

BLACKSPOT: USING TENSOR DECOMPOSITIONS TO GUIDE INSPECTION

OF SOURCE CODE

David Bruns-Smith (Reservoir Labs, New York, NY, USA; bruns-smith@reservoir.com)

James Ezick (Reservoir Labs, New York, NY, USA; ezick@reservoir.com)
Janice McMahon (Reservoir Labs, New York, NY, USA; mcmahon@reservoir.com)
Jonathan Springer (Reservoir Labs, New York, NY, USA; springer@reservoir.com)

ABSTRACT

In this paper we introduce Blackspot, an extension to

R-Check SCA that uses unsupervised machine learning based

on tensor decompositions to organize and highlight sections

of source code for more systematic inspection. Using markers

identified by R-Check SCA’s Pitchfork rule language, multi-

dimensional decompositions are used to cluster code so as to

group similar structures for accelerated manual inspection

and, when seeded with examples of known weaknesses, to

prioritize code fragments for rigorous review based on

similarity derived from latent features. We show how multi-

dimensional analysis provides a precision advantage over

matrix SVD-based approaches and enables both accelerated

compliance testing and more directed discovery of potentially

critical software weaknesses. Utilizing high-performance

tensor decomposition techniques provided by Reservoir’s

ENSIGN Tensor Toolbox, Blackspot scales to millions of

lines of code, making it practical for application to complex,

large-scale cyber-physical systems. Using an open SCA radio

waveform as a first example, we illustrate how Blackspot can

be applied to guide inspection for SCA compliance testing

and weakness discovery in the software radio domain.

1. INTRODUCTION

Software inspection naturally divides into two

complementary classes: dynamic testing and static analysis.

Dynamic testing involves the execution of the software being

inspected, typically over a predetermined set of test cases or

scripted list of use scenarios. While dynamic testing has the

advantage of directly running the software being inspected,

the scope and coverage of testing is limited to the execution

paths exercised by the predefined set of test cases. In contrast,

static analysis involves reasoning over the artifacts – usually

source code – of the system being inspected. Because formal

reasoning methods such as data-flow analysis and model

checking are abstract, they are not limited to a finite set of

execution traces and have the potential to make conclusive

statements about all possible program paths. However, the

analysis required for some properties can lead to reasoning

challenges that are intractable over millions of lines of code.

In other cases, the underlying logical problem can be

undecidable [1]. These realities then lead to compromised

forms of analysis that scale, but at the cost of decreased

precision – either false positive or false negative results. In

these cases – where a sufficient set of test cases cannot be

constructed and the necessary abstract properties cannot be

proven – there remains a need for human involvement in

software testing.

 In this paper, we introduce Blackspot as a new approach

for using unsupervised machine learning based on tensor

decompositions to help guide human code inspection. A

tensor is a multi-dimensional array and a tensor

decomposition is a generalization of the matrix Singular

Value Decomposition (SVD). The SVD operation is the

foundation of latent semantic analysis [2], a technique that

has been applied to unsupervised topic discovery in text.

SVD methods have also previously been applied to the

discovery of known code weaknesses in modest-sized code

bases [3][4].

 In Blackspot, markers spanning multiple aspects of the

source code are extracted using R-Check SCA’s Pitchfork

rule language. Tensor decompositions then guide source code

inspection in two ways. First, components generated by the

decomposition allow clustering of the code by structure. For

tasks such as manual inspection required for compliance

testing of certain SCA requirements [5][6], this allows

sequencing of inspection tasks in a logical way leading to a

reduced number of conceptual “context switches” between

tasks. Ideally, this increased continuity should accelerate

inspection and reduce the human tendency for error. Second,

when combined with markers extracted from known forms of

cyber weaknesses, decompositions provide guidance by

allowing for the identification and ranking of “synonyms” for

those weaknesses. When applied to weakness discovery, we

show how the additional dimensions supported by tensor,

rather than matrix, analysis provides a more precise result.

 By utilizing lessons from machine learning rather than

traditional formal methods from data-flow analysis and

model checking, the goal is to sidestep undecidability

limitations and the resulting necessity of false positives with

an automated technique that provides a unique, somewhat

Proceedings of WInnComm 2016, Copyright © 2016 Wireless Innovation Forum All Rights Reserved

40

mailto:bruns-smith@reservoir.com
mailto:ezick@reservoir.com
mailto:mcmahon@reservoir.com
mailto:springer@reservoir.com

more human, perspective on source code. This perspective

generates quantifiable multi-aspect equivalences that cluster

code based on latent features that generally cannot be

explicitly articulated as concise rules or patterns.

 The remainder of this paper is organized as follows.

