-=2)
any €11 W.p. 7=
y k+1° p IHk+1‘

end I1or

Policy update with inertia
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Uncoordinated
Multi-Agent p o
DQN - Results | A
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« Demonstrable convergence to optimal
solution as learning time goes to infinite
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Uncoordinated T N
= Description Relative Exp. Phases | Optimal
M u It I - Ag e nt Difference | to Converge Policy
Reference setting 0.0249 33.62 69
DQN - Results Standard DQL ¢ = 1 0.0945 N/A 56
Standard DQL ¢ = 60 0.0744 N/A 55
c=1 0.0331 35.18 66
¢ = 60 0.0096 33.42 72
Mini batch size = 120 0.0375 35.6 67
Mini batch size = 30 0.0241 36.35 69
Uncoordinated per-CR re- 0.0411 39,01 -0
ward

« Comparison against optimal solution through
exhaustive search — optimality based on maximum
sum throughput in SN.
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Conclusions - Discussed the benefits for cross-layered protocols and
their practical realization through cognitive radios.

» Presented QoE-based cross-layer resource allocation
cognitive engine with Deep Q-learning.

« Explained how learning could be accelerated for a
newcomer node by transferring experience from other
node.

» Learning is accelerated with no discernable
performance loss.

« Presented a first-of-its-kind Deep Q-learning technique
that converges to optimal resource allocation in
uncoordinated interacting multi-agent scenario (non-
stationary environment).
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Thank You!

Questions?



