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ABSTRACT 

In this paper we introduce Blackspot, an extension to  

R-Check SCA that uses unsupervised machine learning based 

on tensor decompositions to organize and highlight sections 

of source code for more systematic inspection. Using markers 

identified by R-Check SCA’s Pitchfork rule language, multi-

dimensional decompositions are used to cluster code so as to 

group similar structures for accelerated manual inspection 

and, when seeded with examples of known weaknesses, to 

prioritize code fragments for rigorous review based on 

similarity derived from latent features. We show how multi-

dimensional analysis provides a precision advantage over 

matrix SVD-based approaches and enables both accelerated 

compliance testing and more directed discovery of potentially 

critical software weaknesses. Utilizing high-performance 

tensor decomposition techniques provided by Reservoir’s 

ENSIGN Tensor Toolbox, Blackspot scales to millions of 

lines of code, making it practical for application to complex, 

large-scale cyber-physical systems. Using an open SCA radio 

waveform as a first example, we illustrate how Blackspot can 

be applied to guide inspection for SCA compliance testing 

and weakness discovery in the software radio domain. 

1. INTRODUCTION 

Software inspection naturally divides into two 

complementary classes: dynamic testing and static analysis. 

Dynamic testing involves the execution of the software being 

inspected, typically over a predetermined set of test cases or 

scripted list of use scenarios. While dynamic testing has the 

advantage of directly running the software being inspected, 

the scope and coverage of testing is limited to the execution 

paths exercised by the predefined set of test cases. In contrast, 

static analysis involves reasoning over the artifacts – usually 

source code – of the system being inspected. Because formal 

reasoning methods such as data-flow analysis and model 

checking are abstract, they are not limited to a finite set of 

execution traces and have the potential to make conclusive 

statements about all possible program paths. However, the 

analysis required for some properties can lead to reasoning 

challenges that are intractable over millions of lines of code. 

In other cases, the underlying logical problem can be 

undecidable [1]. These realities then lead to compromised 

forms of analysis that scale, but at the cost of decreased 

precision – either false positive or false negative results. In 

these cases – where a sufficient set of test cases cannot be 

constructed and the necessary abstract properties cannot be 

proven – there remains a need for human involvement in 

software testing. 

 In this paper, we introduce Blackspot as a new approach 

for using unsupervised machine learning based on tensor 

decompositions to help guide human code inspection. A 

tensor is a multi-dimensional array and a tensor 

decomposition is a generalization of the matrix Singular 

Value Decomposition (SVD). The SVD operation is the 

foundation of latent semantic analysis [2], a technique that 

has been applied to unsupervised topic discovery in text. 

SVD methods have also previously been applied to the 

discovery of known code weaknesses in modest-sized code 

bases [3][4]. 

 In Blackspot, markers spanning multiple aspects of the 

source code are extracted using R-Check SCA’s Pitchfork 

rule language. Tensor decompositions then guide source code 

inspection in two ways. First, components generated by the 

decomposition allow clustering of the code by structure. For 

tasks such as manual inspection required for compliance 

testing of certain SCA requirements [5][6], this allows 

sequencing of inspection tasks in a logical way leading to a 

reduced number of conceptual “context switches” between 

tasks. Ideally, this increased continuity should accelerate 

inspection and reduce the human tendency for error. Second, 

when combined with markers extracted from known forms of 

cyber weaknesses, decompositions provide guidance by 

allowing for the identification and ranking of “synonyms” for 

those weaknesses. When applied to weakness discovery, we 

show how the additional dimensions supported by tensor, 

rather than matrix, analysis provides a more precise result. 

 By utilizing lessons from machine learning rather than 

traditional formal methods from data-flow analysis and 

model checking, the goal is to sidestep undecidability 

limitations and the resulting necessity of false positives with 

an automated technique that provides a unique, somewhat 
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more human, perspective on source code. This perspective 

generates quantifiable multi-aspect equivalences that cluster 

code based on latent features that generally cannot be 

explicitly articulated as concise rules or patterns. 

 The remainder of this paper is organized as follows. 

Section 2 provides an overview of unsupervised machine 

learning based on tensor analysis as applied to source code. 