Section 2 provides an overview of unsupervised machine

learning based on tensor analysis as applied to source code.

This includes the basics of tensors, tensor decompositions

and clustering, tensor formation for code analysis, and the use

of Pitchfork for extracting markers. Section 3 provides an

application of Blackspot to organizing code for inspection,

motivated by problems drawn from SCA compliance

requirements. Section 4 illustrates how Blackspot extends

prior work based on SVD methods and can be applied to

detecting abstractions of source code weaknesses based on

latent feature similarity. The paper concludes with a

discussion of directions for future work in Section 5.

2. UNSUPERVISED LEARNING BASED ON

TENSOR DECOMPISTIONS APPLIED TO

SOURCE CODE

Blackspot uses the unsupervised discovery of latent features

in source code to cluster similar code structures for

systematic inspection. One previously-applied approach for

automatically detecting latent patterns in source code has

been to embed functions within a vector space. Specifically,

there is one index (vector space dimension) for each symbol

of interest, such as a variable type or a function call, within

the code. Let S be the set of all symbols within the source

code. Then, each function is embedded within an |S|-

dimensional vector space, where in each dimension the

function is assigned a value of 1 if the corresponding symbol

appears within the function and 0 otherwise. Principal

Component Analysis (PCA) can then be performed to find

patterns within the usage of symbols across functions. This is

accomplished by forming a matrix with one column per

function vector, computing the Singular Value

Decomposition (SVD) of the matrix, and then using cosine

similarity to compare vectors for different functions projected

into the latent feature space. This technique has been applied

to open software projects to aid discovery of previously

undetected weaknesses [3]. However, this approach is

severely limited in that it can only analyze a single aspect of

functions – in this case the occurrence of symbols.

 Analyzing source code accurately depends not just on the

occurrence of symbols, but the structures in which those

symbols occur, and the context in which those symbols are

being used. In a later refinement of the prior work [4], each

function is written as a composition of Abstract Syntax Tree

(AST) subtrees, combining structural information with

symbolic information. While this improves the quality of the

analysis, the manner of combining the two types of

information is necessarily imprecise owing to the limitations

of matrix analysis. To illustrate, consider the simple case

where two functions have precisely the same structure, but do

not share any of the same symbols. One would expect source

code analysis to recognize this similarity. In the SVD-based

approach, the symbols are different, so the AST subtrees

would appear different, and the similarity would not be

recognized. What is needed to accurately perform this

analysis are tensors – arrays that allow symbol, structure,

context, and potentially other orthogonal factors to be

represented as wholly-separate modes.

Representing Source Code as Tensors

With Blackspot, we extend the basic approach from a two-

dimensional array (matrix) formulation to a multi-

dimensional array (tensor) formulation in order to compare

diverse aspects of the source code simultaneously. This

allows us to analyze information such as structure and symbol

occurrence separately and distinctly – to detect, for example,

cases where different symbols are used within similar

structure or similar structure occurs with different symbols.

 For the rest of this paper we will assume the language of

tensor analysis. A tensor is a multi-dimensional array. In this

parlance, a vector is a one-dimensional tensor and a matrix is

a two-dimensional tensor. (The overloading of the word

dimension is unfortunate. Each index within a vector in a

vector space is called a dimension – we will refer to them as

indices. When we use dimension it is to refer to a mode of a

tensor.) Each mode of the tensor has an index set – for

Blackspot this will include the set of functions, the set of

symbols, the set of AST subtrees, and the set of symbol kinds.

The size of each mode is equal to the number of indices. In a

d-dimensional tensor, for every d-tuple of indices there is a

corresponding entry in the tensor. In the special case of a two-

dimensional tensor (a matrix), the index sets are the rows and

columns and for every combination of row and column there

is an entry within the matrix. A d-dimensional tensor is said

to be rank-1 if it can be written as the outer product of d

vectors. That is, for tensor T and vectors v1,…,vd:

𝑇 = 𝑣1 ⊗ 𝑣2 ⊗…⊗ 𝑣𝑑

𝑇(𝑖1, 𝑖2, … , 𝑖𝑑) = 𝑣1(𝑖1) ∗ 𝑣2(𝑖2) ∗ … ∗ 𝑣𝑑(𝑖𝑑)

 In general, the rank of a tensor is the smallest number of

rank-1 tensors whose sum equals the original tensor.

 So to extend the previous approach, instead of building

a matrix where every column is a function and every row is a

symbol, we build a tensor. Functions and symbols are

dimensions in the tensor just as in the matrix case. However,

the tensor will also include structure and kind information as

additional tensor modes.

