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ABSTRACT

This paper develop an automatic modulation classification

(AMC) method for cognitive radio (CR). The proposed method

employs the spectral correlation function (SCF) to generate the

unique pattern signatures for each modulation scheme. Fur-

thermore, a low-complexity binarized convolutional neural net-

work (CNN) is designed to classify modulation schemes by rec-

ognizing the SCF-based pattern signatures. By employing the

low-complexity CNN, the computationally costly 617632 float-

ing point multiplication operations required in the conventional

CNN are represented by zero computational cost no connec-

tions, simple connections, negation operations, bit-shifting oper-

ations, and bit-shifting with negation operations. This work uti-

lizes simulated modulated signals that employed BPSK, QPSK,

2-FSK, 4-FSK, and OFDM with QPSK sub-carrier modulation

schemes. The performance of the proposed method is eval-

uted for modulated signals with different SNRs. Furthermore,

the modulation classification accuracy achieved by the proposed

low-complexity CNN is compared with that achieved by the con-

ventional CNN. The simulations section evaluates the perfor-

mance of the proposed method. As shown in simulations, the

accuracy of the proposed automatic modulation classification re-

mains higher than 91% even when the SNR of the measurement

environment is as low as 0 dB.

1. INTRODUCTION

With growing increase of demand frequency bands of electro-

magnetic spectrum using for radio frequency (RF) communica-

tion becoming a scared natural resource. Cognitive radio (CR)

has attracted a lot of interest as a technique for efficiently uti-

lizing the scarce spectrum resources [1]. In order to achieve an

efficient transmission and to address the challenges of data se-

curity such as jamming, interference, and blocking, modulation

schemes are being used in RF communication. BPSK, QPSK,

2FSK, 4FSK, and OFDM are some of the widely used modula-

tion schemes that are used for encoding data on multiple carrier

frequencies. Receivers of the CR systems should have the ca-

pability to automatically identify the modulation schemes used,

it is an intermediate step for signal demodulation of the intelli-

gent reciever [2]. Furthermore, detecting available modulation

scheme on a carrier channel is a crucial step for spectrum sens-

ing which is an essential function of CR systems [3, 4].

Likelihood-Based (LB) and Feature-Based (FB) approaches

are the two main commonly established approaches for AMC.

LB approaches provide optimal performance but require perfect

knowledge of receive signals. FB approaches are sub-optimal

approaches but require less prior knowledge about the received

signal [2]. Most modern approaches of AMC are analytical

feature-based approaches that use advanced signal processing

methods to analytically derive known features. In [5], Deng et

al. used template machine-based approach to classify multi-

level amplitude phase shift keying (MAPSK) signals. In [6],

Wu et al. suggest using analysis of higher orders statistics to

engineered features for modulation detection.

Deep learning methods are artificial neural network (ANN)

based machine learning techniques that have multiple layer hi-

erarchies of ANNs. These techniques are more effective in ex-

tracting hierarchical features from raw data [7]. Deep learning

methods have been used for pattern recognition in various ap-

plication areas [8–12]. In our previous work, we proposed an

automated modulation classification (AMC) method with a sig-

nal processing mechanism that uses spectral correlation func-

tion (SCF) to generate noise-resilient and distinguishable 2-D

signature patterns and deep belief network (DBN) based clas-

sifier for classification of modulation schemes [13]. Convolu-

tional neural networks (CNNs) are one of the most successful

deep learning techniques inspired by the neuron arrangement of

the visual cortex of mammals [14]. CNN-based methods are

widely used for image classification tasks including radar sig-

nature analysis [15–18], In this paper, we leverage CNN as the

deep learning-based classification method for the AMC.

