

Opportunistic radio transmission in the TVWS for first responders' assistance

R. Lionti, M. Laugeois, D. Noguet, V. Berg CEA-LETI

Motivation for embedded video in FRs' equipment

The nasty companion of fire: smokes

One minor event happened in the morning of 16th of August 2005 in Saint Gothard tunnel (CH)

4 seconds later

Fire services all over the world agree on the fact that <u>smokes make more casualties than fire</u>.

Most Fire Rescue operations happen in confined spaces: high temperature, smoke require fast decisions!

Communication between First Responders and crisis HQ

Weakness of oral report

Oral report by radio or phone is not sufficient to give a proper account of the situation Stress and individuals' sensitivity make an oral description fairly unreliable.

The need for live video feeds

Visible and Infrared live video help take appropriate decision Type of measures implemented to fight fire and response time needed to realize actions is a determining factor in restoring the situation

Embedded sensors and wireless communication

Camera and sensors should be integrated in equipment (helmet) The fire-fighter cannot carry any device in his hands Information is transmitted to management through wireless communication

Robust Video transmission from first responders to remote crisis management HQ via mobile Command Centre

CEA's technology: communicate with crisis management in emergency situation

Environment of the First Responders

Harsh Environment

Strong Requirements from the Usage

- > Weight
- Antenna fitted on Helmet
 Limited power
 Small size (low / no gain)
 Body obstruction
- Battery has to be carried Limited power
 Limited autonomy
 Weight
- Sensors, display and telecom integration Robustness & reliable Easy to use

Reinforced concrete wall

Antenna and Transceiver developed at CEA - LETI

Steel framework

Difficult Propagation Conditions

- Indoor or dense urban transmission Multipath propagation Frequency fading
- L.O.S. almost never exists
- > De-Polarization of RF
- Building infrastructure
 - Steel structures, reinforced concrete Frequency selective

Opportunistic use of TVWS

- Propagation in the lower part of UHF band (300 to 800Mhz) is very favorable in the FRs' environments (indoor and dense urban).
- Spectrum allocated to the TV is not fully used. Most Locations provide White Space for local usage Transmitter must take the near-far problem in the vicinity of TV receivers distant from the TV relay

Threshold: BER 10⁻⁶ Threshold: BER 10⁻³ Link Margin

Propagation

-70 to -95dBm

Opportunist Transmission in the TVWS

Spatial diversity: 2 antennas spaced by $d > \lambda$

Polarization diversity: antenna dual-polarized

7

RF Receiver

AE DISPUT IT INC AND

٠

٠

Antenna

- fo = 650MHz (BW: 35MHz)
- Gain: 1.5dB (Omni)
- <u>RF Tx</u>
- Frequency agile: 610-690MHz
- BW: 12MHz
- Electrical power = 28dBm Baseband
- COFDM 1024 sub-carriers
- 12kHz spaced
- IQ modulation
- Effective data rate: 8Mbps

FR Environment

Requires SIMO Architecture for QoS

- Multipath Environment
- Loss of polarization
- > Doppler and Time varying Channel
- Fading in Time and Frequency

TVWS usage for First Responder Services | 28 June 2012 | 7

© CEA. All rights reserved

Transmitter Implementation

Digital Baseband

 Baseband build around <u>Xilinx Kintex 7 (FPGA)</u> Digital Audio/Video Capture and Framing Channel Coding (Forward Error Correction) OFDM Modulation

RF Transmission

- Direct conversion, zero-IF, baseband to WiMAX RF
- I/Q modulation (adjustable BW from 5 to 20MHz)
- Frequency agile (470-770MHz)
- Power Amplifier 600mW (1dB compression point)
- PIFA Antenna (small form factor, low SAR*)
 - * Specific Absorption Rate

Embedded modules Li-ion battery powered

TVWS usage for First Responder Services | 28 June 2012 | 8

© CEA. All rights reserved

Receiver Implementation

4 independent RF receivers

- 2 antennas with dual polarization
 - Polarization and Spatial Diversity
- 4 LNA at antenna level (remote DC powered)
- 4 RF Front End Receivers and I/Q demodulations
- 4 I/Q 14bit-ADC

4 OFDM demodulation and Maximum Ratio Combiner Channel decoding (FEC) 100 BASE-T Ethernet

2988 g ݠ Base band board + RF Rx add-on (x4) 4x Rx AGC OFDM demod. Octuple OFDM demod. DP iLME ADC Micro SRAM dLMB OFDM demod 14bits demod Blaze 16Kx32 OFDM demod UART Bridge hannel decod. Rx buf Viterbi / RS Eth. 100BaseT Periph BB PLL mod ctrl ****** memory Reg ctrl BB SPI x10

UHF

650MHz

LNA

Baseband Implementation 1D Channel estimation / Equalization

- Estimate Performance of equalization including implementation
- AWGN channel
- OFDM Pilot tones are evenly distributed in the frequency domain every 8 tones (12kHz*8 = 96kHz) and every OFDM symbol in the time domain.

Antenna combining

- Increase the weight of the best antenna to decode the considered subcarrier → use <u>the channel estimation</u> profile.
- Take into account the average power of each antenna → use the gain <u>control</u> information.
- The decoded subcarrier is $y(k) = \frac{\sum_{i=0}^{3} \alpha_i \cdot \hat{h}_i^*(k) \cdot y_i(k)}{\sum_{i=0}^{3} \alpha_i \cdot \|\hat{h}_i^*(k)\|^2}$ where:
 - y_i(k) the kth received subcarrier of the ith antenna,
 - $\hat{h_i}^*(k)$ the channel estimation coefficient of the k^{th} subcarrier of the i^{th} antenna,
 - g_i the gain to be applied to the ith antenna,
 - $\alpha_i = g_i / min\{g_i\}.$

Antenna Combining Performance

- Performance of the best antenna for the considered sub-channel.
- Test of 2 antennas with different received power under AWGN channel :

Cost of Baseband Implementation

- Synthesis and Mapping Report
 - Xilinx Kintex 7 (xc7k325t)
 - Around 30% of Receiver occupied

RX	Number of occupied Slices:	15,76	7 out of	50,950	(30%)
	Number of RAMB36E1/FIFO36E1s:	192	out of	445	(43 %)
	Number of RAMB18E1/FIFO18E1s:	103	out of	890	(11 %)
	Number of DSP48E1s:	506	out of	840	(60 %)
ТХ	Number of occupied Slices:	1,150	out of	50,950	(2%)
	Number of RAMB36E1/FIFO36E1s:	22	out of	445	(4%)
	Number of RAMB18E1/FIFO18E1s:	9	out of	890	(1%)
	Number of DSP48E1s:	16	out of	840	(1%)

le11

LABORATOIRE D'ÉLECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATION

www.leti.fr

Thank You!

recture of the section of the rest the