Proceedings of WInnComm 2016, Copyright © 2016 Wireless Innovation Forum All Rights Reserved

41

Additional Dimensions for Tensor Analysis

 In Blackspot, the structure mode contains subtrees of the

AST. In order to emphasize code that is structurally similar

regardless of surface level differences, we introduce a layer

of abstraction. Loops of various kinds are all grouped under

the name LOOP. Likewise, conditionals are grouped together

as IF. Furthermore, for the purposes of storing results as

strings, we introduce a notation for writing these tree

structures as follows: (1) if a symbol occurs at the top level

of a function, record its structure as *, (2) if a symbol occurs

within a loop, record its structure as LOOP(), (3) if a symbol

occurs within a conditional, record its structure as IF(), and

(4) if one structure is a child of another within the subtree,

then place that structure within the parentheses of the other

structure e.g., LOOP(IF()IF()). A symbol occurs inside a

structure if that symbol occurs as a leaf anywhere within the

subtree. For building the tensor used in this analysis, we look

(recursively) at all subtrees of the AST with tree depth ≤ 2.

 The symbol kind mode describes what kind of symbol

appears. We have divided the context of symbols into five

kinds: VAR, CALL, THROW, NEW, and DEL. The symbol

char * can occur as a normal variable where it would be

assigned the kind VAR. On the other hand, the symbol

char * might be explicitly allocated with malloc or new

and in this case it would be identified with the NEW kind.

Likewise, invalid_argument (and other exceptions) would

have the kind THROW and getPort() (and other functions

occurring as symbols) would get the kind CALL.

 In the resulting four-mode tensor, there is an entry for

every (function, symbol, structure, kind) combination, just as

there is an entry for every (function, symbol) combination in

the two-dimensional matrix case. In the tensor, the entry is a

1 if that symbol of that particular symbol kind occurs as leaf

of that AST subtree within that function, and 0 otherwise.

Tensor Decompositions

The two-dimensional approach uses the SVD of the matrix to

extract latent patterns. With additional modes, the tensor is

decomposed using a higher-order generalization of the SVD

called a CANDECOMP/PARAFAC (CP) decomposition [7].

An SVD decomposes a matrix M into 𝑀 = 𝑈𝐷𝑉𝑇 where U

and V are called factor matrices and D is a diagonal matrix of

size R x R that contains the R singular values. The CP

decomposition takes a d-mode tensor T and decomposes it

into a predetermined number of components. Each

component is a rank-1 tensor and consists of a weight λ and

vector of eigenscores for each mode in the tensor. The tensor

is thus approximated by the weighted sum of the components.

 Such a decomposition can only be exact if the number of

components is greater than or equal to the rank, R, of the

tensor T. In many cases the rank R of a decomposition is less

than the rank of the tensor T, resulting in an approximate

decomposition. However, this kind of low-rank

approximation is often desirable as it clusters together similar

Figure 1. Tensor decompositions show how functions are broken down into patterns composed of symbols, structures, and kinds. This

figure shows a hypothetical example of two functions composed of three patterns.

Proceedings of WInnComm 2016, Copyright © 2016 Wireless Innovation Forum All Rights Reserved

42

patterns of behavior from the original data. From this view,

each component represents a latent pattern or concept found

within the source input, and in this sense tensor

decompositions are an unsupervised learning technique.

 As one might expect, tensor decompositions are

significantly more computationally intensive than traditional

matrix decomposition operations. Tensors are large and

operating on them requires leveraging the considerable

sparsity common to most practical applications. This

bottleneck has been a limiting factor to the more widespread

application of tensor methods. In Blackspot, we apply

ENSIGN [8], a high-performance toolbox specifically

engineered to scale to large, sparse tensor problems.

 Each one of the components produced by the

decomposition is a latent pattern discovered within the

original data. The component weight reflects the number of

tensor entries captured by the pattern. As discussed above, a

component is made up of one vector from each mode where

there is an entry (eigenscore) in the vector for each tensor

mode index. So in this case, there is one vector with an entry

for each function, another vector with an entry for each

symbol, and so on. An eigenscore indicates whether or not a

particular mode index contributes to the pattern. If in one of

the vectors an entry has a value of 1.0, that means it is the

only index that contributes to the pattern captured by the

component. If an entry has a score of 0.0 then it is unrelated

to the pattern. Likewise, if two entries have a score of 0.5 in

a single vector, the pattern is comprised equally of those two

indices.

 Typically, one analyzes each component as a different

pattern of activity between the d modes of the tensor. In

Blackspot, we apply an “asymmetric” function-centric

analysis. Each component is interpreted as a pattern

composed of symbols, kinds and syntactic structures (AST

subtrees). As Figure 1 illustrates, each function, in turn, is

then composed from a combination of these patterns.

