
Optimizing the Efficiency of the Transfer 
Mechanism in SCA-based Radio Systems

Shan Wang

National University of Defense Technology
Research Center of Software Defined Radio Engineering



Outline

Problem of CORBA （Linux-kernel-based）

Analysis of Causes

Optimization Proposal

Adoption and Proven



Some Premises
 In SCA 4.1 specifications, the transfer mechanism 

becomes more flexible and diversified. 

 As a classical transfer mechanism, CORBA has been 

widely used in SCA-based software radio systems. 

 Communication between components can be classified 

by their locations : inter-chip and intra-chip, we call them 

remote-call and local-call separately.
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Results show that the efficiency of the 

ORB-based middleware, such as TAO 

and omniORB, has become one of the 

challenges that constrain SCA to be 

further widely applied.
Why?



 The advantage is that it loosens the difference of program languages and

can work in distributed networks.

 However, the disadvantage is also obvious, especially in what we call the

intra-chip application environment.

In many Linux based applications, Core Framework starts all 
components in process mode, including device/service 
components, and waveform components.



Local-call
Characteristics

Thread Mode

How to integrate 
process mode with 

thread mode flexibly.



GPP Device, FPGA Device, 
DSP Device, Ethernet Device, 
Serial Device, Platform 
Service, etc.

NET Component,  LLC 
Component, Security 
Component, etc.
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Application

Domain Manager

Device Manager
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 Process Mode

This mode is suitable for waveform resource deployment based on multi-

channel equipment or control interactions among different nodes.

 Thread Mode

Components must run in the same program space. So, it is suitable for small 

size SoC system or waveform applications located in the same processor. 



Thank you.

Any question？
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