
TOWARDS AN ONTOLOGY FOR
SCA API’S

Durga Suresh and Mieczyslaw Kokar

Northeastern University

AGENDA

• Introduction to SCA

• SCA Specification

• UML Vs. OWL

• The Need for an Ontology

• UML to OWL Mapping

• SCA 4.1 Specification to SCA41 Ontology

• Checking for Consistency

• Work in Progress: Querying the Specification

• Work in Progress: Writing Rules

• Conclusion

• Future Work : Prototyping

• Questions??

SCA 4 .1
COMPONENTS

AND INTERFACES

• Components definitions
reference Interfaces
definitions

• Components realize
Interfaces

• SCA Conforming product
must comply with SCA
Specification

• SCA Architecture of
defined using Components
and Interfaces

SCA 4.1
ARCHITECTUR
AL OVERVIEW

• SCA Architecture is
composed of

• System Architecture

• Application Architecture

• Platform Devices and
Services Architecture

• Core Framework
Control Architecture

SCA 4.1
INHERITANCE

STRUCTURE OF
COMPONENTS

• Another view of the SCA
4.1 Specification showing
the structure of creating
an Application Component

• SCA is a component-
based architecture where
component refers to a
piece of software

NEED FOR
AN

ONTOLOGY

• No open-source implementation of the SCA
since OSSIE. Many COTS solutions are
available.

• There is continuous development of API’s for
the SCA

• It is difficult to automatically analyze the
Specification

• UML does not provide inference capabilities

• Prototyping the API without implementation
is not possible

UML TO OWL
MAPPING

UML Elements OWL Elements
Class, property owned attribute,
type

Class

Instance Individual

ownedAttribute, binary association Property

Subclass subClassOf

Generalization subProperty

N-ary association, association class Class, Property

Enumeration oneOf

Disjoint, cover disjointWith, unionOf

Multiplicity minCardinality
maxCardinality

Package Ontology

Dependency Reserved name rdf:Property

SCA 4 .1
SPECIF ICATION

TO SCA41
ONTOLOGY

Association Object Property

Interrogable owl:topObjectProperty-> hasParticipant->
interrogable

Testable owl:topObjectProperty-> hasParticipant->
testable

Controllable owl:topObjectProperty-> hasParticipant->
controllable

Releasable owl:topObjectProperty-> hasParticipant->
releaseable

Configurable owl:topObjectProperty-> hasParticipant->
configurable

Connectable owl:topObjectProperty-> hasParticipant->
connectable

creates owl:topObjectProperty-> creates

delegates owl:topObjectProperty-> delegates

interfaces owl:topObjectProperty-> interfaces

accesses owl:topObjectProperty-> accesses

SCA 4 .1
SPECIF ICATION

TO SCA41
ONTOLOGY

• Nuvio Foundational
Ontology is imported
into CRO2

• CRO2 is imported into
SCA Ontology

• CRO2 defines the terms
in the Cognitive Radio
Domain

Import

Import

SCA41
ONTOLOGY

SCA41
ONTOLOGY

UML VS. OWL METRICS

• 26 UML Class diagrams that
describe Interfaces

• 22 UML Class diagram that
model component

Axioms 1149
Logical axiom
count

643

Declaration axiom
count

428

Class count 278
Object property
count

111

Data Property
count

20

Individual count 20

CHECKING FOR
CONSISTENCY

• UML Specification is checked
for consistency

• Class diagram shows the
inheritance structure of
Application Component
Factory Component

• Ontology shows the
structure of mapping

• Reasoner will show
inconsistency when
inheritance relation is not
satisfied

SCA API’S

• SCA is independent of the application domain

• Different applications are supported by different domain-
specific API’s

SCA Core Framework

Automotiv
e API’s

Robotics
API’s

Base Station
API’s

JTRS
API’s

SCA API’S

• Partial list of JTRS API’s
Audio Port Device API Ethernet Device API

Frequency Reference Device API GPS Device API

Modern Hardware Abstraction Layer
(MHAL) API

Serial Port Device API

Timing Service API Vocoder Service API

MHAL On Chip Bus (MOCB) API Packet API

JTRS Platform Adapter (JPA) API

WIP: QUERYING THE
SPECIFICATION

• Map one of the API’s of the JTNC e.g. the
Transceiver API to SCA41 Ontology (we
have already done this). Write Queries to
check for correctness of the relationships
and dependencies

• Write rules that can show how the API
works

• Rules and Constraints will be written in BVR

WIP: RULES AND CONSTRAINTS

LESSONS LEARNED

• SCA41 Ontology enables:

• Checking for consistency and querying

• Can establish a standard with the radio domain

• No need to implement API’s individually

FUTURE WORK

• Prototype the API’s in the SCA

• Writing use cases that include SDR domain and SDN
domain will help clarify the need for the Ontological
approach

FUTURE OF SCA

• Future of SCA is unclear from yesterdays panel.

• The idea of having multiple framework was discussed and
seemed to be the future

• Prototyping will still be useful and hence should be
explored

THANK YOU FOR YOUR TIME!
QUESTIONS???

	Towards an Ontology	for SCA API’s
	Agenda
	SCA 4.1 Components and Interfaces
	SCA 4.1 Architectural Overview
	SCA 4.1 Inheritance Structure of Components
	Need for an Ontology
	UML to OWL Mapping
	SCA 4.1 Specification to SCA41 Ontology
	SCA 4.1 Specification to SCA41 Ontology
	SCA41 Ontology
	SCA41 Ontology
		UML	Vs. OWL Metrics
	Checking for Consistency
	SCA API’s	
	SCA API’s
	WIP: Querying the specification
	Lessons learned�
	Future Work
	Future of sca
	Thank you for your time!�Questions???