Applying a tensor decomposition thus produces a two-fold

result: (1) a breakdown of each function into constituent

patterns, and (2) a breakdown of patterns into constituent

structures, symbols, and kinds.

CORBA::Object_ptr

AudioCapture::getPort(const

CORBA::Char* name)

 throw (CORBA::SystemException,

 CF::PortSupplier::UnknownPort)

{

 std::string temp(name);

 if (temp != "AudioCaptureOut") {

 throw

CF::PortSupplier::UnknownPort();

 }

 return m_pcmout->getPort();

}

AudioCapture::getPort

Pattern Uniqueness Score

39 0.2222

57 0.0502

93 0.0172

Pattern 39
Structure Score

IF() 1.0

Symbols Score

CF::PortSupplier::UnknownPort 0.5

operator!= 0.5

Kind Score

CALL 1.0

Pattern 57

Structure Score

IF() 1.0

Symbols Score

tk_error 1.0

Kind Score

THROW 1.0

Figure 2. These tables show the results of the tensor

decomposition for the AudioCapture::getPort() function. The table

below the code shows the breakdown of the function into patterns.

The Uniqueness Score is a value between 0 and 1 indicating how

unique the pattern is to this particular function. The tables to the

right show three of these patterns and their composition in terms

of structure, symbol, and symbol kind. The score indicates what

fraction of the total symbols, structures, or kinds within the pattern

that particular index represents. Note that “tk_error” and

“tk_class” are Pitchfork type symbols that refer to the type of

“UnknownPort” and “std::string,” respectively.

Pattern 93

Structure Score

* 1.0

Symbols Score

tk_class 0.98

tk_typeref_tk_class 0.02

Kind Score

VAR 1.0

Proceedings of WInnComm 2016, Copyright © 2016 Wireless Innovation Forum All Rights Reserved

43

FM3TR Example

As a first illustrative example, we applied Blackspot to the

familiar FM3TR waveform – approximately 100,000 lines of

C++. The tensor built from the FM3TR code base has four

modes – as discussed above – with the following sizes: 353

functions, 331 symbols, 5 symbol kinds and 24 structures.

There are a total of 1,515 non-zero tensor entries, so the input

tensor is very sparse (99.9891% sparsity). The tensor was

decomposed into 100 components using the Alternating

Poisson Regression (APR) algorithm for calculating a CP

decomposition [9]. On a single-core tablet PC, the

decomposition took 1.1 seconds – this tensor is extremely

small by the standards of typical ENSIGN use cases.

 Figure 2 shows an example of a single function from the

FM3TR source code and how that function is broken down

into patterns (components) by the tensor decomposition. In

the figure, we refer to the eigenscore associated with the

function in each component as its uniqueness score. A

uniqueness score of 1.0 means this pattern only occurs within

this function. A score of 0.1 would mean 1/10th of the

occurrences of this pattern are in this function. In Figure 3,

the function is represented in five patterns – three of which

are expanded. Within the patterns, the score for each

structure, symbol, and kind represents what fraction that

structure, symbol, or kind contributes to this pattern. For

example, a score of 1.0 for structure = IF() means that this is

the only structure included in this pattern. Likewise a score

of 1.0 for kind = VAR means all the symbols within this

pattern are variables. A score of 0.5 for char and 0.5 for int

means the symbols in this pattern are split evenly between

char and int types. In this way, the decomposition

provides a concise, abstract summary of the composition of

the code that can be queried.

Using Pitchfork to Extract Markers

Blackspot uses Pitchfork [10] to extract the markers from

source code that are used to form the tensors that are then

decomposed for analysis. Pitchfork is a part of R-Check SCA,

Reservoir’s platform for static SCA compliance testing [11],

and enables user-configurable matching of source code

constructs through a scriptable pattern language. To make it

convenient to match distinct, but structurally similar

programs, Pitchfork augments the base C/C++ syntax with a

metalanguage, providing regular expression syntax, pattern-

match variables, wildcards, and other helpful features. In

native operation, users write rules similar in syntax to C/C++

code fragments, which the R-Check SCA analysis engine

then accepts and identifies in the code. Actions associated

with each scripted rule dictate how a matched (or absence of

matched) pattern is reflected in a report back to the user.

 For Blackspot, a fixed set of Pitchfork rules are used to

extract features of interest from the program (populating the

modes of the tensor), while eliding all of the uninteresting

detail of a program. For example, the specific name of a local

variable in a program is not relevant to code similarity, but

the patterns and interplay of control structure and system calls

are crucial. In essence, Pitchfork is capturing whole

fragments of the AST from the source code. For unsupervised

learning, the choice of which observable markers to record

has a significant impact on the ability of algorithm to identify

meaningful latent features. The ability of Pitchfork,

combined with the depth of analysis provided by R-Check

SCA, to extract a rich and flexible set of observable code

constructs is key to the success of the approach.

