
© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 1

MULTICORE PROCESSORS FOR

HETEROGENEOUS SYSTEMS ERA
JOHN GLOSSNER, PH.D.

PRESIDENT, HSA FOUNDATION / CEO, GPT

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 2

AGENDA

About HSA
 Founding

 Member Companies

Heterogeneous Programming

Problem

HSA Solution
 Hardware

 Software
 Infrastructure

 HSAIL

Portable Applications

Programming
 OpenCL

 C++17

Preliminary Results
 Pre- 1.0 Hardware

Products and Announcements

Conclusions

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 3

ABOUT HSA
HETEROGENEOUS SYSTEM ARCHITECTURE FOUNDATION

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 4

HSA FOUNDATION

Founded in June 2012

Developing a new platform for heterogeneous systems

Working groups established to define the platform
 V1.0 Specifications March 2015

First compatible hardware
 Carrizo - October 2015

www.hsafoundation.com

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 5

MEMBERS DRIVING HSA
Founders

Promoters

Supporters

Contributors

Academic

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 6

HSA – AN OPEN PLATFORM

Open Architecture, membership open to all
 HSA Programmers Reference Manual

 HSA System Architecture

 HSA Runtime

Delivered via royalty free standards
 Royalty Free IP, Specifications and APIs

ISA agnostic
 CPU, GPU, DSP, FPGA, etc.

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 7

END USERS BENEFIT FROM HSA WITH

APPLICATIONS

THAT RUN FASTER AND AT LOWER POWER

Always on, visually

aware devices will offer

greater capability in a

lower power budget,

scaling with every

advance in app

processing

Mobile and tablet

devices will use the

CPU, GPU and DSP

working seamlessly

together for content

creation, gaming and

more

HSA architecturally integrates the accelerators in today’s complex SoCs

to be easily and efficiently utilized by application developers

Intelligent cloud video

analytics will be more

efficient, and make

best use of every

server upgrade

Sophisticated ADAS

real-time analytics

will be easier to

develop, adapt to

any platform, and be

more robust

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 8

THE PROBLEM
HETEROGENEOUS APPLICATION DEVELOPMENT

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 9

WHAT’S THE PROBLEM?

Heterogeneous processors are

widely available

Huge compute capability
 Acceleration Units (GPU, DSP, FPGA)

 CPU Cluster-based computer

Coherency
 Established in high-end

 Migrating to mainstream mobile and

consumer

BUT…

Heterogeneous programming

models not standardized

Multi-core/device applications

difficult to optimize or scale

Non-portable application

developer ecosystems

HSAF brings compute app abstraction to heterogeneous platforms

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 10

HSAF HARDWARE CONTRIBUTIONS

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 11

JIM MCGREGOR, TIRIAS RESEARCH

…HSAF has had a profound impact on hardware

architectures

… even Intel‘s

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 12

GEN0: LEGACY COMPUTE

Memory challenges
 Multiple memory pools

 Multiple address spaces

 High overhead OS dispatch

 Data copies across PCIe

New programming languages
 Dual source development

 Proprietary environments

 Expert programmers only

PCIe™

System Memory
(Coherent)

CPU CPU CPU. . . CU CU CU CU

CU CU CU CU

GPU Memory
(Non-Coherent)

GPU

DSPs/FPGAs have the same issue

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 13

GEN1: ON CHIP INTEGRATION

Physical Integration
 Good first step

Some copies gone
 Two memory pools remain

 Still queue through the OS

Still requires expert programmers

CPU

1

CPU

N…
CPU

2

Physical Integration

CU

1 …
CU

2

CU

3

CU

M-2

CU

M-1

CU

M

System Memory
(Coherent)

GPU Memory
(Non-Coherent)

GPU

DSPs/FPGAs have the same issue

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 14

GEN2: AN HSA ENABLED SOC

Unified Coherent Memory
 data sharing across all

processors

Processors architected to

operate cooperatively

Applications enabled to run

on different processors at

different times

Unified Coherent Memory

CPU

1

CPU

N…
CPU

2

CU

1

CU

2

CU

3

CU

M
DSP ACC…

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 15

HSAF SOFTWARE
INFRASTRUCTURE

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 16

S/W ARCHITECTURE WITH HSA RUNTIME

Component 1

Driver

Component N…

Vendor m

…
Component 1

Driver

Component N…

Vendor 1

Kernel Agent 1

HSA Runtime

Kernel Agent N…

HSA Vendor 1

HSA

Finalizer Kernel Agent 1

HSA Runtime

Kernel Agent N…

HSA Vendor m

HSA

Finalizer

Programming Model

Language Runtime

OpenCL

App

Java

App

OpenMP

App

C++17

App

OpenCL

Runtime

Java

Runtime

OpenMP

Runtime

C++17

Runtime

…

…

…

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 17

HSA PROGRAMMING MODEL

Single source
 Host and agent code side-by-side in same

source file

 Written in same programming language

Single unified coherent address space
 Freely share pointers between host and agent

