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Motivation

3

• Runtime adaptation of computing systems to their 
dynamic environment.
– Deploy intelligent control logic alongside signal processing 

functionality.
– Defer some optimization and design decisions to runtime.

• Challenges for system operation in the communication 
system. 
– Operation should be optimized for both communication 

parameters as well as operational parameters.
• Stochastic models can be used to capture uncertainty 

and variation in communication and computation 
systems and communication channels.



Background: Markov Decision Process
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• MDPs provide a framework for 
decision making under uncertainty.

• Extremely general and flexible.
– Hybrid deterministic and 

Stochastic systems. 
• Probabilistic transitions combined 

with inputs.
– Given an input at a state, next 

state is chosen probabilistically. 
– Associated with reward function.

• By defining a system using the constructs of an MDP, a control 
policy can be generated to  maximize the reward using well-
known, efficient solver algorithms.
– Linear Programming or Dynamic Programming.
– Multitude of open source toolboxes with solvers (C/C++, Python, 

MATLAB, …).



Markov Modeling for Embedded Signal Processing
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• Algorithmic method to convert measurable quantities into control 
policies.

• Enables autonomous adaptation of system level configurations.

• Processing Request can be implicit or 
explicit.

• Properties can be physical constraints.
– Programmable logic size.
– Transition time between states.



Framework for Adaptive Signal 
Processing Systems
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Hierarchical MDP framework for Compact System-level Modeling (HMCSM).



Policy Generation in HMCSM
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• Derived by an MDP solver, which is a software module that 
automatically generates optimized policies from MDP model 
specifications.

• Inputs to the MDP solver in HMCSM:
– Stochastic models of environment and system
– Reward function
– Control actions

• The stochastic models of the environment and system 
include, for each of the two models, the definition of the 
state space and state transition matrix.

• The system model can be updated at run-time.
– Dynamic reconfiguration of the model allows robust 

optimization of system operations.



Factored MDP Models
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• A single Markov decision process (MDP) is transformed into 
nested multiple MDPs that can be independently solved.

• Results in smaller storage requirements and faster solver 
runtime.
– Demonstrated in our experiments using HMCSM.

• Enables more efficient dynamic updating of models.



Case Study: Digital Channelizer Block 
Diagram
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MDP Model for Digital Channelizer
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• A simulation for a dynamic channelizer was created with 3 top-level processing states
– FIR Downconverter (with 8 sub-configurations)
– DFT Filter Bank
– Sleep

• 2-frame delay was assumed to switch between algorithms
• Power measurements taken by running C language implementations of the algorithms on 

ARM Cortex-M3
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Factored MDP Model for Digital 
Channelizer

11



Experiments and Results—Average 
Power with Different Configurations
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• Platform for Channelizer: Raspberry Pi 3 Model B
• Device for Power Measurement: Tektronix Keithley Series 2280 

Precision Measurement DC Power Supply 

Average processing power of all the available configurations.



Experiments and Results—Simulation 
Results of MDP Solutions
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Simulation results for MDP-I. Comparison among MDP-generated policies 
and fixed-configuration designs.

In addition to providing better energy efficiency compared to the fixed configuration 
designs, our MDP approach:

• can be configured systematically to generate a much larger set of trade-off 
options (Pareto-optimized fronts);

• ensures optimality (with respect to the given reward function).



14

• Solver running time
– MDP Solver: MATLAB-based open source solver, named MDPSOLVE
– Platform for MDP Solver: 

• Processor: i7-4710HQ running at 2.50GHz
• RAM: 12.0 GB
• OS: 64-bit Windows 10

– MDP-I solver running time: 294ms
– MDP-II-a solver running time: 50.8ms
– MDP-II-b solver running time: 41.5ms
– In a deployment with a fixed processing system (MDP-II-b) and 

changing external environment (MDP-II-a), the hierarchical MDP 
scheme reduces the solver time from 294ms to 50.8ms, which is a factor 
of over 5.7X smaller.

• Model size
– MDP-I: 1.63MB
– MDP-II: 265kB
– MDP-II reduces model size by a factor of over 6.1X.



Conclusion
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• Hierarchical Markov decision process (MDP) 
framework for design and implementation of 
adaptive embedded signal processing systems

• Enables robust optimization across a wider design 
space compared to conventional methods

• Use of factored MDPs leads to more compact 
memory requirements, faster solver time, and more 
efficient dynamic updating of the models.

• Prototyped by building on the Lightweight Dataflow 
Environment (LIDE) for model-based signal 
processing system design
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Q&A



Background: Dataflow Modeling
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• Basic concepts of dataflow modeling:
– Digital Signal Processing (DSP) system          directed dataflow 

graph
– Computational functions          nodes (actors)
– Communication channels between actors          edges (FIFOs)
– Actor Firing: Actor execution as a discrete unit of computation
– Token: The encapsulation of some well-defined amount of data 

Consumption/Production Rate: Number of tokens 
consumed/produced from/to the input/output FIFO during a single 
actor firing



Background
LightWeight DataFlow (LWDF)

19

• LightWeight DataFlow (LWDF): a programming methodology for 
integration of, experimentation with, and optimization of dataflow 
modeling approaches.

• Actor Mode: Determines the dataflow behavior of the actor.
• Enable function: Checks actor firing condition according to its current 

mode. This function can be bypassed at run time if static scheduling 
analysis can ensure the result.

• Invoke function: Executes an actor firing according to its current mode.
• Lightweight Dataflow Environment (LIDE): 

– Provides a compact set of LWDF application programming 
interfaces (APIs) that is used for constructing, connecting, and 
executing dataflow components such as actors, edges, and 
graphs.

– LIDE APIs have been implemented in a variety of implementation 
languages, including C, Verilog, and CUDA.



Factored MDP Model for Digital 
Channelizer
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Transition States
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• Added to model reconfigurations within a processing resource with duration longer than 
one frame.

• Represents transition through undesirable temporary state to more desirable final state.
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Rewards: Multiobjective Optimization
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• In an MDP framework, a Reward function is a mapping:

• We use a scalarization approach to steer the MDP 
solver with multiple performance metrics:

– i=1: “Productivity” = Number of output channels produced
– i=2: “Power Consumption” = Average power consumed by the 

processing platform

• Metrics must adhere to convention of 1=most 
rewarded, 0=least rewarded

• Metrics can be known at design time or measured at 
runtime

• At design time, the application engineer instructs the 
system in terms of r =  Relative importance of each 
metric, instead of static rules for reconfiguration.

𝑅𝑅 𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ : 𝒮𝒮 × 𝒜𝒜 × 𝒮𝒮 → ℝ

𝑓𝑓𝑖𝑖 𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ : 𝒮𝒮 × 𝒜𝒜 × 𝒮𝒮 → [0,1]

𝑅𝑅 𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ = �
𝑖𝑖

𝑟𝑟𝑖𝑖 𝑓𝑓𝑖𝑖(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′)



Results 1: MDP vs. Fixed Rules
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Results 2: MDP vs. mHARP
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Application 1: 
Dynamic Spectrum Access

Application 2:
Sequential Sensing

[Hsieh 2014]
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