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Abstract—In order to scale with the demand of higher
data rates and improved spectral efficiency in next generation
wireless communication systems, a large-scale multiple-input
multiple-output (MIMO) technology called massive MIMO has
been proposed. In massive MIMO, appropriate signal to noise
ratios can be achieved by the addition of base station antennas
in place of increasing transmit power. Pilot-based channel
estimation is widely used in conventional MIMO systems where
pilot symbols are sent from the user terminals to the base
station to estimate the channel. In massive MIMO-based cellular
networks, channel estimation in a given cell will be impaired by
the pilot symbols transmitted by users in other cells – rendering
the addition of antennas or transmit power ineffective. This
effect is called pilot contamination. Therefore, pilot-based
channel estimation limits the performance of massive MIMO
systems. Semi-blind and blind methods are alternatives to
pilot-based channel estimation that perform channel estimation
with short pilot symbols and without pilot symbols, respectively.
Blind channel estimation is one of the promising solutions to
the pilot contamination problem in massive MIMO. This paper
compares using MATLAB simulations of a cluster-based COST
2100 channel model the performance of pilot-based, semi-blind,
blind, and adaptive-blind channel estimation methods. The pilot
contamination effect on different channel estimation methods
and how channel estimation methods can be used to overcome
pilot contamination are shown. Finally, an adaptive ICA-based
channel estimation method which outperforms conventional ICA
in terms of computational complexity is proposed.

Keywords - Massive MIMO, Blind Channel Estimation,
Adaptive-Blind Channel Estimation

I. INTRODUCTION

MIMO is the key technology in next generation wireless

communication systems such as IEEE 802.16M and 3GPP

LTE/LTEAdvanced [1]. In cellular systems, MIMO technology

has been adapted as Multi User-MIMO (MU-MIMO), where

multiple antennas are used for more than one user terminal

simultaneously. MU-MIMO provides important advantages for

next generation wireless systems, including enhanced reliabil-

ity, data rate, and energy efficiency [2]. A fifth generation

(5G) of mobile networks is expected to be deployed by

2020. In these future mobile networks there will be an even

greater demand for higher spectral efficiency. Massive MIMO

is one very promising technology that can be leveraged to

meet this demand. The key aspect of this technology is that

it uses significantly more base station antennas to achieve

high spectral efficiency [3]. As the number of base station

antennas increases, the radiated energy from the base station

becomes increasingly narrow. As beams get smaller, more

user terminals can be served and less energy is required to

achieve the same throughput as traditional MIMO. With such

a massive amount of antennas, signal quality can theoretically

be improved without bound while decreasing transmit power

by adding more antennas [4]. It can be built with inexpensive,

low-power components. Achieving these gains in practical

cellular systems becomes a difficult task because the channel

gain between each base station antenna and user terminal

is unknown. The matrix of these gains is generally referred

to as channel state information (CSI). In traditional MIMO

systems, to estimate the CSI, a set of training signals called

pilots are sent from the user terminals. To maximize the

effectiveness of estimating the CSI, the pilot signals must be

orthogonal. This constraint is what causes the main limitation

of throughput for massive MIMO in cellular systems. Pilot

signals must have a minimum duration to serve the users in

each cell. If pilot signals are shared among the cells, it is

possible for two users to interfere while sending long pilot

signals to the base station. As the number of users in each cell

increases, this becomes an inevitable event. This interference

is referred to as pilot contamination which is pictured in

Figure 1. This is a fundamental problem in massive MIMO

systems because the length of the pilot signals is limited

by the coherence time [2]. Several solutions to this problem

have been proposed. Blind channel estimation, angle-of-arrival

(AoA) based, precoding-based and protocol-based methods

are the different techniques to solve the pilot contamination

problem. Blind channel estimation methods use statistics from

the incoming data to estimate the channel without the need

for pilot symbols. Since the success of these algorithms does

not depend on the presence of pilot symbols, this method is a

good candidate for mitigating the pilot contamination problem.

