A Rapid Graphical Programming Approach to SDR Design and Prototyping with LabVIEW and the USRP

Filip Langenaken Academic Program Manager Benelux & Nordic National Instruments

NI-USRP: a Platform for SDR Design, Prototyping and Exploration

- Low cost, PC-hosted RF Transceiver for software defined radio prototyping and exploration
- Real-time processing: Gigabit Ethernet link streams live data for real time processing on a Windows-based host computer running LabVIEW
- Hardware and software are easy to install, connect, and learn

NI-219x RF Transceiver

Demo: Packet-based Transceiver

Demo: Packet-based Transceiver

Agenda

- Background
- NI USRP hardware / software components
- Getting started with NI USRP
- SDR with NI USRP
- Resources

National Instruments: Key Stats

- Founded in 1976, HQ in Austin, TX
- 30+ years growth and profitability
 - \$873M revenue in 2010 (+29% YOY), 17% operating income
 - \$255M revenue in Q3 2011 (+16% YOY)
- 6,000+ employees,
 Operations in 50+ countries
- *FORTUNE*'s "100 Best Companies to Work For" list for 12 consecutive years
- FORTUNE's "25 Best Multinational Companies to Work For" 2011
- Strong investment in R&D
- Over 30,000 customers, Over 7,000 universities

The National Instruments Vision Graphical System Design

Test and Measurement

Automated Test Data Acquisition Reconfigurable Instruments **Real-Time Systems** Embedded Monitoring Hardware-in-the-loop Industrial & Embedded Industrial Control (PAC) Machine Control Electronic Devices Software-Defined Radio

"To do for test and measurement what the spreadsheet did for financial analysis."

"To do for embedded what the PC did for the desktop."

NI Platforms for RF/Communications

NI USRP

Tunable RF Transceiver Front Ends

Frequency Ranges
 50 MHz – 2.2 GHz (NI-2920)
 2.4 GHz & 5.5 GHz (NI-2921)

POINT

Signal Processing and Synthesis

- NI LabVIEW to develop and explore algorithms
- NI Modulation Toolkit to synthesize and process live signals

Applications

- FM Radio
- TV
- GPS
- GSM
- ZigBee[®]

- Safety Radio
 - OFDM
 - Passive Radar

INSTRUMENT

Dynamic Spectrum Access

Gigabit Ethernet Connectivity

- Plug-and-play capability
- Up to 20 MS/s baseband IQ streaming

NI USRP enables Host-based Processing

A Compiled Graphical Development Environment

- Intuitive graphical dataflow programming environment with integrated .m file script textual math
- Functionality tailored for science and engineering
- 750+ functions for signal processing, analysis, and mathematics

A Highly Productive Graphical Development Environment

for Engineers and Scientists

From Concept to Prototype ... Rapidly!

System Design to Deployment

Solving the Toughest Problems on Earth

Large Telescope Mirror Control

Tokamak Plasma Control

The LabVIEW Environment

"VI" = program or function

Controls & Indicators

- Knobs/Dials
- Graphs/Charts
- Buttons
- Digital Displays
- Sliders
- Thermometers
- Customize and create your own

The G Programming Language

- An intuitive visual representation maps functional blocks to concepts
- Modular and hierarchical
- High-level tools and building blocks
- Reuse external code
- Compiles to machine code
- Directly represents parallel, multithreaded, distributed systems

$$y[n] = 0.5x^2[n] + x[n] + 0.1U_n[n]$$

Functions and Express VIs

Wires and Data Types

- Transfer data between block diagram objects
 through wires
- Wires are different colors, styles, and thicknesses, depending on their data types
- A broken wire appears as a dashed black line with a red X in the middle

Data Flow Sets Execution Order

- Block diagram execution order depends on the flow of data
- Block diagram does NOT execute left to right
- Nodes executes when data is available to ALL input terminals
- Nodes supply data to all output terminals when done
- If the computer running this code had multiple processors, these two pieces of code could run independently without additional coding

Execution Control Structures

- Allow same piece of code to run multiple times
- Exit conditions different for each