This includes the basics of tensors, tensor decompositions 

and clustering, tensor formation for code analysis, and the use 

of Pitchfork for extracting markers. Section 3 provides an 

application of Blackspot to organizing code for inspection, 

motivated by problems drawn from SCA compliance 

requirements. Section 4 illustrates how Blackspot extends 

prior work based on SVD methods and can be applied to 

detecting abstractions of source code weaknesses based on 

latent feature similarity. The paper concludes with a 

discussion of directions for future work in Section 5. 

 

2. UNSUPERVISED LEARNING BASED ON 

TENSOR DECOMPISTIONS APPLIED TO 

SOURCE CODE 

Blackspot uses the unsupervised discovery of latent features 

in source code to cluster similar code structures for 

systematic inspection. One previously-applied approach for 

automatically detecting latent patterns in source code has 

been to embed functions within a vector space. Specifically, 

there is one index (vector space dimension) for each symbol 

of interest, such as a variable type or a function call, within 

the code. Let S be the set of all symbols within the source 

code. Then, each function is embedded within an |S|-

dimensional vector space, where in each dimension the 

function is assigned a value of 1 if the corresponding symbol 

appears within the function and 0 otherwise. Principal 

Component Analysis (PCA) can then be performed to find 

patterns within the usage of symbols across functions. This is 

accomplished by forming a matrix with one column per 

function vector, computing the Singular Value 

Decomposition (SVD) of the matrix, and then using cosine 

similarity to compare vectors for different functions projected 

into the latent feature space. This technique has been applied 

to open software projects to aid discovery of previously 

undetected weaknesses [3]. However, this approach is 

severely limited in that it can only analyze a single aspect of 

functions – in this case the occurrence of symbols. 

 Analyzing source code accurately depends not just on the 

occurrence of symbols, but the structures in which those 

symbols occur, and the context in which those symbols are 

being used. In a later refinement of the prior work [4], each 

function is written as a composition of Abstract Syntax Tree 

(AST) subtrees, combining structural information with 

symbolic information. While this improves the quality of the 

analysis, the manner of combining the two types of 

information is necessarily imprecise owing to the limitations 

of matrix analysis. To illustrate, consider the simple case 

where two functions have precisely the same structure, but do 

not share any of the same symbols. One would expect source 

code analysis to recognize this similarity. In the SVD-based 

approach, the symbols are different, so the AST subtrees 

would appear different, and the similarity would not be 

recognized. What is needed to accurately perform this 

analysis are tensors – arrays that allow symbol, structure, 

context, and potentially other orthogonal factors to be 

represented as wholly-separate modes. 

Representing Source Code as Tensors 

With Blackspot, we extend the basic approach from a two-

dimensional array (matrix) formulation to a multi-

dimensional array (tensor) formulation in order to compare 

diverse aspects of the source code simultaneously. This 

allows us to analyze information such as structure and symbol 

occurrence separately and distinctly – to detect, for example, 

cases where different symbols are used within similar 

structure or similar structure occurs with different symbols. 

 For the rest of this paper we will assume the language of 

tensor analysis. A tensor is a multi-dimensional array. In this 

parlance, a vector is a one-dimensional tensor and a matrix is 

a two-dimensional tensor. (The overloading of the word 

dimension is unfortunate. Each index within a vector in a 

vector space is called a dimension – we will refer to them as 

indices. When we use dimension it is to refer to a mode of a 

tensor.) Each mode of the tensor has an index set – for 

Blackspot this will include the set of functions, the set of 

symbols, the set of AST subtrees, and the set of symbol kinds. 

The size of each mode is equal to the number of indices. In a 

d-dimensional tensor, for every d-tuple of indices there is a 

corresponding entry in the tensor. In the special case of a two-

dimensional tensor (a matrix), the index sets are the rows and 

columns and for every combination of row and column there 

is an entry within the matrix. A d-dimensional tensor is said 

to be rank-1 if it can be written as the outer product of d 

vectors. That is, for tensor T and vectors v1,…,vd: 

 

𝑇 = 𝑣1 ⊗ 𝑣2 ⊗…⊗ 𝑣𝑑  

𝑇(𝑖1, 𝑖2, … , 𝑖𝑑) = 𝑣1(𝑖1) ∗ 𝑣2(𝑖2) ∗ … ∗ 𝑣𝑑(𝑖𝑑) 
 

 In general, the rank of a tensor is the smallest number of 

rank-1 tensors whose sum equals the original tensor. 