However, the difficulty with using blind channel estimation

methods is that they have much higher computational com-

plexity than pilot-based methods. This becomes even more

exaggerated in massive MIMO systems because the number of

transmitted symbols is more than traditional MIMO systems.

Semi-blind channel estimation methods are also proposed for

the pilot contamination problem. These methods use shorter

pilot symbols to estimate the CSI with lower computational

complexity than blind methods. The most common techniques

Proceedings of WInnComm 2016, Copyright © 2016 Wireless Innovation Forum All Rights Reserved

204



L User Terminals

M Base Station 

Antennas 

Fig. 1: Pilot Contamination

are based on singular value decomposition (SVD) and eigen-

value decomposition (EVD) that are used to estimate the CSI

up to a phase and an amplitude ambiguity. In this paper, we

analyze the relative computational complexity and accuracy

between pilot-based, semi-blind, and blind channel estimation

methods in a massive MIMO system. Additionally, we propose

a novel blind adaptive channel estimation method based on

the Independent Component Analysis (ICA) algorithm. The

proposed method has a reduced computational complexity

over an unmodified version of the ICA-based blind channel

estimation [5].

The paper is organized as follows. In Section II, we sum-

marize the related work on pilot-based, blind, and semi-blind

channel estimation methods. In Section III, we explain our

system model for massive MIMO communication systems. In

Section IV, we discuss different channel estimation methods

for massive MIMO. In Section V, we propose an ICA-based

adaptive-blind channel estimation. In Section VI, we review

our simulation results. We conclude our work in Section VII.

II. RELATED WORK

There have been many proposed solutions to mitigating or

eliminating pilot contamination in massive MIMO systems.

Protocol-based methods try to eliminate pilot contamination

by forcing users in adjacent cells to transmit pilot signals at

separate times. These methods effectively increase the signal-

to-interference-plus-noise ratio (SINR) for individual users,

but ultimately less users can be served. Another solution to

this problem is to design a precoding matrix at the base

station to decrease the interference to users in neighboring

cells. Pilot contamination can be mitigated by using this type

of a precoding-based method, but there is a need for the base

stations to cooperate and thus also a need for a backhaul

between the base stations. AoA-based methods aim to assign

pilots to the users in adjacent cells whose AoA with the

base station do not overlap. Finally, blind channel estimation

methods have been proposed to potentially eliminate pilot

contamination [3].

Channel estimation for MIMO systems have been studied

extensively and have recently been studied in the context

of massive MIMO systems. The most common approach to

channel estimation in these systems is pilot-based channel es-

timation. In this scheme predetermined pilot symbols selected

along some periodic pattern are sent before the transmission

of actual data. The base station receives these pilot symbols

after having been transformed by the channel and uses one of

several proposed estimation methods to estimate the channel.

The more common channel estimators include maximum like-

lihood (ML), least squares (LS), and minimum mean squared

error (MMSE) [6].

Blind channel estimations have also been proposed to

cope with the disadvantages of pilot-based channel estima-

tion methods. Blind channel estimation methods estimate the

channel by using statistics of the received symbols after

having been transformed by the channel. Most of the blind

channel estimation methods are based on second or higher

order statistics. Pilot Symbol Assisted Modulation (PSAM),

Space Alternating Generalized Expectation (SAGE), Multi-

ple Signal Classification (MUSIC), Estimation of Signal Pa-

rameters via Rotational Invariance Techniques (ESPIRIT), A

Posteriori Probability (APP), Viterbi algorithm, ICA, game

theory and many other parameter estimation techniques have

been proposed as blind channel estimation methods [7]. Blind

channel estimation methods can be used to mitigate pilot

contamination, but the computational complexity of these

algorithms is much higher than pilot-based methods. This

computational complexity can be significantly decreased by

using iterative blind channel estimation methods [8]. Semi-

blind channel estimation methods have also been proposed as a

compromise between the computational complexities of pilot-

based and blind methods. A semi-blind channel estimation

which employs EVD on the received signals and resolves a

phase ambiguity matrix using short pilots is proposed in [9].

