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Abstract—A Cognitive Radio Engine (CE) is an intelligent
agent which observes the radio environment and chooses the
best communication settings that best meet the application’s
goal. In this process, providing reliable performance is one
of the major tasks in designing CEs for wireless communi-
cation systems. The main purpose of this work is providing
predictable performance and controlling the cost of intelligent
algorithms based on the CE’s experience and complexity analysis
respectively. In this work, we extend our meta-CE design to
control the cost of computations and provide more reliable
performance for providing the minimum requirement of the
radio applications in different scenarios. To achieve this, we
use robust training algorithm in two different levels alongside
of the individual CE algorithms. The RoTA, enables radio to
guarantee some minimum output performance based on the
learning stages. RoTA uses confidence interval approximation for
standard normal distribution to calculate the lower and upper
bounds of CE’s expected performance to analyze the reliability of
decisions. Moreover, in the case of non-stationary environments,
RoTA is facilitated by forgetfulness factor to provide minimum
performance guarantees. The second level of RoTA operates in
meta-level to control the amount of computation complexity of
intelligent algorithms in all levels with respect to the obtained
performance and complexity analysis.

I. INTRODUCTION

A radio has traditionally used a fixed set of communication

methods selected by its operator. Today, however, a radio is

expected not only to use numerous communication methods,

but also to be able to select the method (from a plethora

of available methods) that best meets its objective in the

current operating environment. Moreover, a radio is expected

to utilize the most appropriate channel among the available

channels for transmitting opportunistically, which provides the

best conditions for radio’s objective.

Typically, the radio designer will analyze each communica-

tion method in terms of the desired objective under assumed

channel models. However, if the channel models do not hold

or the communication methods perform in a way not expected,

the design becomes irrelevant. The same applies when the

desired objective changes.

The question then arises: What if a radio could be designed

in such a way that it could determine on its own the best

communication method to use to meet its objectives? The

scope of our work [1] [2] [3] [4] [5] is to propose methods that

can make such a design possible. This work is based on the

pioneering work of Mitola, who first described the cognitive

radio (CR). Mitola’s ideal CR is not only capable of optimizing

its own wireless capabilities, but also of self-determining its

goals by observing its human operator’s behavior [6]. In

this work, we are only interested in optimizing the wireless

capabilities of the radio by observing the environment and its

own performance.

In the last few years, communication engineers have bor-

rowed ideas from the fields of machine learning and Artificial

Intelligence (AI) in an effort to make CR possible [7]. The

agent who implements the methods that enable the radio to

have the desired functionality is referred to as a Cognitive

Engine (CE). This paragraph provides a brief overview of the

state-of the art in CE design related work. The works of Rieser,

Rondeau, and Le [8] [9] attempt to approach Mitola’s vision

by proposing a CE that deals with the user, policy and radio

domains. Their designs are similar and based on the Genetic

Algorithm (GA), Case Based Reasoning (CBR), and multi

objective optimization principles. The work of [10] designed

a CBR based CE for IEEE 802.22 WRAN applications also

looking into both the radio and policy domains. Other works

are more focused only on the radio domain. The work in

[11] and [12] applied a GA and particle swarm optimization

respectively to multi-channel links. Finally, [13] and [14]

applied an Artificial Neural Network (ANN) and predicate

logic respectively for learning and optimization of a wireless

link.

The primary focus of CE related work was the ability

of the CE to find the optimal configuration. The effects

of this process received minimal attention. There are two

major effects: learning speed and performance during learning.

The former has received some treatment in the literature

[9], [11], [12]. However, we are not aware of other works

addressing performance during learning, which has two main

aspects: aggregate performance during learning and providing

bounded performance during learning. In our previous work

[2] [3] we proposed a method that maximizes the aggregate

performance during learning by minimizing the learning costs.