 Similar memory model as multi-core CPU

Parallel regions identified with existing

language syntax
 Typically same syntax used for multi-core CPU

HSAIL is the compiler IR that supports

these programming models

Supported Languages
 OpenCL 2+, OpenMP, C++AMP, Java

 Future: C++17

HSA Core Runtime API
 Thin user-mode API

 High performance dispatch
 Across multiple vendors

Functions
 Initialization and Shut Down

 Notifications (Synchronous/Asynchronous)

 Agent Information

 Signals and Synchronization (Memory-Based)

 Queues and Architected Dispatch

 Memory Management

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 18

HSA MEMORY MODEL

Compatible with C++, Java, OpenCL and

.NET Memory Models

Defines visibility ordering between all

threads

Relaxed consistency memory model
 Parallel compute performance

Visibility controlled by:
 Load.Acquire

 Store.Release

 Fences

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 19

MOTIVATION (TODAY’S PICTURE)

Application OS

Transfer

buffer to GPU Copy/Map

Memory

Queue Job

Schedule Job
Start Job

Finish Job

Schedule

Application
Get Buffer

Copy/Map

Memory

Agent GPU/DSP

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 20

WITH SHARED VIRTUAL MEMORY

Application OS

Transfer

buffer to GPU Copy/Map

Memory

Queue Job

Schedule Job
Start Job

Finish Job

Schedule

Application
Get Buffer

Copy/Map

Memory

Agent GPU/DSP

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 21

WITH COHERENT CACHE MEMORY

Application OS

Transfer

buffer to GPU Copy/Map

Memory

Queue Job

Schedule Job
Start Job

Finish Job

Schedule

Application
Get Buffer

Copy/Map

Memory

Agent GPU/DSP

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 22

SIGNALS

HSA agents support signaling
 creation/destruction using runtime APIs

Any Agent can directly access

signals
 wake up HSA agents waiting upon the

object

 Query current object

 Wait on the current object
 Using conditions

Advantages
 Asynchronous events between agents

 Doesn’t require CPU

 Common idiom for work offload

 Low power waiting

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 23

WITH SIGNALING

Application OS

Transfer

buffer to GPU Copy/Map

Memory

Queue Job

Schedule Job
Start Job

Finish Job

Schedule

Application
Get Buffer

Copy/Map

Memory

Agent GPU/DSP

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 24

HSA QUEUING MODEL

User mode queuing
 Low latency dispatch

 Application dispatches directly

 No OS or driver required

Architected Queuing Layer (AQL)
 Single compute dispatch path for all hardware

 No driver translation, direct to hardware

 Standard across vendors!

 Guaranteed backward compatibility

Allows for dispatch to queue from any agent
 CPU or GPU or DSP or FPGA, etc.

Agent self enqueue enables
 Recursion, Tree traversal, Wavefront reforming

Requires coherency and

shared virtual memory

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 25

WITH USER MODE QUEUING

Application CPU OS Agent GPU/DSP

Transfer

buffer to GPU Copy/Map

Memory

Queue Job

Schedule Job
Start Job

Finish Job

Schedule

Application
Get Buffer

Copy/Map

Memory

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 26

FINAL PICTURE: SVM + CACHE COHERENCY +

SIGNALS + USER MODE QUEUES

Application OS Agent GPU/DSP

Queue Job

Start Job

Finish Job

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 27

HSA INTERMEDIATE LANGUAGE (HSAIL)
BYTECODE FOR HETEROGENEOUS SYSTEMS

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 28

THE PORTABILITY CHALLENGE

CPU ISAs – Backwards Compatible
 ISA innovations added incrementally (ie NEON, AVX, etc)

 ISA retains backwards-compatibility with previous generation

 HSA instruction-set architectures: ARM, MIPS, and x86

Kernel Agent ISAs – No Backwards Compatibility
 GPU, DSP, DNN, Image Signal Processor, Custom Accelerators, etc.

 Massive diversity of architectures in the market
 Each vendor has own ISA - and often several in market at same time

 Compatibility via APIs (OpenGL, DirectX, OpenCV)

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 29

HSA INTERMEDIATE LAYER — HSAIL

Virtual ISA for parallel programs
 Finalized to native ISA by a compiler

 Dynamic or Offline

 ISA independent by design

Explicitly parallel
 Designed for data parallel programming

Multiple HLL Support
 Exceptions, virtual functions, etc.

