Using Extreme Sensitivity GPS for In-building to Outdoor Propagation Modeling

Chris Kurby
Sr. VP of Engineering
Ckurby@iposi.com
630 347 9102
Agenda

- iPosi technology brief
- iPosi GPS measurement capability and verification
- Use of GPS measurements to protect CBRS FSS and Radar scenarios with simulation results
iPosi Internet Assisted-GNSS Service Platform

In-Building GNSS signals

Challenging Indoor Environment

Embedded Low-Cost iPosi GNSS Receiver

-175 dBm
(Also time <100ns)

Satellite Signal data collection
Ephemeris
Actual data on GPS transmissions + Power SV specific data

Packet Timing

Cloud Servers (computing)

iPosi Assistance Server calculation results

I,Q samples, Location Building loss

iPosi location and Loss calculations can be done in the cloud to off load the client CPU and enhance location results
iPosi Measurements

- **Capability**
  - Indoor location
  - Indoor sync to < 100 ns
  - Indoor loss measurements

- **Dynamic range**
  - GPS SV’s power is $\geq -128.5$ dBm on the ground and measured by reference stations
  - iPosi assistance and long time integration yield L1 C/A sensitivity to -175 dBm
  - Building loss measurement dynamic range is $-128.5 - (-175) = 46.5$ dB plus 4 dB for higher building penetration at L1 for 50.5 dB

- **L5**
  - Will yield 4 dB more due to L5 higher power increasing dynamic range for a total of 54.5 dB (55 dB)
    - Penetration also increases at least 1 dB
GPS Measurements On Indoor CBSDs

- Extreme sensitivity GPS receiver measures loss indoors with GPS L1/L5 (and other systems)
  - Can also be used outdoors to measure clutter

-128.5 dBm
At wall

-128.5 dBm
At ground due to nearly identical slant ranges
Sample Outdoor Data Set by VT

Successful Measurement Campaign of Clutter Loss Vs. Az. And El.

Clutter Loss Heatmap, tree clutter high
Start [UTC]: 20170308 15:16:22, Stop [UTC]: 20170308 20:13:53, Duration [hr]: 4.96
iPosi Measured Building loss with GPS-Example

CU EECE Building

iPosi Facility

Suburban House

Data for basement next page
• Brown pixels have not been visited by GPS in the short time the measurements were made
• Losses by inspection range from ~20 dB to 50 dB
House Loss

Losses generally increase monotonically with SV elevation angle and indicate true building loss over all elevation angles.

Calibrated GPS antenna at a test point

Minimum loss < 15 dB
Indoor CBSD loss factors from Winnforum for Victim

- Losses measured at L1/L5 and are Reciprocal
- Losses at 3.55 GHz are typically much greater than L1/L5 (see supplemental material)
  - iPosi recommends a minimum of 4 dB be added to L1, 5 dB to L5

Current indoor loss (Rel 1)                  Proposed method (Rel 2)

<table>
<thead>
<tr>
<th></th>
<th>Meas Loss to 55 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBSD</td>
<td>Victi</td>
</tr>
<tr>
<td>15 dB</td>
<td>3.55 GHz</td>
</tr>
</tbody>
</table>

GPS LOS signal

L1/L5

3.55 GHz
Antenna Height Issue

Okumura/eHata conditions
- One antenna must be above all buildings
- eHata clutter currently accounted for by $\sigma$

CBRS Indoor typical conditions
- Antennas are below clutter and not considered by WinnForum prop model
- Also antennas are indoors
- Below the roof line and indoor losses *are measured by GPS*

Not accounted for by Winnforum
FSS Interference Simulation Model Parameters

- **FSS parameters**
  - Noise Power = -105 dBm/30 MHz [1]
  - Interference target I/N <= -12 dB
- 1089 small cell sites, all indoors
- **Each Site has 3 small cells each site each with 10 MHz BW adjacent channels**
- **30 dBm EIRP**
- Buildings 60 m center to center
- CBSD’s are 30 m haat FSS at 10 m
- Ehata model suburban propagation model suburban homogeneous
- Use FCC FSS antenna gain model for Elevation at 20 degrees and calculated Azimuth
- Calculate interference power at 15 dB building loss and uniform random variable of 15 to 55 dB
- D is the distance from far edge of cluster to FSS

[1] Intelsat ExParte; "C-Band / 5G Coexistence FCC Debrief Presented by Intelsat & SES " 4/19/2018
Pathloss + FSS antenna gain

- $D = 2 \text{ Km}$
- $D = 5 \text{ Km}$
- $D = 22.3 \text{ Km}$

At high distances $D > 5 \text{ Km}$, $G + PL$ is nearly constant.