The latter method also provides two level of learning to

speed up the training process. In [15] we have provided

a method to stabilize the performance of a CE within an

operating window. However, the proposed methods make no

attempt to provide a minimum performance guarantee during

their training process. This aspect may lead to suboptimal

performance, but more importantly can cause outages, which
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is unacceptable for sensitive applications where bounded per-

formance is paramount. This issue will be more critical under

non-stationary environments that channel conditions change

before reaching the optimal performance.

For example, an ambulance attempts to use its radio during

a critical operation, expecting the radio to adapt in order to

provide the required link. In this scenario, learning speed is

important but maintaining a required reliability is absolutely

paramount. In other words, the ambulance would rather have

a slowly improving connection than a connection that errati-

cally fluctuates from no throughput to high throughput. The

same applies to a mobile user that watches a live stream of

his/her favorite show and prefers to have a slowly improving

connection than a link that causes pauses at crucial moments.

Our proposed training algorithm makes the link stable during

learning even under high dynamic environments.

The main purpose of this work is providing predictable

performance and controlling the cost of intelligent algorithms

based on the CE’s experience and complexity analysis re-

spectively. In our previous publication, we have proposed

a meta-CE that is able to evaluate various CE algorithms’

performance automatically [5] [3]. A meta-CE is generally

considered to be comprised by a set of CE algorithms and

meta-cognition module that provides the meta-abilities of the

CE. We showed that Meta-CE is able to provide much higher

performance than each individual CE algorithm due to its

flexibility and ultimately predictability of the Cognitive Radio

Systems (CRS). We also have proposed a several knowledge

indicators to estimate the amount of knowledge that is obtained

by various CE algorithms [4].

Providing predictable performance at all times is of

paramount importance in different CE techniques. In this work,

we extend our meta-CE design by using Robust Training

Algorithm (RoTA) to provide more reliable performance for

providing the minimum requirement of the radio applications

in different scenarios. To achieve this goal, we use RoTA in

two different levels alongside of the individual CE algorithms.

The first level of RoTA operates with individual CEs to control

the exploration and exploitation rate. The RoTA, in this level,

enables the Meta-CE to guarantee some minimum output per-

formance based on the learning stages. RoTA in this level, also

uses confidence interval approximation for standard normal

distribution to calculate the lower and upper bounds of CE’s

expected performance to analyze the reliability of decisions.

Moreover, we propose a modified RoTA to provide a minimum

performance level under non-stationary environments. The

second level of RoTA operates in meta-level to control the

amount of computation complexity of intelligent algorithms

in all levels with respect to the obtained performance and

operating scenarios (channel conditions, operating objectives,

radio applications, etc.).

This paper is organized as follows: Section II, formulates the

problem and presents an overview of some cognitive engine

(CE) algorithms. Section III, presents the RoTA in stationary

environments along with some results. Section IV, presents

the modified RoTA to operate in non-stationary environments.

Section V, provides a new metacognitive engine (meta-CE)

framework to govern the computation cost of CE algorithms.

Finally, Section VI provides some concluding remarks.

II. PROBLEM FORMULATION

A primary function of the CE is to learn the capabilities

of the radio. This is generally done by trial and error. When

the radio performs this function, it is said to be exploring.

On the other hand, when the radio is choosing methods

with the best-known performance, it is said to be exploiting.

The exploration operation consumes valuable resources such

as time and energy and might significantly impact the link

performance (i.e., dropped packets). One option to avoid these

negative effects during the radio’s operation is to put the CE

through prolonged training sessions covering most expected

operating conditions. However, even if the CE is assumed

to go through prolonged learning (exploration) sessions, it

is practically impossible to expose it to all possible channel

conditions a priori specifically in the case of opportunistic

spectrum access (OSA) that there will be more than a channel

available in each decision step. Consequently, it is reasonable

to expect that the CE sooner or later will face unknown

conditions. In such a case, if the radio is operating in a critical

mission it may not have the luxury of time to learn what is

best before operating; it has to establish a connection and

learn at the same time. Optimally balancing exploration vs.

exploitation ensures that the negative effects of learning will

be kept to a minimum.