The main challenge of implementing deep learning methods

is the high computation-complexity that increases the power and

area cost of digital implementations for deep learning based

classifiers. High computation-complexity is a result of the high

number of floating-point multiplications operations. In our pre-

vious work, we proposed a multiplierless low-complexity DBN

with direct mapping to binary logic circuits to use as the classifi-

cation technique for AMC [19]. In this work, we design a multi-

plierless CNN-based classifier for classification of SCF patterns

of modulation methods. In [20], Lin et al. proposed a bina-

rization method for backpropagation algorithm which produces

binary weights {−1, 0, 1}. In this paper, we exploit this method

to realize the multiplierless low-complexity CNN.
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In the following section, we provide an overview of the pro-

posed system. Sections 3 and 4 briefly discuss SCF pattern gen-

eration and the low-complexity CNN, respectively. The simu-

lation of modulated signals, implementation of proposed low-

complexity CNN for modulation classification, and the sum-

mary results obtained are shown in Section 6. In Section 7, the

conclusions and future work are presented.

2. OVERVIEW
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Figure 1: Overview of the proposed system.

As shown in Fig. 1, the proposed deep learning-based AMC

method contains a spectral correlation function (SCF)-based

feature extraction method followed by the low-complexity CNN-

based pattern classifier, which classifies the generated SCF pat-

terns to identify the embodied modulation scheme of the re-

ceived signal.

3. SCF SIGNATURE PATTERNS

Cyclic Autocorrelation Function (CAF) is defined to quantize

the amount of correlation between different frequency shifted

versions of a given signal and represent the fundamental param-

eters of their second order periodicity [21]. CAF is calculated

as follows:

Rα
x [l] =

[

lim
N→∞

1

2N + 1

N
∑

n=−N

x[n]x∗[n− l]e−j2παn

]

e−jπαl

(1)

Where x[·] is the given signal and α = m/T0 is the cyclic fre-

quency, T0 is the process period, and m is an integer. Spec-

tral correlation function (SCF) is the Fourier transform of CAF,

which is described in the following equation.

Sα
x [f ] =

∞
∑

l=−∞

Rα
x [l]e

−j2πfl (2)

Table 1: The floating-point multiplication operations required in CNN.

Layer Floating point Multiplications

Convolution layer 1 24× 24× 5× 5× 32 = 460800
Convolution layer 2 12× 12× 5× 5× 32 = 115200
Convolution layer 3 6× 6× 2× 2× 32 = 4608

Fully connected ReLU 1152× 32 = 36864
Fully connected softmax 32× 5 = 160

The Number of

Required Multiplications
617632

Where f the temporal frequency of the given signal.

Modulated signals contain 2nd order periodic statistical fea-

tures associated with the corresponding modulation scheme. 2-

D order features unique to each modulation scheme can be ex-

tracted from the SCF of the modulated signal [21]. In this work,

we use SCF pattern classify modulation schemes such as FSK,

BPSK, QPSK, and OFDM. However, to identify higher order

modulations, such as 16QAM and 64QAM, higher order meth-

ods need to be used [22]. Another advantage of using the SCF

patterns is the resilience to stationary impairments such as addi-

tive white Gaussian noise (AWGN) because the SCF suppresses

stationary features [21].

4. LOW-COMPLEXITY CONVOLUTIONAL NEURAL

NETWORK

As shown in the Fig. 2, the CNN designed in our work consists

of 3 convolution layers, 2 pooling layers, a fully connected layer

with rectifier linear units (ReLU), and a softmax-based output

layer. The inputs to the CNN are 2D images having the size of

24 × 24. The first convolution layer evaluates 32 features with

5× 5 kernel size. Maximum pooling is performed after the first

convolution layer with the kernel size of 2×2, which reduces the

image size to 12×12. The second convolution layer evaluates 32

features with 5× 5 kernel size along with 2 maximum pooling,

which reduces the size of the image to 6× 6. The third convolu-

tion layer evaluates 32 features with 2× 2 kernel size. The out-

puts of the 32 kernels of the third convolution layer are reshaped

and combined to form a vector of the size 6 × 6 × 32 = 1152.

A fully connected layer with 1024 ReLU units is added on top

along with a softmax layer for classification.