 So to extend the previous approach, instead of building 

a matrix where every column is a function and every row is a 

symbol, we build a tensor. Functions and symbols are 

dimensions in the tensor just as in the matrix case. However, 

the tensor will also include structure and kind information as 

additional tensor modes. 
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Additional Dimensions for Tensor Analysis 

 In Blackspot, the structure mode contains subtrees of the 

AST. In order to emphasize code that is structurally similar 

regardless of surface level differences, we introduce a layer 

of abstraction. Loops of various kinds are all grouped under 

the name LOOP. Likewise, conditionals are grouped together 

as IF. Furthermore, for the purposes of storing results as 

strings, we introduce a notation for writing these tree 

structures as follows: (1) if a symbol occurs at the top level 

of a function, record its structure as *, (2) if a symbol occurs 

within a loop, record its structure as LOOP(), (3) if a symbol 

occurs within a conditional, record its structure as IF(), and 

(4) if one structure is a child of another within the subtree, 

then place that structure within the parentheses of the other 

structure e.g., LOOP(IF()IF()). A symbol occurs inside a 

structure if that symbol occurs as a leaf anywhere within the 

subtree. For building the tensor used in this analysis, we look 

(recursively) at all subtrees of the AST with tree depth ≤ 2. 

 The symbol kind mode describes what kind of symbol 

appears. We have divided the context of symbols into five 

kinds: VAR, CALL, THROW, NEW, and DEL. The symbol 

char * can occur as a normal variable where it would be 

assigned the kind VAR. On the other hand, the symbol  

char * might be explicitly allocated with malloc or new 

and in this case it would be identified with the NEW kind. 

Likewise, invalid_argument (and other exceptions) would 

have the kind THROW and getPort() (and other functions 

occurring as symbols) would get the kind CALL. 

 In the resulting four-mode tensor, there is an entry for 

every (function, symbol, structure, kind) combination, just as 

there is an entry for every (function, symbol) combination in 

the two-dimensional matrix case. In the tensor, the entry is a 

1 if that symbol of that particular symbol kind occurs as leaf 

of that AST subtree within that function, and 0 otherwise. 

Tensor Decompositions 

The two-dimensional approach uses the SVD of the matrix to 

extract latent patterns. With additional modes, the tensor is 

decomposed using a higher-order generalization of the SVD 

called a CANDECOMP/PARAFAC (CP) decomposition [7]. 

An SVD decomposes a matrix M into 𝑀 = 𝑈𝐷𝑉𝑇 where U 

and V are called factor matrices and D is a diagonal matrix of 

size R x R that contains the R singular values. The CP 

decomposition takes a d-mode tensor T and decomposes it 

into a predetermined number of components. Each 

component is a rank-1 tensor and consists of a weight λ and 

vector of eigenscores for each mode in the tensor. The tensor 

is thus approximated by the weighted sum of the components. 

 Such a decomposition can only be exact if the number of 

components is greater than or equal to the rank, R, of the 

tensor T. In many cases the rank R of a decomposition is less 

than the rank of the tensor T, resulting in an approximate 

decomposition. However, this kind of low-rank 

approximation is often desirable as it clusters together similar 

Figure 1. Tensor decompositions show how functions are broken down into patterns composed of symbols, structures, and kinds. This 

figure shows a hypothetical example of two functions composed of three patterns. 
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patterns of behavior from the original data. From this view, 

each component represents a latent pattern or concept found 

within the source input, and in this sense tensor 

decompositions are an unsupervised learning technique. 

 As one might expect, tensor decompositions are 

significantly more computationally intensive than traditional 

matrix decomposition operations. Tensors are large and 

operating on them requires leveraging the considerable 

sparsity common to most practical applications. This 

bottleneck has been a limiting factor to the more widespread 

application of tensor methods. In Blackspot, we apply 

ENSIGN [8], a high-performance toolbox specifically 

engineered to scale to large, sparse tensor problems. 

 Each one of the components produced by the 

decomposition is a latent pattern discovered within the 

original data. The component weight reflects the number of 

tensor entries captured by the pattern. As discussed above, a 

component is made up of one vector from each mode where 

there is an entry (eigenscore) in the vector for each tensor 

mode index. So in this case, there is one vector with an entry 

for each function, another vector with an entry for each 

symbol, and so on. An eigenscore indicates whether or not a 

particular mode index contributes to the pattern. If in one of 

the vectors an entry has a value of 1.0, that means it is the 

only index that contributes to the pattern captured by the 

component. If an entry has a score of 0.0 then it is unrelated 

to the pattern. Likewise, if two entries have a score of 0.5 in 

a single vector, the pattern is comprised equally of those two 

indices. 