The general problem in a link adaptation CE is that there is

a list with a large number of possible communication methods

that can be used. Each potential method is a discrete combi-

nation of modulation, coding, antenna techniques, and other

possible parameters defining the communication method to be

used. In this list, some of the methods are eligible and the rests

are ineligible. An eligible method is a method that meets mini-

mum performance requirements of the operation objective, and

an ineligible method fails to meet those requirements given the

current environment. The minimum performance requirements

are typically a given PSR or bit rate (bits/s/Hz). Also it can

be some minimum objective level such as throughput, power

consumption, etc., For example, if a method has a 90% PSR

in the current environment but the minimum required PSR

is 95%, then this method will be ineligible. The goal in a

link adaptation CE is to find the eligible method with the

highest performance metric. In most cases, such as when

the goal is to maximize bandwidth efficiency, the maximum

potential performance of each configuration is already known.

Therefore, the list of configurations can be potentially sorted

by how well each item serves the current goal as apriori

knowledge. In this case, the problem becomes a search through

a sorted list.

The problem of exploration vs. exploitation is classically

studied by using the mathematical framework of the Multi-

Armed Bandit (MAB) problem. We introduce the MAB

problem and we define how the distribution parameters are

estimated recursively to be used in RoTA.

A. Multi-Armed Bandit

The MAB problem gets its name from the slot machines

(bandits) found in casinos. A typical slot machine has a
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single arm that when pulled returns a reward with a certain

probability. In the multi-armed bandit problem it is assumed

that the player is faced with either multiple machines or a

single machine with multiple arms and his goal is to get

the maximum reward by using the machines. Generally it is

assumed that the player has little or no information about the

bandits and he has to decide between exploring for the most

rewarding machines and using the machine that was found

to yield the higher reward. Essentially this is an information

acquisition problem and the player is always faced with the

same options.

Adapting the description found in [16], let Y be the set

of K slot machines (comm. options), and let Ry be a random

variable that gives the amount of the reward returned (capacity)

if we use the machine y. Also let µy be the unknown true mean

of Ry and σ2

y be the variance. Finally, let (µ̄y, σ̂
2

y, n) be the

estimate of the mean and the variance of Ry after n iterations

and a belief state πy(n) which represents our knowledge about

the underlying reward distribution of random variable Ry at a

time step n. The estimates (µ̄y, σ̂
2

y, n) can be an example of

a belief state.

Let xn
y = 1 if the yth machine is played at iteration n and

Rn
y the reward returned on that round. Also let

Nn
y =

n∑

y=1

xn
y (1)

be the total number of times the yth machine was used.

In the MAB problem we are looking for a policy that

maximizes the expected return V (s):

V (s) = Eπ

N∑

n=1

γnRn (2)

where N is the maximum number of plays (often assumed to

be∞), Ey is the expectation operator over the belief state π, γ
is a discount factor o < γ < 1, and Rn the return at time n.

The discount factor is used to ensure a finite return when N →
∞. Another interpretation is to treat 1 − γ as the probability

that the process is going to stop [17]. Therefore, the discount

factor is a way to express our expectation on the duration of the

optimization horizon. A low value discount factor discounts

future returns with a higher rate. As result, when balancing

exploration vs. exploitation the latter has a higher weight. On

the other hand, a high valued discount factor (γ → 1) will

make future rewards more important and exploration will have

a higher weight than the previous case.

Finding the policy that maximizes 2 is a K-dimensional

problem. There are several methods to address this prob-

lem such as ǫ-greedy, Softmax [18], and Gittins index [19]

strategies that are presented in our previous works [3] [4].

Briefly, the ǫ-greedy strategy randomly explores the different

communications methods with probability ǫ and uses the

communication method with the highest average throughput

with probability 1 − ǫ. The softmax strategy is probability

matching that probability of choosing each communication

method reflects the idea that the expected reward of a given

communication method should match its actual probability of

being the optimal method. The Gittins strategy maximizes the

total sum of rewards collected over a long-term horizon. The

strategy is simply to use the method with the highest Gittins

index, which is based on the reward statistics of each method

and must be estimated only when those statistics change (i.e.,

only when each method is used).