In [10], another semi-blind approach is proposed using SVD

to exploit the asymptotic orthogonality of the channel vectors

and resolve the ambiguity matrix which can be estimated by

the means of pilot signals. The SVD-based estimation achieves

better performance than the EVD-based estimation. However,

both SVD-based and EVD-based estimation have relatively

high computational complexity when compared to pilot-based

channel estimation.

III. SYSTEM MODEL

A massive MIMO uplink system in which the base station

has M antennas and each terminal user has one antenna is

considered here. In this system, there are N terminal users

where M ≥ N . The L received symbols at M antennas of the

base station can be represented as:

Y = HS +W, (1)
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where Y ∈CM×L is a matrix of the L received symbols at the

M receive antennas of the base station. S∈CN×L is a matrix

of the transmitted symbols that can generally be split up into

pilot and data sub-matrices as S =
[

Sp Sd

]

. H∈CM×N is

the CSI between the base station and N users, and W∈CM×L

is the additive white Gaussian noise (AWGN) matrix. The

propagation channel is assumed to be wide-sense stationary

(WSS) in conventional MIMO systems. However, massive

MIMO systems have a large number of antennas which

span tens to hundreds of wavelengths in space. Therefore,

the propagation channel is resolved into scatterers [11]. The

propagation channel model which is characterized through

scatterers is shown in Figure 2. The COST 2100 MIMO

channel model, which is a geometry based stochastic channel

model (GSCM), models the radio channel with geometric

distribution of scatterers that contribute scattering to the radio

channels. Therefore, we model the radio channel between the

base station and user terminals through COST 2100 MIMO

channel model. In this model, radio channels are constructed

by superposition of multipath components (MPCs). These

MPCs are clustered, as shown in Figure 2. Here, local clusters

have omnidirectional spread in the azimuth plane. On the

other hand, single bounce clusters have independent delay and

azimuth spreads. The large-scale properties of the channel can

be defined by clustering the MPCs [12].

BS
MS

Single 

Bounce 

Cluster
Local Cluster

Fig. 2: Channel Model

IV. CHANNEL ESTIMATION METHODS FOR MASSIVE

MIMO

A. Pilot Based Channel Estimation

In the pilot-based channel estimation, known pilot signals

are transmitted from each user terminal to the base station.

By using these pilot signals, channel coefficients between

the base station and user terminals can be estimated. MIMO

systems that use pilot-based channel estimation methods send

pilot signals periodically so that channel estimates can be

updated continuously as the CSI changes. LS channel estima-

tion method is one of the most common pilot-based channel

estimation methods. It minimizes the squared distance between

the received symbols vector and the transmitted symbols

vector [13].

LS estimate of the channel is given as in the following:

ĤLS = Y (ST
p Sp)

−1ST
p . (2)

B. Blind Channel Estimation

In blind channel estimation, channel coefficients between

the base station and the terminal users can be evaluated

by using the statistical information of the channel and the

particular properties of the received symbols. Since blind

channel estimation methods estimate the channel coefficients

without pilot symbols, the pilot contamination problem can

be mitigated. Several blind channel estimation methods have

been proposed in the literature, and ICA is one of the most

common.