 Typically, one analyzes each component as a different 

pattern of activity between the d modes of the tensor. In 

Blackspot, we apply an “asymmetric” function-centric 

analysis. Each component is interpreted as a pattern 

composed of symbols, kinds and syntactic structures (AST 

subtrees). As Figure 1 illustrates, each function, in turn, is 

then composed from a combination of these patterns. 

Applying a tensor decomposition thus produces a two-fold 

result: (1) a breakdown of each function into constituent 

patterns, and (2) a breakdown of patterns into constituent 

structures, symbols, and kinds. 

CORBA::Object_ptr 

AudioCapture::getPort(const 

CORBA::Char* name) 

  throw (CORBA::SystemException, 

     CF::PortSupplier::UnknownPort) 

{ 

  std::string temp(name); 

 

  if (temp != "AudioCaptureOut") { 

    throw 

CF::PortSupplier::UnknownPort(); 

  } 

 

  return m_pcmout->getPort(); 

} 

AudioCapture::getPort 

Pattern Uniqueness Score 

39 0.2222 

57 0.0502 

93 0.0172 

 

Pattern 39 
Structure Score 

IF() 1.0 

 

Symbols Score 

CF::PortSupplier::UnknownPort 0.5 

operator!= 0.5 

 

Kind Score 

CALL 1.0 

 

Pattern 57 

Structure Score 

IF() 1.0 

 

Symbols Score 

tk_error 1.0 

 

Kind Score 

THROW 1.0 

 

Figure 2. These tables show the results of the tensor 

decomposition for the AudioCapture::getPort() function. The table 

below the code shows the breakdown of the function into patterns. 

The Uniqueness Score is a value between 0 and 1 indicating how 

unique the pattern is to this particular function. The tables to the 

right show three of these patterns and their composition in terms 

of structure, symbol, and symbol kind. The score indicates what 

fraction of the total symbols, structures, or kinds within the pattern 

that particular index represents. Note that “tk_error” and 

“tk_class” are Pitchfork type symbols that refer to the type of 

“UnknownPort” and “std::string,” respectively. 

Pattern 93 

Structure Score 

* 1.0 

 

Symbols Score 

tk_class 0.98 

tk_typeref_tk_class 0.02 

 

Kind Score 

VAR 1.0 
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FM3TR Example 

As a first illustrative example, we applied Blackspot to the 

familiar FM3TR waveform – approximately 100,000 lines of 

C++. The tensor built from the FM3TR code base has four 

modes – as discussed above – with the following sizes: 353 

functions, 331 symbols, 5 symbol kinds and 24 structures. 

There are a total of 1,515 non-zero tensor entries, so the input 

tensor is very sparse (99.9891% sparsity). The tensor was 

decomposed into 100 components using the Alternating 

Poisson Regression (APR) algorithm for calculating a CP 

decomposition [9]. On a single-core tablet PC, the 

decomposition took 1.1 seconds – this tensor is extremely 

small by the standards of typical ENSIGN use cases. 

 Figure 2 shows an example of a single function from the 

FM3TR source code and how that function is broken down 

into patterns (components) by the tensor decomposition. In 

the figure, we refer to the eigenscore associated with the 

function in each component as its uniqueness score. A 

uniqueness score of 1.0 means this pattern only occurs within 

this function. A score of 0.1 would mean 1/10th of the 

occurrences of this pattern are in this function. In Figure 3, 

the function is represented in five patterns – three of which 

are expanded. Within the patterns, the score for each 

structure, symbol, and kind represents what fraction that 

structure, symbol, or kind contributes to this pattern. For 

example, a score of 1.0 for structure = IF() means that this is 

the only structure included in this pattern. Likewise a score 

of 1.0 for kind = VAR means all the symbols within this 

pattern are variables. A score of 0.5 for char and 0.5 for int 

means the symbols in this pattern are split evenly between 

char and int types. In this way, the decomposition 

provides a concise, abstract summary of the composition of 

the code that can be queried. 