If the weights of the convolution layers and fully connected

layers remain as floating-point numbers, the total number of

floating point multiplication operations required to perform in a

single iteration of testing is shown in Table 1, where we assume

the number of class labels as 5. Since floating point multiplica-

tion is computationally expensive in digital logic and the number

of the total multiplications required for the CNN is very high, the

deployments of the above CNN becomes a hardware-expensive

task. By modifying the backpropagation algorithm of the CNN

as shown in Table 2, we replace the floating-point weights of

the CNN by using five possible values −2p,−1, 0, 1, 2p, where
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Figure 2: The structure of CNN.

p is a positive integer. By doing so, we reduce the hardware-

expensive floating-point multiplications to the operations that

are much less costly in the digital hardware as shown in Table 3.

5. SIMULATION RESULTS

In this section, we evaluate our proposed method. Furthermore,

we also compare the accuracy of our proposed low-complexity

CNN, that is the essential component of our method, with that

achieved by the conventional CNN.

Simulation of Modulated Signals

We simulate the modulated signals with different modulations

schemes using MATLAB/Simulink software. The modulation

schemes used in this work are ASK, 2FSK, 4FSK, BPSK,

QPSK, and OFDM with BPSK modulated sub-carriers. For all

simulated signals, the carrier frequency is selected as 1 kHz and

the symbol rate is chosen to be 100 Hz. The amplitudes of the

signals are normalized to the range [0, 1]. For simulation of

BPSK and 2-FSK modulated signal, a data stream of 256 sym-

bols with binary symbols in random order is used. In 2-FSK

modulation scheme, the two frequencies used for modulation

are 100 Hz and 160 Hz. For simulation of QPSK and 4-FSK

modulated signal, a data stream of 256 symbols with 4 symbols

in random order is used. In 4-FSK modulation scheme, the four

frequencies used for modulation are 100 Hz, 120 Hz, 140 Hz,

and 160 Hz. For the simulation of OFDM, 256 data random

data stream is used with 4 symbols. OFDM system simulated

contains 128 QPSK modulated sub-carriers.

In order to study the resilience of proposed method in fad-

ing channels, we added additive white Gaussian noise (AWGN)

to simulated modulated signals. Therefore, the signals are sim-

ulated with a range of SNR 0 - 5 dB. SCF patterns of simu-

lated modulated signals are generated using a MATLAB Com-

munications System Toolbox functions [23]. SCF patterns gen-

erated for simulated BPSK, QPSK, 2-FSK, 4-FSK, and OFDM

with QPSK sub-carriers modulation schemes with SNR 5 dB are

shown in Figs. 3, 4, 5, 6, and 7, respectively. Figure 8 shows the

2D projection of the SCF patterns for the simulated modulation

schemes when SNR is 5 dB.

Table 2: The training algorithm for updating our low-complexity CNN.

Operators and functions:

. ≥: the elementwise more than or equal comparison of

two matrices.

.×: the elementwise multiplication of two matrices.

y = sign(x): if x < 0, y = −1, else y = 1.

y = absolute(x): if x < 0, y = −x, else y = x.

Y = rand(X): randomly assigns yij ∈ [0, 1]
and dim(Y) = dim(X).

y = cast(x): if x = true, y = 1, else y = 0.

W = backprop(W, f): applies the gradient descent based

backpropagation algorithm to fine-tune the weight matrix

W, where f is a batch of training data.

f = nextbatch(F, batchsize): returns the next batch of

training data according to batch size, where F is the

training data set.

Wc = clipping(W, L): clips the element values of weight

matrix W to be in the range [−L,L] where L is a

predetermined scalar.

Inputs: L-clipping level, W-initial weight matrix ,

F-training data, T-labels corresponding to training data,

N -number of training iterations.

Output: Wb-binarized weight matrix (wij ∈ {−1, 0, 1})

Steps:

For epoch 6 N
f = nextbatch(F, 50)
W = backprop(W, f)
If (mode(epoch, 100) = 0)

Wc = clipping(W, L)
S = sign(Wc)
P = absolute(Wc)/L
T = P. ≥ rand(P)
Wb = cast(T). × S

End

End
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Table 3: Digital logic mapping of multiplications with low-complexity

weights.