ICA separates signals blindly by first calculating the SVD of

the covariance matrix C = E
{

Y Y T
}

. The SVD of C can be

represented as C = UDUT where U∈CM×M is an orthogonal

matrix and D = diag {λ1, λ2, ..., λM} is a singular matrix. U
and D matrices can be used to divide the signal subspace and

noise subspace as U =
[

US UN

]

and D =

[

DS 0
0 DN

]

respectively [5]. The received symbols vector is then whitened

by projecting the received symbols into the signal subspace in

order to decrease the computation complexity. The whitening

operation of received symbols can be represented as:

YW = DS
−1/2US

TY, (3)

where YW is the whitened data. The channel estimate ĤICA

is obtained by finding an orthogonal matrix such that W =
[w1, . . . , wL] by applying fastICA algorithm which is given in

[5]. The fastICA algorithm iteratively finds orthogonal vectors

which construct W . The estimation of wp or pth column vector

of the orthogonal matrix W starts by taking a random unit-

norm initial vector wp(1). After that, wp(1) is updated by:

wp(k) = E
{

YWpg(wp(k − 1)TYWp)
}

−

E

{

g
′

(wp(k − 1)TYWp)
}

wp(k − 1)
(4)

wp(k) = wp(k)/‖wp(k)‖ (5)

where wp(k−1) and wp(k) are estimates of wp at k − 1th and

kth iterations respectively. YWp is pth column vector of YW .

g(.) and g
′

(.) are the derivatives of G(.) and g(.) respectively.

G(.) can be any nonquadratic function. In fastICA algorithm

G(.) is chosen as:

G(u) = log(fp(u)) (6)

where fp(.) is the density function of sp = wp
TYWp. Then,

Gram-Schmidt like decorrelation algorithm is applied to

prevent outputs to converge to the same maxima [5]. This

decorrelation algorithm can be given as in the following:

wp(k) = wp(k)[1−

p
∑

j=1

wj(k)
T
wj(k)] (7)
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wp(k) = wp(k)/

√

(wp(k)
T
wp(k)) (8)

If |wp(k) − wp(k − 1)| is greater than a tolerance value, the

algorithm goes to next iteration. Otherwise, the estimation

of wp is found as wp = wp(k). After p orthogonal vectors

w1, . . . , wp have been estimated, the fastICA algorithm is run

for wp+1. Once the orthogonal matrix W is obtained, the

ICA-based channel estimation can be applied. The estimated

channel ĤICA can be expressed as:

ĤICA = WYW
−1. (9)

C. Semi-blind Channel Estimation

Even though blind channel estimation mitigates pilot con-

tamination in massive MIMO, the computational complexity

is much greater in blind methods. Semi-blind channel esti-

mation methods have also been proposed to cope with pilot

contamination by instead using shorter pilot symbols than

pilot-based methods. Using shorter pilots effectively reduces

the chance for pilot contamination while making use of pilot

symbols which can be used for purposes other than channel

estimation. One of the most efficient semi-blind channel

estimation method in terms of error rate and computational

complexity uses SVD. K left singular vectors are spanned by

the channel vectors [h1, . . . , hM ] or columns of the channel

matrix H , where K is the number of user terminals that are

in the subspace. The matrix of K left singular vectors can

be approximately defined as the product of the normalized

channel matrix and an ambiguity matrix. The ambiguity ma-

trix, which is estimated by means of pilot symbols, can be

resolved completely by this method [10].

In this method, SVD decomposition is performed on the

covariance matrix C = E
{

Y Y T
}

as given in Section IV-B.

After a pilot-based channel estimation is applied to the re-

ceived symbols as in (2), the SVD-based semi-blind channel

estimation is evaluated as in the following [10]:

ĤSV D = USUS
HĤLS . (10)

V. ICA BASED ADAPTIVE BLIND CHANNEL ESTIMATION

In this section, we propose an adaptive-blind channel esti-

mation method which improves on the fastICA algorithm. The

ICA-based channel estimation calculates ĤICA by finding an

orthogonal matrix such that W = [w1, . . . , wL] and applying

fastICA algorithm which is given in [5]. As described in

Section IV-B, the fastICA algorithm first iteratively finds

orthogonal vectors which construct W . A random unit-norm

initial vector wp(1) which corresponds to pth column of

W is selected at the beginning of each time frame. Then,

it is updated by using the iterative algorithm, which is de-

scribed in Section IV-B. Since generating random unit-norm

vector wp(1) is done in each time frame, the computational

complexity of this method can become much more than

semi-blind and pilot-based channel estimation methods, which

were described in Section IV. To reduce the computational

complexity, we propose to send the orthogonal matrix W
that is produced in a given frame i − 1 to the ICA-based