Using Pitchfork to Extract Markers 

Blackspot uses Pitchfork [10] to extract the markers from 

source code that are used to form the tensors that are then 

decomposed for analysis. Pitchfork is a part of R-Check SCA, 

Reservoir’s platform for static SCA compliance testing [11], 

and enables user-configurable matching of source code 

constructs through a scriptable pattern language. To make it 

convenient to match distinct, but structurally similar 

programs, Pitchfork augments the base C/C++ syntax with a 

metalanguage, providing regular expression syntax, pattern-

match variables, wildcards, and other helpful features. In 

native operation, users write rules similar in syntax to C/C++ 

code fragments, which the R-Check SCA analysis engine 

then accepts and identifies in the code. Actions associated 

with each scripted rule dictate how a matched (or absence of 

matched) pattern is reflected in a report back to the user. 

 For Blackspot, a fixed set of Pitchfork rules are used to 

extract features of interest from the program (populating the 

modes of the tensor), while eliding all of the uninteresting 

detail of a program. For example, the specific name of a local 

variable in a program is not relevant to code similarity, but 

the patterns and interplay of control structure and system calls 

are crucial. In essence, Pitchfork is capturing whole 

fragments of the AST from the source code. For unsupervised 

learning, the choice of which observable markers to record 

has a significant impact on the ability of algorithm to identify 

meaningful latent features. The ability of Pitchfork, 

combined with the depth of analysis provided by R-Check 

SCA, to extract a rich and flexible set of observable code 

constructs is key to the success of the approach. 

 

Pattern 10. Uniqueness = 0.05 
Structure Score 

IF(IF()) 0.79 

IF() 0.21 

 

Symbols Score 

tk_error 1.0 

 

Kind Score 

THROW 0.9 

NEW 0.1 

 

Pattern 11. Uniqueness = 0.11 
Structure Score 

IF() 0.88 

IF(IF()) 0.12 

 

Symbols Score 

char * 1.0 

 

Kind Score 

THROW 1.0 

 

Pattern 37. Uniqueness = 1.0 
Structure Score 

IF(LOOP()LOOP()IF()) 1.0 
 

Symbols Score 

tk_class 0.4 

char 0.2 

tk_class * 0.2 

int 0.2 
 

Kind Score 

VAR 0.8 

THROW 0.2 

 
Figure 3. These three tables show three different patterns from the FM3TR code base decomposition, all of which include the THROW 

symbol kind. 
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3. ORGANIZING CODE FOR INSPECTION 

By themselves, the patterns captured as the components of a 

tensor decomposition can aid code inspection by providing 

an organized profile of which sections of the source code 

include which features. This capability can be applied to 

accelerate manual inspection for such tasks as SCA 

compliance testing. For example, the SCA includes several 

requirements that dictate the conditions under which a 

specific type of exception must be thrown. These 

requirements naturally fall into the gap described in  

Section 1 – dynamic testing cannot exercise all of the possible 

exception conditions and static analysis cannot prove that the 

execution of the exception is limited to the proper conditions. 

 From the decomposition, one can query the list of 

patterns that involve the THROW kind and see the structures 

in which exceptions occur along with the symbols of 

particular interest. Figure 3 shows three different patterns 

from the same FM3TR code base involving the THROW 

kind. The first, Pattern 10, appears mostly in nested 

conditionals and, to some extent, in single-level conditionals. 

The symbols are all of the tk_error type and the pattern 

represents a correlation between allocation (NEW) and 

exceptions. The pattern has a low uniqueness score meaning 

it occurs in many functions throughout the code base. The 

fact that allocation and exceptions over the same type are 

highly correlated in Pattern 10 is a point of interest for 

systematic inspection of those functions. The person 

inspecting the code might also check that no function is 

missing from this list associated with the tk_error type. 

 Pattern 11 is similar, except that it is restricted to string 

(char *) exceptions and these exceptions are not tightly 

correlated with allocations. Pattern 11 also occurs more 

heavily in single-level conditional statements rather than in 

nested conditionals. Now, if an inspector has to check a 

condition for all string exceptions, then searching for all 

functions containing Pattern 11 will provide an organized list 

of code to inspect. 

 Pattern 37 is interesting because it is very specific. It has 

a uniqueness score of 1.0 meaning it only occurs in a single 

function, found to be CF_PropertySet_impl:query. 

Its uniqueness is high because it occurs within a very specific 

structure, with correlated use of both variables and exceptions 

for int, char, tk_class, and pointers to tk_class. 

This is a pattern including exceptions not seen anywhere else 

in the code base and so it should be checked separately. 