III. ROBUST TRAINING

Learning is done by sending training packets. A training

packet is defined as a packet that we are uncertain about

its PSR θ. It is also assumed that the training packets carry

payload data. Therefore, if the packet is successfully delivered

it is going to contribute to the communication links throughput

R.

During training, packets of a confident estimate of θ (that

we are sure about their PSR θ) are also sent. Sending these

packets makes it possible to maintain, during training, a

θy or Ry (the estimated PSR and throughput by using yth
communication method) close to the minimum required PSR

θmin or throughput Rmin during training. These packets shall

be subsequently referred to as offsetting packets. Therefore,

in this case the effect on θ and link’s throughput R from the

training packets is counterbalanced by the offsetting packets.

Let θly, Rly and θuy, Ruy be the lower and upper bound

of PSR θy and throughput Ry of yth communication method

respectively. θmin is the minimum required PSR. Rmin

minimum required throughput (bits/s). The lower and upper

bound of PSR is estimated by approximating Beta distribution

using a normal distribution with a mean θ̂ =
α

m′
and variance

σ2 =
θ̂(1− θ̂)

m′
. The resulting confidence interval is given by

[20]:

θ̂y − zδ/2σ < θy < θ̂y + zδ/2σ (3)

where zδ/2 is the 1 − δ/2 percentile of the standard normal

distribution, α is the number of successful packets (trials), β is

the number of unsuccessful packets, and m′ = α+β the total

number of transmitted packets. This approximation is valid

when 1 < α < m′ and when both nθ and n(1−θ) are greater

than five.

To estimate the lower and upper bounds of each commu-

nication method’s throughput, we used the T distribution for

n < 30 and normal distribution for n > 30 as follows:

µ̄y(n)− tδ/2,n′
−1

σ̂y√
n′

< Ry < µ̄y(n) + tδ/2,n′
−1

σ̂y√
n′

(4)

µ̄y(n)− zδ/2
σ̂y√
n′

< Ry < µ̄k(n) + zδ/2
σ̂y√
n′

(5)

where tδ/2,n′
−1 is the 1− δ/2 percentile of the T distribution

by n′ − 1 degree of freedom, and n′ is the number of trials

that we tried yth communication method.

Previously, we classified communication methods to eligible

and ineligible methods. Hereafter, by classifying eligible meth-

ods to two subclasses, we will have following communication

methods’ classes:

1) Offsetting methods

2) Ineligible methods

3) Training methods
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First, the offsetting methods are the communication methods

that satisfy following conditions:

θly(n) > θmin and Rly(n) > Rmin (6)

Therefore, offsetting methods are the communication methods

that we are confident about their minimum performances. Sec-

ond, the ineligible methods are the communication methods

that will have following conditions:

θmin > θuy(n) and Rmin > Ruy(n) (7)

Hence, we are confident that the ineligible communication

methods cannot provide the minimum required performances.

Third, the Training methods are the communication methods,

whose performances we are still not confident about. The

training methods needs more trials to be classified in one of

the aforementioned classes. Therefore, the training methods

can be classified based on equation 8:

θuy(n) > θmin > θly(n) and Ruy(n) > Rmin > Rly(n)
(8)

To implement the RoTA, we need to define a window of

packets that the algorithm tries to keep their average window

performance equal or higher than minimum applications re-

quirements (θmin, Rmin). Nω is the training window length

in packets, NT expected number of training packets within

the training window. ~α and ~β is the vector of the last Nω

successes and failures respectively. Finally, αω and βω the

sum of the last Nω − 1 successes and failures respectively.