 Java, C++, OpenMP, C++, Python, etc

main() {

…

#pragma omp parallel for

for (int i=0;i<N; i++) {

}

…

}

High-Level

Compiler
BRIG Finalizer Component

ISA

Host ISA

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 30

PORTABLE APPLICATIONS PROGRAMMING
FROM OPENCL TO C++17

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 31

OPENCL – ALL OPEN SOURCE TOOLS

AMD CLOC or TuT POCL
 Generates HSAIL from OpenCL

GPT/Parmance gccBrig
 A BRIG language front-end to GCC

 BRIG: Binary Representation of HSAIL

 Translated to GCC’s tree intermediate

representation

 Optimization by GCC
 Including vectorization/SIMD optimizations

Benefits
 Allows use of GCC for finalization

 Vendor independent
 No need to know proprietary Instruction Set

Architecture

 CPU/VLIW/MIMD HSA kernel agent

support

32

HCC - HETEROGENEOUS COMPUTE COMPILER

 Compiler Architecture
‒ Single-source : Host and device code in the same source file
‒ Fully Open Sourced Compiler using CLANG/LLVM

 Expressing Parallelism with HCC
‒ C++ parallel_for_each + lambda
‒ Parallel STL

 HCC generates both CPU and GPU code
‒ Traditional CPU programs can be compiled with HCC
‒ Heterogeneous programs

‒ Compiles the host code for CPU

‒ Compiles the kernel/parallel region for the GPU

 Programmer Optimizable
‒ Control, pre-fetch, discard data movement
‒ Run asynchronous compute kernels
‒ Access GPU scratchpad memories

C++ & C COMPILER

33

CUDA PORTING WITH HCC C++

 Challenge:

‒ Many existing GPU-accelerated apps use proprietary CUDA language and infrastructure

 Strategy:

‒ Make it easy to port from CUDA to a common C or C++ programming model

‒ Common = resulting code runs through either CUDA NVCC or HCC C++ compiler

‒ Can use best development tools on either Nvidia or AMD platform

‒ Provide customers with choice in hardware and development tools

 Implementation

‒ HIP = “Heterogeneous-compute Interface for Portability”

‒ Header maps hip* calls to CUDA RT or HSA RT

‒ Strong subset of CUDA RT functionality, focus on most commonly used functions

‒ Some HCC support to make porting easier

‒ Can use #ifdef for tricky cases and performance tuning

34

PARALLELISM IN C++

 C++11 introduced threads, memory model, async, thread-local-storage

‒ Before this, C++ basically a sequential single-stream language

 Next steps

‒ Stated Goal : by 2020, express all forms of intra-node parallelism directly in C++

‒ SIMD, multi-core CPU, GPU (not much FPGA)

 Highlights:

‒ Parallel STL – extend template Algorithms (sort, scan, reduce) so they can be run in parallel

‒ Executors – control where and how a function executes.

‒ Default policies for sequential, parallel, vector, thread-pool

‒ Can be customized and extended.

‒ SIMD Parallelism Types and Operations

‒ Concurrency TS – specify dependence between commands using continuations [then()] and join points [when()]

‒ “for_loop” – OpenMP-like syntax for C++, allows loop to see position

 http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/#mailing2016-02

http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/#mailing2016-02

35

ACCELERATED PYTHON

Numba speed up your applications with high performance functions written
directly in Python

 Can compile Python code to run on GPU

‒ Built-in functions for group, grid index, barriers provided in Python

‒ Well-defined subset of Python is supported

‒ GPU version will use open-source LLVM compiler provided by AMD

 Rich set of options to optimize for APU or discrete GPU

‒ Async execution, specify group size, use shared memory

‒ Data transfer can be performed implicitly based on kernel arguments

ANACONDA on Boltzmann a New Class of Performance to Python

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 36

PERFORMANCE RESULTS

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 37

GEN1: FIR & AES

FIR is a memory-intensive streaming workload

AES is a compute-intensive streaming workload

CL12 – cl_mem buffer
 Copy to/from the device

CL20 – SVM buffer – Coarse Grain Sync
 Copy to/from SVM
 Data copy cannot be avoided, since the space for SVM

is limited

HSA – Unified Memory Space – Fine Grained Sync
 Regular pointer
 No explicit copy

Results
 HSA compute abstraction
 NO performance penalty

Not all algorithms run faster
 Measured on Kaveri (A pre-HSA 1.0 device)
 Limited Coherent throughput

Saoni Mukherjee, Yifan Sun, Paul Blinzer, Amir Kavyan Ziabari, David

Kaeli,A Comprehensive Performance Analysis of HSA and OpenCL 2.0,

Proceedings of the 2016 International Symposium on Program

Analysis and System Software, April 2016, to appear.