 

AudioPlayback::Init 
Function Cosine 

Similarity 

AudioCapture::Init 0.968 

galois::operator- 0.968 

CF__PropertySet_impl::index 0.956 

CVSDEncoder::ConvertToCVSD 0.956 

galois::GaloisField::gen_inverse 0.956 

galois::operator>> 0.922 

RsBlockDecoder::Init 0.589 

FileInput_MAC_LLC::Init 0.576 

CVSDEncoder::CVSDEncoder 0.557 

RfChannelEmulator::Init 0.469 

… 

Cluster 1 
Function 

CharInPort_impl::~CharInPort_impl 

CharOutPort_impl::~CharOutPort_impl 

ShortInPort_impl::~ShortInPort_impl 

ShortOutPort_impl::~ShortOutPort_impl 

AudioCapture::~AudioCapture 

AudioPlayback::~AudioPlayback 

CVSDEncoder::~CVSDEncoder 

CVSDDecoder::~CVSDDecoder 

MacReceive::~MacReceiver 

MacXmit::~MacXmit 

… 

Cluster 25 
Function 

BaseAssemblyController:getPort 

Packetizer5to7::getPort 

Packetizer7to5::getPort 

CVSDEncoder::getPort 

CVSDDecoder::getPort 

FileInput_MAC_LLC::getPort 

FileOutput_MAC_LLC::getPort 

FM3TR_WaveformPacketizer::getPort 

FM3TR_WaveformReceiver::getPort 

MacReceive::getPort 

MacXmit::getPort 

… 

Figure 5. These tables show two clusters that result from applying 

a simple clustering algorithm that uses cosine similarity as the 

distance metric with a distance cutoff of 0.25. The functions in the 

first cluster are all deconstructors, whereas the functions in the 

second cluster are all "getPort" functions. 

Figure 4. This table shows a list of the functions with the top 10 

cosine similarities to AudioPlayback::Init. 
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From any set of patterns, one can then query the list of 

the specific functions that contain these patterns to produce a 

list of where exceptions of specific types occur in the code, 

sorted by pattern. In this way, code for inspection can be 

organized so as to minimize conceptual context switches – an 

approach that is more systematic than simple file or symbol 

sequence alone. This approach also makes it straightforward 

to isolate similar code for deeper, focused inspection when a 

violation is found. 

 

4. DETECTING ANOMALIES AND  

CODE WEAKNESSES 

While using the breakdown of functions into discrete patterns 

is useful for organized code inspection, we can also use the 

inclusion or exclusion of a function across patterns as a tool 

for function comparison. Given a decomposition of a tensor 

into R components, we can form a vector of length R for each 

function comprised of the eigenscore for that function in each 

component. This vector acts as a sort of signature for the 

function – its occurrence or not in each latent pattern found 

by the decomposition. From these vectors, we can compare 

each pair of functions by calculating a distance metric such 

as cosine similarity between the vectors. Then, for any given 

function, we can rank the other functions by their cosine 

similarity to get a list of the most similar functions. As an 

example, Figure 4 provides a ranked list of similar functions 

for the AudioPlayback::Init function. 

 So, for any function of interest, we can find all of those 

functions with similar structures, symbols and kinds, 

substantially improving ease of inspection. By applying a 

simple threshold-based clustering algorithm using the cosine 

similarity as the distance metric, we can separate the 

functions into distinct similarity clusters. Some of these 

clusters of functions are unsurprising. For example, Figure 5 

shows a cluster of deconstructors and a cluster of getPort 

functions from various classes. 

 While unsurprising, even these clusters turn out to be 

useful because functions that aren’t clustered as expected 

may have anomalous properties to be inspected. For example 

there are several deconstructors that are not part of Cluster 1: 

 

 ~Packetizer5to7, 

 ~Packetizer7to5, 

 ~FM3TR_WaveformPacketizer 

 ~FM3TR_WaveformReceiver 

 

A user can use this information to check why these 

deconstructors behave differently to make sure there are not, 

for example, any structural errors or memory leaks. Likewise, 

with the getPort functions, they are not all contained in 

Cluster 25: 

 

 AudioCapture::getPort 

 AudioPlayback::getPort 

 CF_PortSupplier_impl::getPort 

 

In particular, CF_PortSupplier_impl::getPort is 

clustered together with functions completely unrelated to 

ports. 