A. The Robust Training Algorithm

The RoTA is very straightforward: based on the last Nw

successes and failures, training is performed when it is ex-

pected that θ ≥ θmin and R ≥ Rmin. If there are no offsetting

methods available, then there is no other option than to enter

a training loop until an offsetting method is found. The RoTA

finishes when there are no more training methods. In that

situation, all K methods have either been evaluated or found

to perform less than the best known achieving method that

meets the minimum performance requirements (θmin, Rmin).
The pseudo code of RoTA is provided below:

Input: K methods, θmin, Rmin, and Nw

Result: Runs until no training methods exist

1: Compile the offsetting and training lists

2: αw ← 0, βw ← 0, Rw ← 0
3: α← {}, β ← {}, R← {}
4: while not training list is empty do

5: while offsetting list is empty do

6: for i = 1 to Nw do

7: find the training method with max{Rly}
8: use the training method

9: if (θuy < θmin and Ruy < Rmin) or (θly ≥
θmin and Rly ≥ Rmin) then

10: update the offsetting, training and ineligible

lists

11: end if

12: end for

13: end while

Fig. 1. RoTA Sliding Window

14: if empty training list then

15: break while

16: end if

17: for i = 1 to Nw do

18: if
Rw

Nw + 1
> Rmin then

19: randomly pick a training method

20: use the training method

21: update α, β, R, αw, βw, and Rw

22: if (θuy < θmin and Ruy < Rmin) or (θly ≥
θmin and Rly ≥ Rmin) then

23: update the offsetting, ineligible, and train-

ing lists

24: end if

25: else

26: pick a high θly offsetting method

27: use the offsetting method

28: update α, β, R, αw, βw, and Rw

29: if θly < θmin or Rly < Rmin then

30: break for

31: end if

32: end if

33: end for

34: update the offsetting, ineligible, and training lists

35: end while

Some comments on the algorithm: first, the reason that

operations in line 6 and 17 is limited to Nw is to avoid

using one communication method that needs many trials to

be classified as an ineligible or offsetting method. The break

in the line 30 is for the case when an offsetting method is

found to no longer satisfy minimum requirements θmin and

Rmin. Figure 1 represents the main idea of RoTA. The RoTA

tries to maintain the θmin and Rmin in the sliding window.

For example, in line 18,
Rw

Nw + 1
> Rmin looks ahead in

the next step and estimates R assuming the next packet is

dropped, if Rmin is expected to be maintained, training is

allowed because its potential negative effects are expected to

be mitigated. Same in Figure 1, if the statement in line 18

is correct, it means for the next packet (packet number 8)

the algorithm can use a training method because the dropped

packet can be tolerated without violating minimum required

throughput.

To facilitate training, an offsetting method with Rly ≥ Rmin

is required. The greater the difference, the faster is the

training rate, because more (potentially) failing packets can
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be tolerated. The minimum training window that is expected

to accomodate at least NT training packets is estimated in

[15].

B. Results

To evaluate the RoTA, we present a simple example. In

this instance, we assume a 4 by 4 MIMO system with QPSK,

8PSK, 16, 32, 64, 128 and 256 QAM as a modulation type

with eight error correction rates: 1, 7

8
, 3

4
, 2

3
, 1

2
, 1

4
, 1

6
and

1

8
and antenna techniques: VBLAST, STBC and MRC. For

our channel scenarios, we consider an SNR in the range

of 0-50 dB and the log10 of the eigen spread (κ) of the

channel matrix in the range of 0-12. The CR also has 12

channels available with different SNR and bandwidth (either

1.25 or 2.5 MHz). At each time step, the CR can transmit

over only one of the available channels.The minimum require

PSR and throughput of the system is θmin = 0.65 and

Rmin = 5(Mbits/sec). Thus, the CE algorithm has 1320

different actions (communication methods) to choose from,

and the goal is finding the optimal action that provides the

highest reward (here throughput) under noisy environment

with respect of minimum required PSR θmin and providing

minimum required throughput Rmin during operation.

Figure 2 illustrates the average results from a hundred

different runs of proposed RoTA. In Figure 2 we can see the

amount of achieved throughput and PSR, also the percent of

remaining training methods vs. the total number of communi-

cation methods K, and also the instantaneous exploration rate

of the algorithm. The exploration rate represents the percent

that the algorithm randomly selects a communication method.

