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100+ Years of Interference (Avoidance)
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Marconi’s trans-Atlantic transmitter



Overview
• Spectrum management 

today:
• Hard guarantees via resource 

fragmentation and conservative 
assumptions

• Manual, labour-intensive 
processes in some bands

• Inefficient under time and 
location varying loads
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source: Domo Inc.

source: Ericsson (Q1 2018)

source: Cisco (2017)



Spectrum Outlook

• More mobile spectrum pressure

• mmWave shows some promise but bound by laws 
of physics

• Better use of spectrum below 6 GHz still needed
• New technologies, repacking, auctions
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• Sharing with incumbent 
protection (TVWS, CBRS)

• Spectrum “supply” 
determined by 
incumbent activity

Towards More Dynamic Management
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• How, when, and where spectrum is being used?

Dynamic Spectrum Management
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Challenged by lack of data to model usage, predict demand, 
and measure success

• How can we manage increasing demand by 
sharing bands among different technologies?

• What policies would promote efficiency of 
systems sharing the spectrum?
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Communications Research Centre Canada (CRC)
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Federal government’s primary R&D lab for advanced telecommunications
• A client-driven applied research centre 

focused on “what is possible and what works”
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Grand Challenge Framework
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Information and data
• Special  events
• Weather 

conditions
• Traffic conditions
• Ensemble user 

behaviour
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Generic Machine Learning (ML) Cycle
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ML/AI in Wireless Communications
• Academia: signal processing, source/channel 

(de)coding, modulation recognition, etc.
• Manufacturers: network optimization, 

scheduling, rate control, anomaly detection
• Operators: mostly relying on manufacturers and 

3rd parties so far
• Spectrum regulators: ?
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Evolution toward Automating Evidence-Based Decisions

Algorithms Data
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Spectrum Usage Data Acquisition
• Direct sensing
• Operator data
• Crowdsourcing
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Cloud – Sensors and Data Collection
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Microsoft
Azure

3rd Party Internet 
of Things (IoT) 

Sensors

Support spectrum 
management



Cloud – Sensors and Data Collection
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• 110 sensors located everywhere in Canada

• ~30 advanced sensors, each uploading 30GB 
of raw data to Azure cloud daily

• Automated nightly cluster computing processes 
format data for downstream analytics tasks



From Data to Knowledge
• Stages of data analytics

• Descriptive (e.g., traffic modelling)
• Predictive (spectrum occupancy prediction)
• Prescriptive (dynamic spectrum assignment)

• Complex multi-dimensional problems
• AI/ML opportunities
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Leveraging historical data to make better use of land mobile radio 
(LMR) spectrum
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Using the Past to Forecast the Future



Spectrum Demand Prediction in LMR Bands
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Spectrum Usage: External Factors

North American leaders’ summit in Ottawa

Canada Day 201721



Spectrum Usage: External Factors
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Ottawa’s record snowstorm of 2016



From Predictive to Prescriptive Analytics
Dynamic 
sharing of LMR 
channels with 
IoT traffic
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From Predictive to Prescriptive Analytics

Leveraging ML-predicted LMR usage to reduce interference
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Spectrum Data Beyond LMR
• Commercial mobile bands important to the industry 

and regulators

• How should we manage the spectrum for 5G and 
beyond?

• Is sharing viable? If so, under which model(s)?
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Need to understand the “demand behaviour”



Characterizing Commercial Mobile Spectrum

• Direct sensing not practical

• Operator data: aggregate demand patterns 
and ensemble user behaviour

• User data: crowdsourcing applications
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Ottawa, Canada
Feb. 2018



Users as Sensors
• Crowdsourced mobile spectrum data to 

complement operator data
• Models end-user performance

• Identifies true cell shapes (coverage)

• Helps detect anomalies

28



29

Ontario, Canada
2017-2018
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Ontario, Canada
2017-2018
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Ottawa, Canada
2018
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Toronto, Canada
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• Spectrum data analytics still in its infancy
• Lots of potential for network optimization, automation, 

and sharing via ML/AI
• Time and location varying spectrum usage can be 

leveraged to share spectrum dynamically
• Regulators can use demand and supply insights for 

dynamic spectrum management
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Summary



Summary
• Timely data needed to characterize usage, 

predict demand, and prescribe actions
• Heterogeneous technologies and services 

require a diverse data acquisition strategy
• More cooperation needed to define and 

procure relevant spectrum data
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Backup Material
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IoT Growth Forecast
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source: Ericsson (Q1 2018)



Measured Power in Public Safety Land Mobile Radio (866-869 MHz) 
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Land Mobile Radio (LMR) Channel Activity Patterns
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• Data-driven traffic 
modeling 

• Quantifying spectrum 
sharing opportunities



Crowdsourced Data
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4G and 5G Coverage Models
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Generic Machine Learning (ML) Pipeline
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