Weight Value Mapping

0 No connection

1 Connection

−1 Negation

2p Right shift by p bits

−2p Right shift by p bits and negation

Figure 3: SCF pattern of simulated BPSK modulated signal: SNR of

the simulated signal is 5 dB.

Figure 4: SCF pattern of simulated QPSK modulated signal: SNR of

the simulated signal is 5 dB.

Figure 5: SCF pattern of simulated 2-FSK modulated signal: SNR of

the simulated signal is 5 dB.

Figure 6: SCF pattern of simulated 4-FSK modulated signal: SNR of

the simulated signal is 5 dB.
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Figure 7: SCF pattern of simulated OFDM modulated signal: SNR of

the simulated signal is 5 dB.

Pre-Processing and Training

The gray-scale images of the SCF patterns are resized to be

48 × 48 images. Fast Fourier transform (FFT) based method

is used for image scaling. A 2-dimensional (2D) FFT operation

is implemented on the original grayscale images and a 48 × 48
pixel square is selected from the center of the FFT transformed

image. Then inverse 2D FFT is performed to achieve the scaled

down image. By doing so, high-frequency components of the

original image are filtered out, and thus high-frequency noise

is removed from the scaled down image. Considering the sym-

metry of the patterns, a quarter of the pixels from the resized

images is used as the input for the low-complexity CNN clas-

sifier. Therefore, the input size of the low-complexity CNN is

24× 24.

The low-complexity CNN is trained using data that includes

400 of 2000 patterns corresponding to each modulation scheme

which contained SCF patterns generated for signals with differ-

ent SNR levels. As a comparison, a conventional CNN, which

has the same structure but uses floating-point accurate weights,

are also trained with the same 2000 training data. Another data

set containing 250 patterns from each SNR for each modulation

scheme is used to evaluate the performances of the CNNs. The

classifiers based on low-complexity and conventional CNNs are

implemented using TensorFlow APIs [24]. In the simulation, we

set the number of iterations as 2000 and the batch size to be 20.

At each 100th iteration of backpropagation training, binariza-

tion is performed for the low-complexity CNN. The simulation

results are illustrated in the following subsection.

Results

The classification accuracy low-complexity CNNs and conven-

tional CNN as the SNR of the modulated signal changes from 0

to 5 dB are shown in Figs. 9 and 10, respectively.

From Figs. 9 and 10, we can observe that the classifica-

tion accuracy reduces as the SNR decreases from 5 to 0 dB.

For conventional CNN, classification accuracy is above 98%

for all modulation schemes except BPSK. For BPSK modula-

tion scheme, classification accuracy observed from conventional

CNN is 92%. For our low-complexity CNN, the classification

accuracy is above 97% for all modulation schemes except BPSK.

For BPSK modulation scheme, the classification accuracy ob-

served for low-complexity CNN is 91.2%. Therefore, based on

the simulation results, we can observe that our low-complexity

CNN achieves comparable accuracy in classification of mod-

ulation schemes compared with that achieved by conventional

CNN. Furthermore, our proposed CNN outperforms the conven-

tional CNN in low computational complexity. Overall, our pro-

posed CNN achieves a good tradeoff between the performance

and the computational complexity.

6. CONCLUSION

This paper proposes a deep learning-based cognitive radar sys-

tem for automatic modulation classification in cognitive ra-

dio by using SCF function and low-complexity CNN method.

The noise resilient SCF generate unique signature patterns for

each modulation scheme and the low-complexity CNN is de-

signed to classify the patterns. Our proposed low-complexity

CNN has the advantage of containing no multipliers while a

conventional CNN with the same structure requires perform-

ing 617632 floating-point multiplication operations. As illus-

trated in the simulation results, our proposed low-complexity

CNN method achieve comparable accuracy compared with con-

ventional CNN. As future work, we plan to study the possibil-

ity of SCF base feature extraction for higher order modulation

schemes and apply the proposed method for real-time detection

of modulations in experimentally captured signals.
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