 One particularly powerful use of cosine similarity across 

the function-pattern vectors is weakness extrapolation. If one 

MskDemodulator::SymbolSynch 
Function Cosine 

Similarity 

Shared 

Patterns 

MskDemodulator::Run 0.482 6, 67 

FileOutput_MAC_LLC::RewritePacket 0.321 84 

ShortInPort_impl::ShortInPort_impl 0.263 74 

MskModulator::Modulate 0.263 87, 67, 

16 

CVSDDecoder::CVSDDecoder 0.217 74 

RsBlockDecoder::RsBlockDecoder 0.216 74, 67 

FileInput_MAC_LLC::Init 0.129 74 

FileOutput_MAC_LLC::Run 0.121 84 

MskDemodulator::Init 0.116 74, 67 

… 

MskDemodulator::SymbolSynch 
Pattern Uniqueness 

Score 

6 0.584 

87 0.487 

84 0.286 

74 0.222 

67 0.021 

16 0.016 

 

Figure 6. This figure describes the SymbolSynch function in which Cppcheck discovered a memory weakness. The table on the right-hand 

side shows the patterns that make up SymbolSynch whereas the left-hand table shows those functions with the top cosine similarities to 

SymbolSynch. Additionally, for each function, the table shows which patterns that function shares with SymbolSynch.By focusing on 

functions with shared patterns, less inspection in necessary to identify similar weaknesses. 
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can identify one weakness in a code base, it is possible to look 

at the top functions in cosine similarity to the function 

containing the weakness in order to try to automatically 

detect similar weaknesses. In this section, we show how our 

tensor methods successfully detected a weakness that neither 

the open-source Cppcheck [12] static analysis tool nor the 

prior SVD-based approach could identify. 

 The experiment requires a known weakness from which 

to extrapolate, so the starting point was to run a static analysis 

tool, Cppcheck, over the FM3TR code base. This analysis 

only reported one serious weakness: a memory leak within 

the MskDemodulator::SymbolSynch function. 

Inspection of other functions with high cosine similarity 

discovered a new instance of the same weakness. Figure 6 

lists the functions with the highest cosine similarity and 

indicates shared patterns. 

 From this list, one could simply inspect each function in 

turn. However, it’s possible to further pare down which 

functions should be inspected by considering what patterns 

they share with SymbolSynch. Since the weakness is a 

memory leak, the relevant functions must contain symbols of 

the NEW kind. Pattern 74 is the only one of these patterns that 

includes NEW kind symbols, so functions without Pattern 74 

either do not use allocation or they use allocation in a 

different way. Thus, even though 

MskDemodulator::Run has the highest cosine 

similarity, it doesn’t include Pattern 74 so it doesn’t share this 

particular weakness. In this case, the high similarity is due to 

the specific symbols unique to these functions. For example, 

they both call the functions CMPLX_INT16::real and 

CMPLX_INT16::imag (contained in Pattern 6), which is 

not called by many other functions.  

 Furthermore, among those similar functions that do 

include Pattern 74, many of them are constructors. In the case 

of the memory leak within SymbolSynch, there exists a 

NEW without any corresponding DEL. That same pattern is 

appearing within these constructors, but in this case we know 

it is not a memory leak because a constructor should not free 

the memory it’s allocating. So, without even looking at the 

code, there are only two likely candidates remaining for the 

same weakness. The first, 

FileInput_MAC_LLC::Init, was the very first section 

of source code we inspected in applying this process, and was 

found to have an almost identical memory leak to 

MskDemodulator::SymbolSynch.  

 This was a weakness that Cppcheck 1.59 was unable to 

detect. In addition, we tried to repeat this experiment using 

the SVD approach and also could not detect this second 

weakness. Just as described in Section 2, the function vectors 

were composed into a matrix, the resulting matrix was 

decomposed with an SVD, and then cosine similarities were 

calculated between the function-pattern vectors in the factor 

matrix. Figure 7 shows the high cosine similarities with 

SymbolSynch using the SVD approach. 

 The function FileInput_MAC_LLC::Init does 

not appear anywhere near the top in the list. Our hypothesis 

for why the matrix approach is incapable of producing the 

same results is as follows: ultimately, trying to extrapolate 

between different functions is a multi-dimensional problem. 

