
Optimizing the Efficiency of the Transfer
Mechanism in SCA-based Radio Systems

Shan Wang

National University of Defense Technology
Research Center of Software Defined Radio Engineering

Outline

Problem of CORBA （Linux-kernel-based）

Analysis of Causes

Optimization Proposal

Adoption and Proven

Some Premises
 In SCA 4.1 specifications, the transfer mechanism

becomes more flexible and diversified.

 As a classical transfer mechanism, CORBA has been

widely used in SCA-based software radio systems.

 Communication between components can be classified

by their locations : inter-chip and intra-chip, we call them

remote-call and local-call separately.

Application Environment

ARM Cortex-A7
（Zynq70xx）

Linux-3.17

1GB RAM

CF-SCA4.1

TAO & omniORB

Delay (μs)

968.6 961.9 960.6 971 967.7 965.84

173.3 175.2 173.6 173.8 173.3 173.8

0

200

400

600

800

1000

1200

1 2 3 4 5 Avg

TAO

omniORB

Problem of CORBA

Chart1

		1		1

		2		2

		3		3

		4		4

		5		5

		Avg		Avg

TAO

omniORB

968.6

173.3

961.9

175.2

960.6

173.6

971

173.8

967.7

173.3

965.84

173.8

Sheet1

				TAO		omniORB

		1		968.6		173.3

		2		961.9		175.2

		3		960.6		173.6

		4		971		173.8

		5		967.7		173.3

		Avg		965.84		173.8

Problem of CORBA
Application Environment

Intel i7-6700

Linux Ubuntu14.02

4GB RAM

CF-SCA4.1

TAO & omniORB

Delay (μs)

255.8
265.3

276 272.2 270.2 267.9

44.2 43.4 41.3 44.3 43.1 43.26

0

50

100

150

200

250

300

1 2 3 4 5 Avg

TAO

omniORB

Chart1

		1		1

		2		2

		3		3

		4		4

		5		5

		Avg		Avg

TAO

omniORB

255.8

44.2

265.3

43.4

276

41.3

272.2

44.3

270.2

43.1

267.9

43.26

Sheet1

				TAO		omniORB

		1		255.8		44.2

		2		265.3		43.4

		3		276		41.3

		4		272.2		44.3

		5		270.2		43.1

		Avg		267.9		43.26

Results show that the efficiency of the

ORB-based middleware, such as TAO

and omniORB, has become one of the

challenges that constrain SCA to be

further widely applied.
Why?

 The advantage is that it loosens the difference of program languages and

can work in distributed networks.

 However, the disadvantage is also obvious, especially in what we call the

intra-chip application environment.

In many Linux based applications, Core Framework starts all
components in process mode, including device/service
components, and waveform components.

Local-call
Characteristics

Thread Mode

How to integrate
process mode with

thread mode flexibly.

GPP Device, FPGA Device,
DSP Device, Ethernet Device,
Serial Device, Platform
Service, etc.

NET Component, LLC
Component, Security
Component, etc.

Device

Application

Domain Manager

Device Manager

Application Environment

Intel i7-6700

Linux Ubuntu14.02

4GB RAM

CF-SCA4.1

Process VS. Thread

255.8
265.3

276 272.2 270.2 267.9

2.1 2.3 2.1 2 2.1 2.12
0

50

100

150

200

250

300

1 2 3 4 5 Avg.

Process Mode

Thread Mode

44.2 43.4
41.3

44.3 43.1 43.26

0.3 0.2 0.2 0.2 0.2 0.22
0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 Avg.

Process Mode

Thread Mode

omniORB’s Delay (μs)TAO’s Delay (μs)

126 times 196 times

Chart1

		1		1

		2		2

		3		3

		4		4

		5		5

		Avg.		Avg.

Process Mode

Thread Mode

255.8

2.1

265.3

2.3

276

2.1

272.2

2

270.2

2.1

267.9

2.12

Sheet1

				Process Mode		Thread Mode

		1		255.8		2.1

		2		265.3		2.3

		3		276		2.1

		4		272.2		2

		5		270.2		2.1

		Avg.		267.9		2.12

Chart1

		1		1

		2		2

		3		3

		4		4

		5		5

		Avg.		Avg.

Process Mode

Thread Mode

44.2

0.3

43.4

0.2

41.3

0.2

44.3

0.2

43.1

0.2

43.26

0.22

Sheet1

				Process Mode		Thread Mode

		1		44.2		0.3

		2		43.4		0.2

		3		41.3		0.2

		4		44.3		0.2

		5		43.1		0.2

		Avg.		43.26		0.22

Application Environment

ARM Cortex-A7

Linux-3.17

1GB RAM

CF-SCA4.1

Process VS. Thread

omniORB’s Delay (μs)TAO’s Delay (μs)

968.6 961.9 960.6 971 967.7 965.84

36.1 36.3 36 37.2 37.3 36.56

0

200

400

600

800

1000

1200

1 2 3 4 5 Avg.

Process Mode

Thread Mode

173.3 175.2 173.6 173.8 173.3 173.8

5.9 6.1 6.01 6.03 6.05 6.02

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 Avg.

Process Mode

Thread Mode

26 times 29 times

Chart1

		1		1

		2		2

		3		3

		4		4

		5		5

		Avg.		Avg.

Process Mode

Thread Mode

968.6

36.1

961.9

36.3

960.6

36

971

37.2

967.7

37.3

965.84

36.56

Sheet1

				Process Mode		Thread Mode

		1		968.6		36.1

		2		961.9		36.3

		3		960.6		36

		4		971		37.2

		5		967.7		37.3

		Avg.		965.84		36.56

Chart1

		1		1

		2		2

		3		3

		4		4

		5		5

		Avg.		Avg.

Process Mode

Thread Mode

173.3

5.9

175.2

6.1

173.6

6.01

173.8

6.03

173.3

6.05

173.8

6.02

Sheet1

				Process Mode		Thread Mode

		1		173.3		5.9

		2		175.2		6.1

		3		173.6		6.01

		4		173.8		6.03

		5		173.3		6.05

		Avg.		173.8		6.02

 Process Mode

This mode is suitable for waveform resource deployment based on multi-

channel equipment or control interactions among different nodes.

 Thread Mode

Components must run in the same program space. So, it is suitable for small

size SoC system or waveform applications located in the same processor.

Thank you.

Any question？

	Optimizing the Efficiency of the Transfer Mechanism in SCA-based Radio Systems
	Outline
	Slide Number 3
	Slide Number 4
	Problem of CORBA
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Thank you.��Any question？

