

Extending/Optimizing the USRP/RFNOC Framework for Implementing Latency-Sensitive Radio Systems

Joshua Monson*, Zhongren Cao^, Pei Liu~, Travis Haroldsen*, Matthew French*

11/14/2018

*USC Information Sciences Institute Arlington, VA

^C3-COMM Systems Vienna, VA

~New York University

3811 N Fairfax Drive Arlington, VA

4676 Admiralty Way Marina del Rey, CA

USC Information Sciences Institute

Reconfigurable Computing Group @ USC/ISI

- Over 20 years performing cutting edge FPGA research
- > 100 Journal and Conference publications
- Focused on FPGA and ASIC, System-Level Design, Productivity, TRUST and Security
- Custom ASIC/FPGA CAD Tool (TORC)

ISI: A Large, vibrant, path-breaking research Institute

- Part of USC's Viterbi School of Engineering located in "Marina Tech Campus" (Marina del Rey) and in Arlington, VA
- >\$80M per year in funding from a diversified base of sponsors
- ~300 people mostly research staff
- Facilities to conduct ITAR, classified, and unclassified research

Overview

- Discuss Extensions/Optimizations to the UHD/RFNOC that allowed us to meet stringent latency requirements of the transceiver
- Experiences, lessons learned, and development efforts to implement a broadband CSMA/CA based OFDM transceiver on an Ettus E310 USRP Software Defined Radio (SDR) platform.
- Supports link layer latency-cooperative transmissions

COMBAT Project

•Over 95% of casualties in Operations Enduring Freedom, Iraqi Freedom, and New Dawn occurred after operations transitioned from linear, conventional fights to the nonlinear, nonconventional stabilization phase

- A majority of missions during the nonconventional stabilization phase are carried out by dismount squads at the tactical edge
- -Sharing situational awareness among soldiers is <u>vital</u> to mission successes
- -Multicast plays an increasingly important role in edge networks
- •Goal: Improve the throughput of wireless multicast and broadcast in dismounted squad networks in order to significantly enhance the situational awareness at the tactical edge
 - 1. C. Thielenhaus, P. Traeger, E. Roles, "Reaching forward in the war against the Islamic State," PRISM, Nation Defense University 12/2016
 - Sources: 2. E. Roles, Presentation on RAA in DARPA Industry Day, Jan. 2017

COMBAT Innovations

- COMBAT system works to support and improve IP multicast schemes such as the SMF in RFC 6621
 - IP multicast to provide connections among clusters
 - Local mobility within clusters is handled by COMBAT in the link layer

System Level Simulation

Simulation Setup

- Topology: Mobile distributed on a disc R=100 meter
- Radio Propagation: Path loss + AWGN
- Traffic: Multicast only from a random node.
- Random Waypoint Model: Velocity (0.1-4 m/s), Pause duration (0-60 s).

COMBAT Objectives

- Demonstrate Improvements in Relay Throughput on Prototype OFDM Transceiver over Worst Link Scenario
- Requirements:
 - 10 MHz Bandwidth, 40 MSPS
 - Utilize CSMA/CA

COMBAT Latency Requirements

- Contention-free relay with PHY-assisted ACK/NACK
- CSMA/CA deadlines
 - Enable Compatibility with Existing Systems
- Throughput
 - RX-to-TX Latency is critical for throughput

Software-Defined Architecture

- USRPs are latency-insensitive peripherals
- Latency is low, but SDRs not intended to meet stringent latency CSMA/CA deadlines

Enabling Advances in SDR Architecture

Standard SDR Architecture

Block Diagram of N210

Embedded SDR

Architecture

- Single Package
- **Host/FPGA Latency Smaller**
- **Larger FPGA**

Block Diagram of E310

Host

Radio Frequency Network on Chip (RFNOC)

- Dynamically Programmable Network-on-Chip
- Provides a design entry-point into the FPGA

E310 RFNOC Base Design (FPGA Only)

RFNOC Initial Configuration on E310

E310-RFNOC Base Design (FPGA Only)

E310 RFNOC Base Design (FPGA Only)

E310 RFNOC Base Design (FPGA Only)

NOC IF NOC IF

ADC/DAC IF

Freed **53**% of the FPGA Resources!