It is not sufficient to look at just symbols, just structures, or 

even a one-dimensional (vector concatenation) combination 

of structures and symbols. For detecting weaknesses, it is 

important to maintain distinctions between structure, symbol, 

and even the context of the symbol. Further note that in the 

SVD case, without a symbol kind dimension, it would be 

necessary to look through every function in the list because 

there is no way to identify only those sharing a similar use of 

allocator symbols. 

MskDemodulator::SymbolSynch 
Function Cosine Similarity (SVD) 

MskModulator::Modulate 0.286 

ShortInPort_impl::ShortInPort_impl 0.279 

MskDemodulator::Demodulate 0.247 

CVSDDecoder::CVSDDecoder 0.227 

MskDemodulator::Run 0.218 

RsBlockDecoder::RsBlockDecoder 0.190 

MskModulator::MskModulator 0.183 

RfChannelEmulator::RfChannelEmulator 0.180 

MskModulator::~MskModulator 0.178 

MskDemodulator::~MskDemodulator 0.164 

… 

Figure 7. This figure shows the cosine similarities with SymbolSynch as reported by the 2D SVD approach. Note that the vulnerable 

function the tensor method discovered, FileInput_MAC_LLC::Init, does not appear in this list. 
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 In this example, we use one weakness already identified 

in the source code to identify a similar weakness. However, 

the technique can also be extended to detecting instances of 

known weaknesses. To do this, the source code base can be 

merged with examples of known weaknesses, such as 

examples taken from the Common Weakness Enumeration 

[13] database or past project-specific examples from a bug 

database. By seeding the code with known weaknesses, 

similarities can be discovered using the same process 

described in this section. The power of this approach is that 

it is based on latent factors rather than a specific rule instance. 

While not providing a precise result, it detects synonyms in 

code in a way that would be very difficult for a strictly rule-

driven engine to replicate. 

 

5. DIRECTIONS FOR FUTURE WORK 

Blackspot represents a unique capability in the realm of static 

analysis – one that is intended to augment rather than replace 

traditional tools based on dataflow analysis or model 

checking. In that spirit, this paper provides a framework for 

using tensor decompositions to analyze source code, but the 

specific methodology described in the preceding sections is 

extremely flexible. There is no limitation to using a tensor 

formed from function x structure x symbol x kind as the 

modes. We can add any details that are found to be relevant 

to detecting source code weaknesses and that can be collected 

from the code base. This includes both directly observable 

features and derived values such as cyclomatic complexity 

[14] for individual functions or empirical “moments” 

(statistical observations) over feature counts. Future work 

will include building more extensive libraries of Pitchfork 

rules and applying  other tools and techniques for collecting 

and assembling this additional information, making the 

analysis even more powerful. 

 The ENSIGN tensor toolbox used to perform the 

decompositions uses specialized sparse data structures and 

exposed parallelism to scale to tens of millions of non-zero 

entries. This is more than sufficient to support deep analysis 

of multi-million line code bases and extend the applicability 

of Blackspot through a broad range of software-radio and 

cyber-physical systems. 

 In order to transition Blackspot to use in a development 

or testing environment, more automation of the 

decomposition post-processing is required. For example, 

Blackspot analysis can be specifically tied to certain SCA 

requirements that still depend on manual inspection of code. 

A test engineer, selecting a requirement for testing, could get 

a guided, “mechanical turk” style tour through an enumerated 

list of code inspection tasks. The tasks would be ordered so 

as to minimize mental context switches and each task would 

be accompanied by relevant instructions based on the 

requirement and what is known about the function. We 

believe that such a directed workflow would significantly 

accelerate testing and reduce the tendency for human error. 

These claims, however, need to be validated in future work. 

 The same guided inspection process could also be used 

to organize waveform porting tasks. In this way, Blackspot 

would be applicable to the Wireless Innovation Forum’s 

Most Wanted Innovations #1: Techniques for Efficient 

Porting of Waveform Applications Between Embedded 

Heterogeneous Platforms [15]. 

 To be a robust tool for weakness discovery, Blackspot 

needs access to a complete library of example code 

weaknesses distilled into tensor entries. In addition, while 

this paper has illustrated the power of unsupervised learning, 

a practical tool for weakness detection should incorporate 

supervised (classification) techniques to make concrete 

assertions about the likelihood of a weakness occurrence. 

Tensor decompositions can be used to train models such as 

neural nets that can perform classification tasks [16]. We 

intend to explore these extensions in future work. 
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