Pattern 10. Uniqueness = 0.05
Structure Score

IF(IF()) 0.79

IF() 0.21

Symbols Score

tk_error 1.0

Kind Score

THROW 0.9

NEW 0.1

Pattern 11. Uniqueness = 0.11
Structure Score

IF() 0.88

IF(IF()) 0.12

Symbols Score

char * 1.0

Kind Score

THROW 1.0

Pattern 37. Uniqueness = 1.0
Structure Score

IF(LOOP()LOOP()IF()) 1.0

Symbols Score

tk_class 0.4

char 0.2

tk_class * 0.2

int 0.2

Kind Score

VAR 0.8

THROW 0.2

Figure 3. These three tables show three different patterns from the FM3TR code base decomposition, all of which include the THROW

symbol kind.

Proceedings of WInnComm 2016, Copyright © 2016 Wireless Innovation Forum All Rights Reserved

44

3. ORGANIZING CODE FOR INSPECTION

By themselves, the patterns captured as the components of a

tensor decomposition can aid code inspection by providing

an organized profile of which sections of the source code

include which features. This capability can be applied to

accelerate manual inspection for such tasks as SCA

compliance testing. For example, the SCA includes several

requirements that dictate the conditions under which a

specific type of exception must be thrown. These

requirements naturally fall into the gap described in

Section 1 – dynamic testing cannot exercise all of the possible

exception conditions and static analysis cannot prove that the

execution of the exception is limited to the proper conditions.

 From the decomposition, one can query the list of

patterns that involve the THROW kind and see the structures

in which exceptions occur along with the symbols of

particular interest. Figure 3 shows three different patterns

from the same FM3TR code base involving the THROW

kind. The first, Pattern 10, appears mostly in nested

conditionals and, to some extent, in single-level conditionals.

The symbols are all of the tk_error type and the pattern

represents a correlation between allocation (NEW) and

exceptions. The pattern has a low uniqueness score meaning

it occurs in many functions throughout the code base. The

fact that allocation and exceptions over the same type are

highly correlated in Pattern 10 is a point of interest for

systematic inspection of those functions. The person

inspecting the code might also check that no function is

missing from this list associated with the tk_error type.

 Pattern 11 is similar, except that it is restricted to string

(char *) exceptions and these exceptions are not tightly

correlated with allocations. Pattern 11 also occurs more

heavily in single-level conditional statements rather than in

nested conditionals. Now, if an inspector has to check a

condition for all string exceptions, then searching for all

functions containing Pattern 11 will provide an organized list

of code to inspect.

 Pattern 37 is interesting because it is very specific. It has

a uniqueness score of 1.0 meaning it only occurs in a single

function, found to be CF_PropertySet_impl:query.

Its uniqueness is high because it occurs within a very specific

structure, with correlated use of both variables and exceptions

for int, char, tk_class, and pointers to tk_class.

This is a pattern including exceptions not seen anywhere else

in the code base and so it should be checked separately.

AudioPlayback::Init
Function Cosine

Similarity

AudioCapture::Init 0.968

galois::operator- 0.968

CF__PropertySet_impl::index 0.956

CVSDEncoder::ConvertToCVSD 0.956

galois::GaloisField::gen_inverse 0.956

galois::operator>> 0.922

RsBlockDecoder::Init 0.589

FileInput_MAC_LLC::Init 0.576

CVSDEncoder::CVSDEncoder 0.557

RfChannelEmulator::Init 0.469

…

Cluster 1
Function

CharInPort_impl::~CharInPort_impl

CharOutPort_impl::~CharOutPort_impl

ShortInPort_impl::~ShortInPort_impl

ShortOutPort_impl::~ShortOutPort_impl

AudioCapture::~AudioCapture

AudioPlayback::~AudioPlayback

CVSDEncoder::~CVSDEncoder

CVSDDecoder::~CVSDDecoder

MacReceive::~MacReceiver

MacXmit::~MacXmit

…

Cluster 25
Function

BaseAssemblyController:getPort

Packetizer5to7::getPort

Packetizer7to5::getPort

CVSDEncoder::getPort

CVSDDecoder::getPort

FileInput_MAC_LLC::getPort

FileOutput_MAC_LLC::getPort

FM3TR_WaveformPacketizer::getPort

FM3TR_WaveformReceiver::getPort

MacReceive::getPort

MacXmit::getPort

…

Figure 5. These tables show two clusters that result from applying

a simple clustering algorithm that uses cosine similarity as the

distance metric with a distance cutoff of 0.25. The functions in the

first cluster are all deconstructors, whereas the functions in the

second cluster are all "getPort" functions.