	LUT	FF	BRAM	DSP
Total ZYNQ 7020 Device	53,200	106,400	140	220
RFNOC	41,247	55,783	116	146
(Initial)	(77%)	(52.4%)	(82.8%)	(66.3%)
RFNOC baseline (RFNOC/Radio)	12,546	15,840	26	0
	(23.5%)	(14.8%)	(18.6%)	(0%)
COMBAT optimized	45,319	52,540	104.5	120
	(85.1%)	(47%)	(74.6%)	(52%)

RFNOC Latency

Static Delay through RFNOC .625 us

RFNOC CLOCK = 50 MHz (400 MB/Sec)

CE CLOCK = 40 MHz (40 MSPS, 160 MB/Sec)

RFNOC Latency

Minimum RX –to-TX Delay

RFNOC	3.0 us
ADC/DAC IF	~250 ns
RF-Frontend	5.0 us
Total	8.25 us

RFNOC CLOCK = 50 MHz (400 MB/Sec)

CE CLOCK = 40 MHz (40 MSPS, 160 MB/Sec)

Low-Latency RFNOC Extension

Low-Latency RFNOC Block Benefits:

- Minimum Latency Limited by RF configuration and a couple cycles
- Selectable Select LL for TX, RX, or TX/RX
- Maintains Compatibility with RFNOC/UHD; however needs additional work to support GNURadio

Minimum RX –to-TX Delay

RENOC	-3.0 us-
ADC/DAC IF	~250 ns
RF-Frontend	5.0 us
Total	5.25 us

RFNOC CLOCK = 50 MHz (400 MB/Sec)
CE CLOCK = 40 MHz (40 MSPS, 160 MB/Sec)

Other Mods/Extensions to E310/UHD

Updates to REPO

- Added Block Diagram Build Flow
- Construct Vivado GUI Project for Block Diagrams
- Smoother Integration Vivado IP

Exposed AD9361 Control

Exposed SPI Interface to Write AD9361 Control

Debugging

- Built Custom Cable and Implemented Virtual JTAG
- Integrated Virtual JTAG Server/Driver

OFDM Transceiver Architecture

1. Upper MAC

- a) Wraps Payloads in Packets
- b) Manages COMBAT Protocols
- Moves Packets to and from Packet Buffers

2. Lower MAC

- a) Configures and ManagesRX and TX
- b) Handles latency sensitive protocol (e.g. relay forwarding, etc.)
- c) Inform Upper MAC of received packets.

3. Packet Buffers

- a) TX: Hold packets that have been staged from Transmission
- b) RX: Hold packets that have been received and decoded

4. OFDM RX/TX

- a) TX: Transform Bits to OFDM baseband samples.
- b) RX: Transforms OFDM baseband Samples to bits

RX Samples

Control BUS

Performance Statistics

40 MSPS, 10 MHz BW

RFNOC Latency Measurements

RX-to-TX Latency exceeds Requirement (34 us)! Best Case Relay of 10.98 Mb/S

Low-Latency IF Measurements

- Reduced RX-to-TX Latency by 50%!
- Optimizations:
 - RFNOC
 - Adjusted FC Buffers
 - Adjusted FC ACKs
 - MAC Code
 - Added –O3 (50%)
 - Adjusted Algorithms
 - Overlapped More relay processing with RX
 - Added B. Shifter, Mult

- Meets Latency Requirement
- +4.7% Achievable Relay Throughput!
- 2.5% Packet loss due to TX Underrun
 - Likely due to Flow Control ACK

Low-Latency IF Measurements

OFDM Relay 18 Mb/s Rate

Relay Latency: 22.6 us

RFNOC Review

Benefits	Drawbacks
Simple FPGA Design Entry Point into Ettus Stack	Not Intended for ultra-low latency processing
Excellent for High-level Design Tools like GNURadio/RFNOC	No Abstraction for Low Latency Signals communicating between blocks (e.g. state-inputs and outputs)
Excellent for Modular Design	
Flexible	
Stock IP to Connect To RFNOC	

- We will be releasing our <u>Low-Latency RFNOC Block</u> and <u>NOC Radio Extension</u> as open-source shortly on https://github.com/ISI-RCG (likely location)
- Recommended using these cores for ultra-low latency processing

Conclusion and Summary

- Implemented Latency-Sensitive CSMA/CA Radio System on USRP E310/E312
- Made Several Extensions and Improvements to Permit Latency Sensitivity
 - Created Low-Latency Radio Block and Low Latency RFNOC Block
 Shell
 - UHD Updates that Permitted RX->TX without Host
 - Enabled Vivado Block Diagram Build Flow
 - Implemented Lower MAC In Microblaze Processor
 - Enabled TX to Read from RX Packet Buffer
 - Transfer Packets to/from FPGA Rather than Samples
- Future Work:
 - Push Abstraction Levels Higher (Mapping to GNURadio)

Questions