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 38

BLACK-SCHOLES

C++ on HSA
 Matches or outperforms OpenCL

Course Grained SVM
 Matches OpenCL buffers for bandwidth

 More predictable performance

Fine Grained SVM
 Faster kernel dispatch

 Larger allocations

 Shared data structure

Results
 HSA compute abstraction

 NO performance penalty

Source: Ralph Potter – Codeplay. Presentation made to SG14 C++ Workgroup

39

CUDA RESULTS USING HIP

 No manual intervention

 Direct Conversion from CUDA

 Runs on any HSA system

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 40

HSA PRODUCT UPDATES
FROM HSA FOUNDATION MEMBER COMPANIES

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 41

“CARRIZO” IS AMD’S SECOND APU PRODUCT WITH HSA FEATURES
FULLY HSA ENABLED

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 42

ARM AND HSA

ARM, as a founder member, has been committed to the HSAF since launch
 Actively contributes to the HSA specifications and working groups

 Is committed to the continued development of this important standard

ARM customer base is showing increasing interest in HSA features for their next generation SoCs

ARM customers can already build real heterogeneous systems based on, for example:
 ARM Cortex-A72 high performance application processor

 ARM Mali-T880 compute enabled GPU

 ARM CoreLink CCI-500 cache coherent interconnect

 ARM CoreLink CCN cache coherent network family

ARM is actively developing next generation processor and interconnect IP to extend the system

capabilities aligned with HSA standards including:
 Full memory coherency

 Shared Virtual Memory

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 43

SMP
Symmetric Multi -Processing

HMP – 2013
Heterogeneous Multi-Processing

HC – 2015
Heterogeneous Computing

HSA
Heterogeneous System

Architecture

LITTLE CPUs

BIG CPUs

LITTLE

CPUs

BIG CPUs

GPU GPU

Accelerator

s

C
o

h
e

re
n
t M

e
m

o
ry

M
M

U
CPU CPU

CPU CPU

LITTLE

CPUs

BIG CPUs

10/5/2015Copyright © MediaTek Inc. All rights reserved.

HSA ROADMAP AT MEDIATEK

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 44

IMAGINATION HSA COMPLIANT IP COMING

SOON

We will be rolling out:

• HSA across all

MIPS I-class and

P-class CPUs

• HSA across all

PowerVR GPUs

• HSA compliant

fabric solutions

Coherent HSA-compliant SoC fabric

PowerVR Video
Encode

PowerVR Camera
ISP

PowerVR Video
Decode

ROM

Peripheral Bus

D
D

R
3

/4

Bridge

RAM

PowerVR GX7200
Series6XT
2 cluster

PowerVR GPU

HSA-compliant

e
F

u
s
e

DMAC

Clock &

Reset

Control

JTAG

& Test

PSU &

Power

Control

TE &

Crypto

L2 cache

PowerVR
GX7200

Series6XT
2 cluster

MIPS CPU

HSA-compliant

Display Pipeline

PowerVR JPEG
Encode

OTP

Ensigma RPU

AFE

Customer
IP

HDMI

Tx & Rx
USB3MIPINAND

Peripherals

GPIO; UART; I2C; I2S; SPI; SD

Customer
IP

Customer IP

& interfaces

Imagination Smart Vision IP Platform

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 45

CONCLUSIONS

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 46

THE HSA TECHNICAL SUMMARY

MAKE HETEROGENEOUS PROGRAMMING MUCH EASIER

Single source programming 1

Any programming language 2

Eliminate data copies3

Common address space 4

Standardized command submission to Agents (GPU / DSP)5

Eliminate software layers between application and hardware6

ISA agnostic for CPU, GPU, DSP, and more7

Open source software stack 8

Single tool chain

C++, Python, JavaScript, …

Performance!

A pointer is a pointer

A common dispatch language

Efficient

x86, ARM, MIPS, PowerVR, Mali, Adreno, GPT, …

Open Access!

High performance

Low power

Extensible to other accelerators on the SoC

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 47

SUMMARY

2012 goal of changing chip H/W architecture achieved
 Cache Coherent shared virtual memory

2014-2015 S/W architecture to support H/W
 March 2015 V1.0 specs

 Programmed in any language (C++, Python, OpenCL)

2016 H/W platforms arriving
 AMD’s Carrizo (Dell, Asus, Lenovo)

 Others to follow

Excellent performance results
 No performance penalty for HSA abstraction

Multivendor support
 Coming soon

© Copyright 2012-2016 HSA Foundation. All Rights Reserved. 48

THANK YOU!
WWW.HSAFOUNDATION.COM