Figure 4. This table shows a list of the functions with the top 10

cosine similarities to AudioPlayback::Init.

Proceedings of WInnComm 2016, Copyright © 2016 Wireless Innovation Forum All Rights Reserved

45

From any set of patterns, one can then query the list of

the specific functions that contain these patterns to produce a

list of where exceptions of specific types occur in the code,

sorted by pattern. In this way, code for inspection can be

organized so as to minimize conceptual context switches – an

approach that is more systematic than simple file or symbol

sequence alone. This approach also makes it straightforward

to isolate similar code for deeper, focused inspection when a

violation is found.

4. DETECTING ANOMALIES AND

CODE WEAKNESSES

While using the breakdown of functions into discrete patterns

is useful for organized code inspection, we can also use the

inclusion or exclusion of a function across patterns as a tool

for function comparison. Given a decomposition of a tensor

into R components, we can form a vector of length R for each

function comprised of the eigenscore for that function in each

component. This vector acts as a sort of signature for the

function – its occurrence or not in each latent pattern found

by the decomposition. From these vectors, we can compare

each pair of functions by calculating a distance metric such

as cosine similarity between the vectors. Then, for any given

function, we can rank the other functions by their cosine

similarity to get a list of the most similar functions. As an

example, Figure 4 provides a ranked list of similar functions

for the AudioPlayback::Init function.

 So, for any function of interest, we can find all of those

functions with similar structures, symbols and kinds,

substantially improving ease of inspection. By applying a

simple threshold-based clustering algorithm using the cosine

similarity as the distance metric, we can separate the

functions into distinct similarity clusters. Some of these

clusters of functions are unsurprising. For example, Figure 5

shows a cluster of deconstructors and a cluster of getPort

functions from various classes.

 While unsurprising, even these clusters turn out to be

useful because functions that aren’t clustered as expected

may have anomalous properties to be inspected. For example

there are several deconstructors that are not part of Cluster 1:

 ~Packetizer5to7,

 ~Packetizer7to5,

 ~FM3TR_WaveformPacketizer

 ~FM3TR_WaveformReceiver

A user can use this information to check why these

deconstructors behave differently to make sure there are not,

for example, any structural errors or memory leaks. Likewise,

with the getPort functions, they are not all contained in

Cluster 25:

 AudioCapture::getPort

 AudioPlayback::getPort

 CF_PortSupplier_impl::getPort

In particular, CF_PortSupplier_impl::getPort is

clustered together with functions completely unrelated to

ports.

 One particularly powerful use of cosine similarity across

the function-pattern vectors is weakness extrapolation. If one

MskDemodulator::SymbolSynch
Function Cosine

Similarity

Shared

Patterns

MskDemodulator::Run 0.482 6, 67

FileOutput_MAC_LLC::RewritePacket 0.321 84

ShortInPort_impl::ShortInPort_impl 0.263 74

MskModulator::Modulate 0.263 87, 67,

16

CVSDDecoder::CVSDDecoder 0.217 74

RsBlockDecoder::RsBlockDecoder 0.216 74, 67

FileInput_MAC_LLC::Init 0.129 74

FileOutput_MAC_LLC::Run 0.121 84

MskDemodulator::Init 0.116 74, 67

…

MskDemodulator::SymbolSynch
Pattern Uniqueness

Score

6 0.584

87 0.487

84 0.286

74 0.222

67 0.021

16 0.016

Figure 6. This figure describes the SymbolSynch function in which Cppcheck discovered a memory weakness. The table on the right-hand

side shows the patterns that make up SymbolSynch whereas the left-hand table shows those functions with the top cosine similarities to

SymbolSynch. Additionally, for each function, the table shows which patterns that function shares with SymbolSynch.By focusing on

functions with shared patterns, less inspection in necessary to identify similar weaknesses.

Proceedings of WInnComm 2016, Copyright © 2016 Wireless Innovation Forum All Rights Reserved

46

can identify one weakness in a code base, it is possible to look

at the top functions in cosine similarity to the function

containing the weakness in order to try to automatically

detect similar weaknesses. In this section, we show how our

tensor methods successfully detected a weakness that neither

the open-source Cppcheck [12] static analysis tool nor the

prior SVD-based approach could identify.

 The experiment requires a known weakness from which

to extrapolate, so the starting point was to run a static analysis

tool, Cppcheck, over the FM3TR code base. This analysis

only reported one serious weakness: a memory leak within

the MskDemodulator::SymbolSynch function.

