Boosting Artificial Intelligence in Software Defined Systems with Open Infrastructure

Li Zhou, Qi Tang, Jun Xiong, Haitao Zhao, Shengchun Huang, Jibo Wei

College of Electronic Science, National University of Defense Technology, China
Hunan Engineering Research Center of Software Radio, China

Nov 15th, 2018
'software defined' is being labeled in a growing number of systems.

- Software defined radio
- Software defined radar
- Software defined mobile network
- Software defined sensor network
- Software defined satellite network
- Software defined cloud computing
- Software defined data center
- Software defined storage
- Software defined visualization
Software Defined System

National University of Defense Technology

• Software infrastructure plays an essential role.

<table>
<thead>
<tr>
<th>Type</th>
<th>Commercial</th>
<th>Open Source</th>
<th>Open Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal</td>
<td>Windows, iOS</td>
<td>Linux, Android, ROS</td>
<td>SCA, STRS</td>
</tr>
<tr>
<td>Network</td>
<td>Cisco ACI, VMware NSX</td>
<td>Beacon, Floodlight, OpenDaylight, ONOS</td>
<td>OpenFFlow</td>
</tr>
<tr>
<td>Cloud</td>
<td>Microsoft Azure, Amazon Web Services (AWS), Alibaba Cloud</td>
<td>OpenStack, Kubernetes</td>
<td></td>
</tr>
</tbody>
</table>

Components, Applications, Services

Unified or standardized APIs
Terminal SDS

Cloud SDS

e.g. SCA
- Deployment, management, interconnection and intercommunication of software components

e.g. Kubernetes
- Automate deployment, scaling, and management of containerized services
AI-able Terminal SDS

- Inspired by NASA Glenn cognitive communications systems project

<table>
<thead>
<tr>
<th>Cognitive Engine</th>
<th>Observe API</th>
<th>Act API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application Layer

- Application 1
- Application 2
- Application N

Infra API

Infrastructure Layer

- Operating System

HAL API

Hardware Layer

- General Processors: CPU, GPU, FPGA, ...
- Hardware Devices: RF, Ethernet, USB, ...

How to boost AI in SDSs with open infrastructure?

- Cognitive Engine: OODA Loop & Training
- Possible Hardware: CPU, GPU, AI Chips
- Observe:
 - query data from applications
 - spectrum data, parameters, etc.
- Act:
 - configure parameters into applications
 - Install/uninstall/start/stop/switch applications
Open AI-able Cloud Infrastructure

Basic Services
- User Management
- Software Repository
- Application Development
- SDR Platform Controller
- SDR Platform Monitor
- Test and Certification

AI as a Service (AIaaS)
- Learning Framework:
 - TensorFlow,
 - Caffe,
 - PyTorch
 - ...
- Data Analysis:
 - Pandas,
 - Statsmodels
 - scikit-learn
 - ...
Optimize cognitive engines in SDSs

- Create training scenarios
 - Centralized networks
 - Decentralized networks
 - Distributed networks
 - Wired/wireless backhaul

- Build dataset
 - Geography data
 - Spectrum data
 - Channel data

- Train parameters
 - Neural network
 - ...

- Train policies
 - Support Vector Machine
 - Reinforcement Learning
 - ...

- Knowledge database
 - Transfer learning
Deployment on NUDT Campus

Indoor SDRs

Outdoor SDRs

Cloud Servers

- 60 SDRs are deployed initially
 - 24 SDRs in the laboratory
 - 36 SDRs outside in the campus
- Cloud servers are deployed in the laboratory
 - Intranet deployment only currently
 - Internet deployment is on the way
e.g. Cell Deployment & Planning

- **Assumptions**
 - Spatial traffic (user distribution) varies from time to time in a region following some traffic patterns.
 - Centralized controller & wired backhaul

- **Problems**
 - How to deploy minimal number of small cell base stations to meet users’ spatial traffic requirements?
 - How to control the ON/OFF status of the small cell base stations to maximize energy efficiency?

Example Application (1)

e.g. Cell Deployment & Planning

- **Our approach**: Support Vector Machine (SVM) + Deep Neural Network
e.g. User Clustering

- **Problem**: How to group users into clusters with optimal size?
- **Assumptions**
 - Mobile ad hoc network
 - Users are divided into clusters distinguished by spectrum band (i.e., channels).
 - Too large cluster size would result in heavy intra-cluster communication collisions
 - Too small cluster size would result in large number of clusters, which leads to complex inter-cluster communication

- **Our approach**: Reinforcement Learning (POMDP) + Deep Neural Network
Summary and Future Work

• SDSDevOps is an environment that devotes to the development, operation, test and training of SDSs for students and researchers based on an open cloud infrastructure.

• Massive centralized/Decentralized/distributed, wired/wireless backhaul scenarios can be created.

• We plan to deploy and validate more applications that we used to study them by simulation on SDSDevOps.
 – Cooperative Spectrum Sensing
 – Cognitive MAC protocols
 – Resource Management
 – Mobility Management
 – ...