Based on the result we can distinguish four distinct learning

stages in the learning process of the proposed RoTA. The

expectation and amount of robustness vary in different stages.

The first stage that we call it infant stage (highlighted

by blue color), is the time that algorithm does not know

any offsetting method. In this stage the algorithm has high

exploration rates, which presents the amount of uncertainty

in this stage. The algorithm cannot provide any performance

guarantee at this stage. The second stage (highlighted by cyan

color) is started by finding the first offsetting methods and

will continue to stabilize the minimum required performance.

During this learning stage, called childhood, the algorithm

decreases the exploration rate and by using founded offsetting

methods tries to guarantee the minimum required throughput

and PSR. After stabilizing the performance, it’s time to do

more exploration. The third stage, called teenager (highlighted

by red color), is the stage that the algorithm can transmit more

training packets to classify the rest of the methods in training

list. During this stage the algorithm grantees the minimum

required performances. At the end of the teenager stage, the

algorithm reaches near optimal performance. The fourth and

last stage, called adult (highlighted by yellow color), is the

stage that the algorithm obtained enough knowledge from

previous stages. In this stage, algorithm not only provides the

minimum required performance but also will find the optimal

communication method with the highest throughput.
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Fig. 2. RoTA Results

IV. ROBUST TRAINING UNDER NON-STATIONARY

CONDITIONS

The general problem that we address in this section is

operating in non-stationary environments. Imagine a situation

that is common in wireless communications, when the es-

timated channel conditions change rapidly. In such a case,

the obtained knowledge by CE about the performance of

communication methods will no longer be valid. For example,

if the proposed RoTA figured out the optimal communication

method(s) and classified all other methods as an ineligible or

offsetting method, but the channel conditions change. In this

situation, the knowledge obtained by RoTA does not provide

the expected performance. Even worse is that the algorithm

cannot even provide the minimum required PSR and through-

put for the system. Furthermore, to provide the minimum

required performances, the RoTA needs a many iterations to

transfer its information to the new channel conditions. This

happens because the obtained knowledge is the average of

n trials, therefore to overcome the previous knowledge, the

RoTA needs to try m >> n trials to wipe out the outdated

knowledge.

A. Forgetfulness Factor

To overcome the aforementioned problem, update rule of

performance value estimation needs to change for communi-

cation methods. The main reason that the CE insists on its

obtained knowledge is the number of trials (weights) that it

has done to collect information. To decrease the weight of old

information we suggest to use exponentially-wighted average

method [21]. By using this method, RoTA tries to balance

between the old and new information for each communication

method. To estimate the mean and variance of communication

methods’ performances we use following equations:

µ̄y(n) = µ̄y(n− 1) + λ[Ry(n)− µ̄y(n− 1)] (9)

σ̂2

y(n) = (1− λ)(σ̂2

y(n− 1) + λ(Ry(n)− µ̄y(n− 1))2) (10)
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TABLE I
CHANNEL CONDITIONS CHANGING TIMES

Time Step

1758 2790 3472 4133 5029 6039 7632 9066 9638

where λ is a positive parameter, 0 < λ < 1, that can be

either constant, or a function of time, λ = λy(t) =
1

n . As n
reaches∞, by the law of large numbers µ̄y(n) converges to the

actual mean that is suitable for stationary problems. Constant λ
parameter method is called an exponentially-weighted average

method [21] and is well-suited for non-stationary scenarios as

the estimation of the means and variances never converge and

continuously fluctuate in response of the environment changes.

In the case of constant λ, the estimated values are more based

on the current observed values. The equation 9 can be written

in the form:

µ̄y(n) = (1− λ)nµ̄y(0) +
n∑

i=1

λ(1− λ)n−iRy(n) (11)

From 11, the weight given to an observed value decreases

exponentially as the age of observation increases. Since the λ
parameter decays the old observations, we call it forgetfulness

factor. The high valued forgetfulness factor λ→ 1 will make

recent rewards more important and the algorithm forgets the

previous values faster.