Inspection of other functions with high cosine similarity

discovered a new instance of the same weakness. Figure 6

lists the functions with the highest cosine similarity and

indicates shared patterns.

 From this list, one could simply inspect each function in

turn. However, it’s possible to further pare down which

functions should be inspected by considering what patterns

they share with SymbolSynch. Since the weakness is a

memory leak, the relevant functions must contain symbols of

the NEW kind. Pattern 74 is the only one of these patterns that

includes NEW kind symbols, so functions without Pattern 74

either do not use allocation or they use allocation in a

different way. Thus, even though

MskDemodulator::Run has the highest cosine

similarity, it doesn’t include Pattern 74 so it doesn’t share this

particular weakness. In this case, the high similarity is due to

the specific symbols unique to these functions. For example,

they both call the functions CMPLX_INT16::real and

CMPLX_INT16::imag (contained in Pattern 6), which is

not called by many other functions.

 Furthermore, among those similar functions that do

include Pattern 74, many of them are constructors. In the case

of the memory leak within SymbolSynch, there exists a

NEW without any corresponding DEL. That same pattern is

appearing within these constructors, but in this case we know

it is not a memory leak because a constructor should not free

the memory it’s allocating. So, without even looking at the

code, there are only two likely candidates remaining for the

same weakness. The first,

FileInput_MAC_LLC::Init, was the very first section

of source code we inspected in applying this process, and was

found to have an almost identical memory leak to

MskDemodulator::SymbolSynch.

 This was a weakness that Cppcheck 1.59 was unable to

detect. In addition, we tried to repeat this experiment using

the SVD approach and also could not detect this second

weakness. Just as described in Section 2, the function vectors

were composed into a matrix, the resulting matrix was

decomposed with an SVD, and then cosine similarities were

calculated between the function-pattern vectors in the factor

matrix. Figure 7 shows the high cosine similarities with

SymbolSynch using the SVD approach.

 The function FileInput_MAC_LLC::Init does

not appear anywhere near the top in the list. Our hypothesis

for why the matrix approach is incapable of producing the

same results is as follows: ultimately, trying to extrapolate

between different functions is a multi-dimensional problem.

It is not sufficient to look at just symbols, just structures, or

even a one-dimensional (vector concatenation) combination

of structures and symbols. For detecting weaknesses, it is

important to maintain distinctions between structure, symbol,

and even the context of the symbol. Further note that in the

SVD case, without a symbol kind dimension, it would be

necessary to look through every function in the list because

there is no way to identify only those sharing a similar use of

allocator symbols.

MskDemodulator::SymbolSynch
Function Cosine Similarity (SVD)

MskModulator::Modulate 0.286

ShortInPort_impl::ShortInPort_impl 0.279

MskDemodulator::Demodulate 0.247

CVSDDecoder::CVSDDecoder 0.227

MskDemodulator::Run 0.218

RsBlockDecoder::RsBlockDecoder 0.190

MskModulator::MskModulator 0.183

RfChannelEmulator::RfChannelEmulator 0.180

MskModulator::~MskModulator 0.178

MskDemodulator::~MskDemodulator 0.164

…

Figure 7. This figure shows the cosine similarities with SymbolSynch as reported by the 2D SVD approach. Note that the vulnerable

function the tensor method discovered, FileInput_MAC_LLC::Init, does not appear in this list.

Proceedings of WInnComm 2016, Copyright © 2016 Wireless Innovation Forum All Rights Reserved

47

 In this example, we use one weakness already identified

in the source code to identify a similar weakness. However,

the technique can also be extended to detecting instances of

known weaknesses. To do this, the source code base can be

merged with examples of known weaknesses, such as

examples taken from the Common Weakness Enumeration

[13] database or past project-specific examples from a bug

database. By seeding the code with known weaknesses,

similarities can be discovered using the same process

described in this section. The power of this approach is that

it is based on latent factors rather than a specific rule instance.

While not providing a precise result, it detects synonyms in

code in a way that would be very difficult for a strictly rule-

driven engine to replicate.

5. DIRECTIONS FOR FUTURE WORK

Blackspot represents a unique capability in the realm of static

analysis – one that is intended to augment rather than replace

traditional tools based on dataflow analysis or model

checking. In that spirit, this paper provides a framework for

using tensor decompositions to analyze source code, but the

specific methodology described in the preceding sections is

extremely flexible. There is no limitation to using a tensor

formed from function x structure x symbol x kind as the

modes. We can add any details that are found to be relevant

to detecting source code weaknesses and that can be collected

from the code base. This includes both directly observable

features and derived values such as cyclomatic complexity

[14] for individual functions or empirical “moments”

(statistical observations) over feature counts. Future work

will include building more extensive libraries of Pitchfork

rules and applying other tools and techniques for collecting

and assembling this additional information, making the

analysis even more powerful.