channel estimation algorithm as a feedback at ith frame. In this

case, computational complexity is reduced as compared to the

ICA-based blind channel estimation algorithm, while getting

the same root-mean-square error for the same signal-to-noise

ratio (SNR) values. The algorithm of the proposed ICA-based

adaptive-blind channel estimation is given in Algorithm (1).

In the algorithm, wi
p(k) stands for pth column vector of W at

the kth iteration of the ith frame.

Algorithm 1 Algorithm for ICA-based adaptive-blind channel

estimation

for i = 1st to nth Frame do

Calculate C = E
{

Y Y T
}

Calculate YW = DS
−1/2US

TY
for p = 1 to L do

wi
p(0) = 0

k = 1
if (i = 1) then

Take a random unit-norm wi
p(1) vector

else

wi
p(1) = wi−1

p (1)
end if

while (|wi
p(k)− wi

p(k − 1)| > tol) do

wi
p(k − 1) = wi

p(k)
Update wi

p(k) by using fastICA algorithm

Apply Gram-Schmidt algorithm

wi
p(k) = wi

p(k)/‖w
i
p(k)‖

k = k + 1
end while

wi
p = wi

p(k)
end for

ĤICA = WYW
−1

end for

VI. SIMULATION RESULTS

A model of a multi-cellular massive MIMO system is con-

structed in MATLAB to test the relative performance of pilot-

based, semi-blind, blind, and proposed adaptive-blind channel

estimation methods. We study the effect of pilot contamination

in massive MIMO in the context of a virtually extended

cellular network, as shown in Figure 3. The values chosen

for the different parameters in our MATLAB simulation are

summarized in Table I. In the simulation, orthogonal pilots are

created with a gold sequence generator. Additionally, we as-

sume that the cells are synchronized during the time pilots are

sent for channel estimation. This is generally considered the

worst-case scenario for pilot contamination. In our simulation,

SNR is defined by:

SNR =
√

PSi
/PNi

, (11)

where PSi
and PNi

are average signal and noise power at the

ith antenna of the base station respectively. Average signal

power at the ith antenna of the base station is defined as:

Proceedings of WInnComm 2016, Copyright © 2016 Wireless Innovation Forum All Rights Reserved

207



PSi
=

1

L

L
∑

n=1

En
2, (12)

where L is the number of transmitted symbols and En is the

energy of the nth received symbol at the ith antenna of the

base station.

Inter-Cell Interference

Pilot Contamination

Pilot Contamination

Fig. 3: Massive MIMO Simulation

Parameter Value

Channel Model COST 2100

Mobiles 90

Mobile Velocity <1 m/s

Frequency 2.4 GHz

BS Antennas 1000

BS Antenna Type Ideal Dipole

Mobile Antennas 1

Pilot Length 20 symbols

Data Length 60 symbols

Cell Area 10,000 sq. m.

Channel Type Rayleigh (NLOS)