Modularity and SubVIs

Function Code	Calling Program Code
<pre>function average (in1, in2, out) { out = (in1 + in2)/2.0; }</pre>	<pre>main { average (point1, point2, pointavg); } </pre>
SubVI Block Diagram	Calling VI Block Diagram
in1	point1 DBL Point Avg DBL Point2 DBL P

LabVIEW Signal Processing, Analysis and Math

Signal Processing & Analysis

- Waveform Generation
- Waveform Conditioning
- Waveform Monitoring
- Waveform Measurements
- Signal Generation
- Signal Operations
- Windows
- Digital Filters
- Spectral Analysis
- Transforms
- Point-by-Point

Mathematics

- Numeric
- Elementary and Special Functions
- BLAS/LAPAC-based Linear Algebra
- Curve Fitting
- Interpolation/Extrapolation
- Probability and Statistics
- Optimization
- Ordinary Differential Equations
- Geometry
- Polynomial
- Formula Parsing
- 1D & 2D Evaluation
- Calculus

Using Signal Processing Functions

Decode & Hear Live FM Radio

NI-USRP Driver Software

NI-USRP Driver Software

Demo: Simple USRP-based Tx / Rx Pair

Text-based signal processing, analysis, and math within LabVIEW

- 750 built-in functions / user-defined functions
- Reuse many of your .m file scripts created with The MathWorks, Inc. MATLAB[®] software and others
- Based on original math from NI MATRIXx software

A native LabVIEW solution

- Interactive and programmatic interfaces
- Does not require 3rd-party software
- Enables hybrid programming

MATLAB[®] is a registered trademark of The MathWorks, Inc. All other trademarks are the property of their respective owners.

The Hybrid Approach Combine Graphical / Textual Programming

Digital Communication System

Digital Communication System

NI Modulation Toolkit

Digital Communication System

NI Modulation Toolkit

Modulation Toolkit

LabVIEW simulation and modeling tools for communication system design

Demo: QAM Tx / Rx Pair

Demo: Packet-based Transceiver

Demo: Packet-based Link

Transmitter Block Diagram

Packet Structure

GUARD SYNC BAND SEQ	рскт NUM	DATA PAD
Field	Length [bits]	Description
Guard Band	30	Allow initialization of Rx PLL, filters, etc
Sync Sequence	20	Frame and Symbol Synchronization
Packet Number	8	Range: 0-255 Used for reordering of packets and detection of missing packets
Data	64 - 256	Variable length data field. Length detected dynamically at Rx end
Pad	20	Allows for filter edge effects.

The Received Signal

Channel Activity Detection

- Problem: Inefficient to keep demodulator active for the entire acquisition frame—it needs to be applied only to packets
- Solution: Apply a channel activity detector to locate packet boundaries for a packet slicer

Error Tolerance

Problem: Errors at SNR >> 1

- Partial packets captured at frame edges
- Improper synchronization

Solution: Repetition Coding

- Repeat each packet n times
- Repeat entire message m times

Error Tolerance

- **Problem**: At SNR >> 1, errors introduced due to
 - Partial packet captured at frame edge interval
 - Improper synchronization
- Solution: Packet Repetition Coding
 - Repeat each packet n times (n=2 to 5)
 - Repeat whole message m times (m = 10)
- Proposed Schemes:
 - CRC Check with two way ACKs
 - Reconstruct packets split across frames

Ideas for Extension

- Improved Error Tolerance
 - CRC check, convolutional coding, interleaving, etc...
- Bi-directional link with ACK messages
- OFDM
- Channel Equalization to improve range
- SW-based Rx gain control to ensure full use of available dynamic range
- Monitor / replicate common links
 - Bluetooth mouse
 - Key fob
- Additional message choices
 - Images, video, etc.

Next Steps

- Learn more about LabVIEW and NI-USRP
 - www.ni.com/usrp
- Find NI-USRP examples & participate in the NI-USRP online community
 - decibel.ni.com/content/groups/ni-usrp-example-labview-vis