CBSDs that need to be adjusted are nearly uniformly distributed across the CBSD footprint at higher $D$. 
Simulation Models For Indoor CBSD Interference to FSS

- Loss is reciprocal at the same frequency (shown as solid green traces, dashed are direct but high loss paths)
- Measured GPS loss (simulated here) will include below the roof line clutter loss
- Fixed 15 dB building loss will typically underestimate the loss
  - In some cases 15 dB building loss may underestimate the total path loss and allow interference

\[
I_{FSS(cbsd)} = EIRP - L_{median_EH}(d) - L(\sigma_{sub,ur})_{random_{draw}} - L_{bld}(15\text{dB, random}) - G(diff_{elv}, diff_{AZ}) \text{ dBm}
\]

\[
I_{FSS(total)} = 10\log_{10}\left(\sum_{i=1}^{10} \frac{I_{FSS(cbsd)}}{10}\right) \text{ dBm}
\]

- Use lowest elevation angle measured data available at correct azimuth
- Using GPS measures all Tx propagation factors
FSS Antenna Gain and Path Loss with D=4 Km

- Patterns provide some insight
- Narrow beam width of FSS antenna is missed with elevation angle of 20 degrees
Protection Distance for Co-Channel Interference into a 30 MHz FSS with Fixed 15 dB and Uniform Distribution of 15 to 55 dB Building Loss (El = 20 deg, Az = 0 deg)

- Select 5% usage at any instant with 12 Km Vs 19.5 Km protection distance on bore sight of FSS
- Drops to 6.7 Km at 90 deg. from bore sight
- Depends on actual loss distribution -> next slide

19.5 Km reduced to 12 Km
With Uniform loss model

Target -12dB I/N cumulative

5%/164
Building loss measurements provide up to 40 dB interference protection opportunity over a fixed 15 dB assumption.

> 100x capacity increase opportunity
Simulation Model for Indoor CBSD Interference to Radar

- Measured GPS loss (simulated here) will *include below* the roof line clutter loss
- Loss is reciprocal at the same frequency (shown as solid green traces, dashed are direct but high loss paths)
- No clutter at radar end

\[ I_{\text{Radar(cbsd)}} = \text{EIRP} - L_{\text{ATM}}(d) - L_{\text{bl}}(15\,\text{dB, random}) - G(\text{diff}_{\text{elv}}, \text{diff}_{\text{Az}}) \, \text{dBm} \]
I/N to Radar 1 Vs Indoor Loss Model and ITM

- Up to 40 dB less interference using measured data over 15 dB fixed loss
- Up to 57 Km less protection range

LossCalc 10 LTE to radar
3.55 to 3.7 GHz Architecture with SAS

- **Measurement type Accepted by Winnforum WG3**

Option 1
CBSD communicates directly with iPosi server
Via internet

Option 2
CBSD communicates with iPosi server through sensing element via internet
Conclusion

- Extreme sensitivity GPS/GNSS can be used to measure indoor to outdoor losses and it can be applied to existing propagation models.
- Measured loss is far superior to fixed 15 dB loss models due to the inclusion of building loss and below the roof line loss effects.
- Measured loss avoids problem that 15 dB assumption may be excessive.
- It can greatly improved CBRS utilization and capacity for protection of FSS, Naval radar/DPA, PAL to PAL GAA to PAL.
- Extendable to CBSD to CBSD protection and to other Shared systems.
Supplemental
CBSD Radar Protection System for Analysis

60m CBSD spacing, 2 Km by 2 Km
1089 CBSDS

ITM model [2]
H_Radar=50 m
H_CBSD=25 m

2015 International Conference on Computing, Networking and Communications (ICNC), Workshop on Computing, Networking and Communications (CNC)
Mo Ghorbanzadeh, Eugene Visotsky, Prakash Moorut, Weidong Yang
Radar Antenna Pattern over CBSD Cluster

- Demonstrates impact of antenna gain and propagation
Worst case Protection of Ship-borne Radar from single in-building LTE CBSD with Free Space

Radar at 50 m above sea level
LTE terminal also 50 m above sea level but in building

Example: Building containment loss can determine if there is sufficient building loss as close as 2.7 Kms from Naval radar #1 in the main beam

Uses NTIA Radar parameters

LTE CBSD in building
3.5 GHz signals have a minimum of 4 dB more loss with the average at 11 dB

Implies losses measured by iPosi at 1.5 GHz actually indicate 4 dB more loss at 3.5 GHz.
Building Material Loss-Rappaport

- Losses mostly dramatically higher at 3.5 Vs 1.5 GHz
- Exception for old glass

Fig. 13. Measured attenuation and frequency-dependent models for different facade elements.