TABLE I: Parameter Values of MATLAB Simulation

First, LS channel estimation, SVD-based semi-blind channel

estimation, ICA-based blind channel estimation and ICA-

based adaptive-blind channel estimation methods are com-

pared in terms of root-mean-square error (RMSE) for each

channel element in the case with no inter-cellular interfer-

ence when SNR changes from 0 dB to 20 dB. Then, pilot

contamination effect on the same channel estimation methods

are compared. This time RMSE of each channel estimation

is observed when interference occurs. The length of pilot

sequence and data sequence are kept constant at 20 and 60

symbols respectively. The results in Figure 4 show that ICA

and ICA-based adaptive-blind channel estimation methods are

more accurate than LS and SVD-based channel estimation

methods when there is no inter-cellular interference. Since ICA

and adaptive ICA methods use both pilot and data symbols to

estimate the channel, they give better performance than LS

and SVD methods in terms of error rate. When interference

occurs the error rate increases for both LS and SVD methods

because of pilot contamination. With pilot contamination,

each cell uses the same set of pilot symbols. Thus even for

increasing SNR, both LS and SVD methods reach a limit in

accuracy. On the other hand, ICA and adaptive ICA methods

overcome this issue since they are the least affected by pilot

contamination. Moreover, ICA and adaptive ICA methods give

same performance in terms of error rate in both scenarios (with

or without interference).

SNR
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LS 

SVD

ICA

Adaptive ICA

LS (No Interference)

SVD (No Interference)

Fig. 4: RMSE vs SNR

Then, we analyze the improvement of the adaptive ICA

algorithm in terms of the computational complexity. In Figure

5, the run time of LS, SVD-based semi-blind, ICA-based blind

and ICA-based adaptive-blind channel estimation methods are

compared while the number of transmitted symbols increases

from 50 to 100 with step of ten. The number of pilot symbols

increases from 5 to 10. The results show that ICA has the

highest computational complexity. LS, SVD and adaptive ICA

have much lower computational complexity than ICA. The

change of computational complexity of LS, SVD and adaptive

ICA can be seen clearly in Figure 6. LS has the least com-

putational complexity. We also observe that the computational

complexity of adaptive ICA increases linearly and starts to

become greater than the computational complexity of SVD

while the number of transmitted symbols increases. However,

the computational complexity of adaptive ICA is still very

small compared to conventional ICA. These results show that

adaptive ICA has a reduced computational complexity over

conventional ICA.
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Fig. 5: The computational complexity of LS, SVD-based semi-

blind, ICA-based blind and ICA-based adaptive-blind channel

estimation methods
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Fig. 6: The computational complexity of LS, SVD-based semi-

blind and ICA-based blind channel estimation methods

We show the average run-time of one frame for LS, SVD-

based semi-blind, ICA-based blind and ICA-based adaptive-

blind channel estimation methods in Table II. LS has the

least average run-time. SVD-based semi-blind channel esti-

mation has a higher average run-time than LS due to the

SVD operation. ICA-based blind channel estimation has the

highest average run-time because of the SVD operation and

iterative calculation. It is worth mentioning that adaptive ICA

outperforms the conventional ICA by having a lower average

run-time.

VII. CONCLUSION

Massive MIMO is expected to be one of the key tech-

nologies in 5G wireless systems. Massive MIMO systems,

in which significantly more base station antennas are used,

have been proposed to improve the spectral efficiency and data

Channel Estimation Run Time

LS 0.0002 s

SVD 0.005 sec

ICA 3.8 s sec

Adaptive ICA 0.01 s sec

TABLE II: Average run-time

rates. Effective channel estimation for massive MIMO systems

is one of the most important challenges in addressing pilot

contamination. In this paper, pilot contamination effect on LS

channel estimation, SVD-based semi-blind channel estimation,

ICA-based blind channel estimation and ICA-based adaptive-

blind channel estimation methods are compared for massive

MIMO systems. Simulation results show that ICA and adaptive

ICA give better performance than LS and SVD in terms of

error rate when there is no inter-cellular interference. ICA and

adaptive ICA also achieve better error rates than LS and SVD

in the case with interference. Moreover, both LS and SVD

reach a limit in accuracy when there is interference due to pilot

contamination. Therefore, blind channel estimation methods

provide a more promising solution to the pilot contamination

problem than pilot-based and semi-blind channel estimation

methods. Computational complexity of these channel estima-

tion methods are also compared using MATLAB simulations.

It is observed that adaptive ICA outperforms conventional ICA

in terms of computational complexity.
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