B. Results

To evaluate the effect of different values of forgetfulness

factor on the performance of a RoTA, we use previous

simulation’s setup with some modifications. We assumed the

CR has 5 channels available at each time step, therefore the CE

has 550 various actions (communication methods) to choose

from. The minimum required PSR and throughput of the

system is θmin = 0.6 and Rmin = 8(Mbits/sec). For the

non-stationary environment, we assume the channel conditions

(SNR, eigen spread, and bandwidth) of all 5 available channels

change at time steps mentioned in table I.

Figure 3 demonstrates PSR and throughput of the system

with and without using forgetfulness factor. The plots on first

row represents the RoTA without using forgetfulness factor,

however the plots on second row shows the RoTA, which is

facilitated by forgetfulness factor (λ = 0.2). As we can see,

when RoTA uses forgetfulness factor, it’s able to recover itself

much faster.

Figure 4 shows the aggregated results of two aforemen-

tioned CEs. Plot (a) represents the amount of total data

transfered with two CEs. The algorithm with forgetfulness

factor transfers almost twice more than the stationary RoTA.

Plot (b) shows the amount of data that we lost because of

not meeting the minimum required performance by two CEs.

Also, plot (c) represents the amount of time step that each CE

was under the minimum required performances. As we can

see, the CE with forgetfulness factor was not able to provide

minimum performance just 4% of the total time steps, however

the other CE could not meet the minimum performance more

than 60% of the time steps.
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Fig. 3. RoTA in Non-stationary Conditions Results
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Fig. 4. Non-stationary Aggregated Results

To compare the effect of different values of λ we consider

λ in the range of 0-0.95 with 0.05 steps, and for each λ we

average the output of hundred iterations. Figure 5 represents

the results for various forgetfulness factors. The figure shows

the values between 0.1 and 0.3 provide better outputs. For

instance, the CE with λ = 0.25 has the minimum lost

data, however the CE with λ = 0.1 spends to recover the

performance.

V. ROBUST TRAINING IN META LEVEL

The two proposed robust training algorithms operate in the

level of individual CEs, and the goal was providing some guar-

anteed performances in stationary and non-stationary channel

conditions. However, in this section, we want to use RoTA in

the level of metacognition [3] [5]. One of the most criticism

against using learning algorithms for wireless communications

is the computation cost and complexity of these kinds of

algorithms that will be added to the system. Although, the

proposed learning algorithms based on the MAB are not

computationally expensive, we propose a meta-CE framework

to govern the cost of individual CEs.

Figure 6 illustrates the framework of a meta-CE, which

employs various individual CE algorithms. The meta-CE is

facilitated with a meta module to control the complexity of

the learning algorithms by using a proposed robust training
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Fig. 5. Different Forgetfulness Factors

algorithm. The meta-CE keeps the computational cost of the

CR in a certain level by turning down the operation of CE

algorithms when there is not enough resources.

Metacognition 

module

High exploration rate 

strategy

Gittins Index strategy

No CE

Method to use

Evaluation

Input memory

Objective

Environment 

metrics

Fig. 6. RoTA Meta-CE Framework

The proposed framework is also able to be operated with

two levels of RoTA as an individual CE to guarantee minimum

required performance, and the other level as a metacognition

module to maintain the computation cost of a CR.

VI. CONCLUSIONS

In this paper, we made three important contributions: first,

we proposed the novel Robust Training Algorithm (RoTA) to

guarantee a minimum performance. RoTA allows the CE to

learn by combining training packets of unknown performance

with offsetting packets of known performance. RoTA is valu-

able for applications that relatively smooth operating links are

of paramount importance.

Secondly, we propose some tuning factor (forgetfulness

factor) to make the RoTA appropriate for non-stationary

environments. The forgetfulness factor helps RoTA to give

higher weights to new observations and forget the outdated

information faster.

Thirdly, we proposed a new meta-CE framework to control

the computation cost of the individual CE algorithms. The

meta-CE operates RoTA in two distinct level to maintain the

complexity and minimum required performance of cognitive

radio systems.
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