 The ENSIGN tensor toolbox used to perform the

decompositions uses specialized sparse data structures and

exposed parallelism to scale to tens of millions of non-zero

entries. This is more than sufficient to support deep analysis

of multi-million line code bases and extend the applicability

of Blackspot through a broad range of software-radio and

cyber-physical systems.

 In order to transition Blackspot to use in a development

or testing environment, more automation of the

decomposition post-processing is required. For example,

Blackspot analysis can be specifically tied to certain SCA

requirements that still depend on manual inspection of code.

A test engineer, selecting a requirement for testing, could get

a guided, “mechanical turk” style tour through an enumerated

list of code inspection tasks. The tasks would be ordered so

as to minimize mental context switches and each task would

be accompanied by relevant instructions based on the

requirement and what is known about the function. We

believe that such a directed workflow would significantly

accelerate testing and reduce the tendency for human error.

These claims, however, need to be validated in future work.

 The same guided inspection process could also be used

to organize waveform porting tasks. In this way, Blackspot

would be applicable to the Wireless Innovation Forum’s

Most Wanted Innovations #1: Techniques for Efficient

Porting of Waveform Applications Between Embedded

Heterogeneous Platforms [15].

 To be a robust tool for weakness discovery, Blackspot

needs access to a complete library of example code

weaknesses distilled into tensor entries. In addition, while

this paper has illustrated the power of unsupervised learning,

a practical tool for weakness detection should incorporate

supervised (classification) techniques to make concrete

assertions about the likelihood of a weakness occurrence.

Tensor decompositions can be used to train models such as

neural nets that can perform classification tasks [16]. We

intend to explore these extensions in future work.

6. REFERENCES

[1] J. Ezick and J. Springer, “The Benefits of Static Compliance
Testing for SCA Next,” Proceedings of the SDR’11
WInnComm Technical Conference, November 2011.

[2] S. Deerwester, S. T. Dumais and R. Harshman, “Indexing by
Latent Semantic Analysis,” Journal of the American Society
for Information Science, Vol. 41, No. 6, 1990.

[3] F. Yamaguchi, F. Lindner and K. Rieck, “Vulnerability
Extrapolation: Assisted Discovery of Vulnerabilities using
Machine Learning,” WOOT’11, August 2011.

[4] F. Yamaguchi, M. Lottmann and K. Rieck, “Generalized
Vulnerability Extrapolation using Abstract Syntax Trees,”
ACSAC’12, December 2012.

[5] JPEO JTRS Test and Evaluation Laboratory (JTEL) SCA 2.2.2
Application Requirements List v2.2 Release Notes, July 8,
2010.

[6] JPEO JTRS Test and Evaluation Laboratory (JTEL) SCA 2.2.2
OE Requirements List v2.2 Release Notes, November 4, 2010.

[7] T. Kolda and B. Bader, “Tensor Decompositions and
Applications,” SIAM Review, Vol 51, No. 3, 2009.

[8] M. Baskaran, B. Meister, N. Vasilache and R. Lethin,
“Efficient and Scalable Computations with Sparse Tensors,”
HPEC’12, September 2012.

[9] E. C. Chi and T. G. Kolda, "On Tensors, Sparsity, and
Nonnegative Factorizations," SIAM Journal on Matrix
Analysis and Applications Vol. 33, No. 4, 2012.

[10] J. Springer, S. Bernier, J. Ezick and J.P. Zamora Zapata,
“Accelerating SCA Compliance Testing with Advanced
Development Tools,” WInnComm’15, March 2015.

[11] https://www.reservoir.com/rchecksca.
[12] http://cppcheck.sourceforge.net.
[13] https://cwe.mitre.org.
[14] T. McCabe, Sr., "A Complexity Measure," IEEE Transactions

on Software Engineering, December 1976.
[15] http://www.wirelessinnovation.org.
[16] M. Janzamin,, H. Sedghi, and A. Anandkumar, "Beating the

Perils of Non-convexity: Guaranteed Training of Neural
Networks using Tensor Methods," CoRR abs/1506.08473,
August 2015.

Proceedings of WInnComm 2016, Copyright © 2016 Wireless Innovation Forum All Rights Reserved

48

https://www.reservoir.com/rchecksca
http://cppcheck.sourceforge.net/
https://cwe.mitre.org/
http://www.wirelessinnovation.org/

