Improving efficiency of Genetic Algorithm Based Optimizer for Cognitive Radio

> Ajay Sharma Gaurav Kapur VK Kaushik LC Mangal RC Agarwal

Defence Electronics Applications Laboratory, Dehradun DRDO, India

Problem considered

- Given a SDR with a set of configurable parameters, user specified QoS requirement and Environment parameters affecting the performance.
- Find the configuration for SDR that best meets the user's QoS requirement.

Problem is not trivial because ...

- The problem involves multiple inter-dependent objectives to optimize in QoS.
- The search space can be very large, so it can be impractical to use conventional search algorithms.

Genetic Algorithms (GA) for multi-objective optimization

- Model the physical radio system as biological organism.
- Represent configurable parameters as genes in Chromosome of GA.

- Set the objective functions to calculate value of each objective in QoS.
- Initialize with a relatively small population of such chromosomes and analyze populations through generations, to find individuals that are non-dominated in terms of multiple objectives.
- All non-dominated individuals form the optimal solutions that lie on pareto front.

Genetic Algorithms (GA) for multi-objective optimization

- Difficulty with GA processing:
 - Not suitable for applications where immediate response from system is required (of the order of milliseconds) due to inherent processing time of GA.

Advanced GA techniques to

improve performance

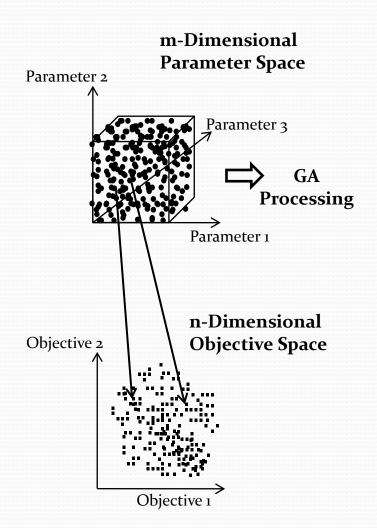
- There are advanced GA techniques to enhance the performance of genetic algorithms in terms of accuracy and time.
 - For accuracy, niching can be used to maintain population diversity throughout the GA to find global optimum.
 - Parallel Genetic Algorithms can be used to exploit parallel processing for improving performance.
 - Biasing the initial population using domain knowledge and using case-based initialization/heuristics techniques for GA.
- Still difficult to incorporate due to involved GA processing.

Proposed Approach

- The key idea is to store the optimal solutions from the GA for given environment parameters and use them subsequently even if the environment parameters change.
- The approach suggested exploits the observation that there is an overlap between the optimal solutions of GA when there is change in environment parameters.

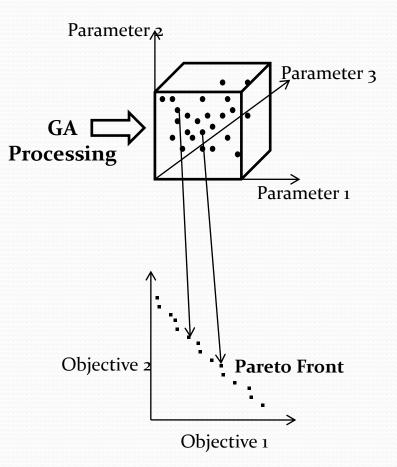
Parameter Space & Objective space

- Parameter Space: Formed by configurable parameters of SDR.
 - e.g. Tx Power, Modulation Order, Coding Rate etc.
- Objective Space: Formed by objective parameters in QoS.
 - e.g. BER, Bandwidth etc.
- Objective functions map parameter space to objective space.
- Objective functions use environment parameters' values.



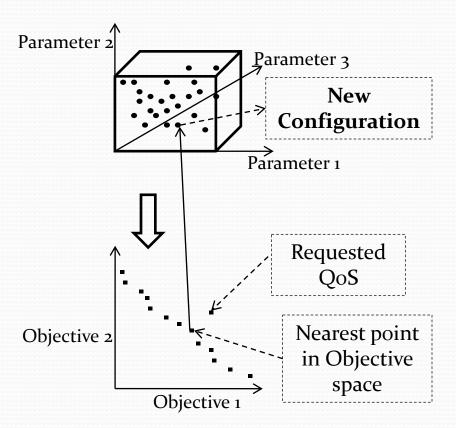
Optimization process (Step-1)

- Get Non-dominated Set using GA processing
 - Non-dominated set has configurations such that no configuration is outperforming the other in terms of all objectives.
 - e.g. the vector (3,4) is not dominated by (1,6) and vice versa.
 While (3,4) will be dominated by (6,7) for a maximization problem.



Optimization process (Step-2)

- Get new configuration from Non-dominated set
 - Found by taking the individual from parameter space that is mapped nearest to requested QoS in objective space.



Simulation parameters

SDR's configurable parameters

Knob	Values	Count
Modulation	2,4	2
Order for PSK		
Coding Rate	1/2, 1/3, 3/4	3
Data Rate	10000, 20000,	3
	30000 bits per	
	second	
Transmit	-100 to 10 dBm	2751
Power	(at 0.04 dBm	
	steps)	
Transmit	900 to 920 MHz	10001
Frequency	(at 1 KHz steps)	

GA parameters

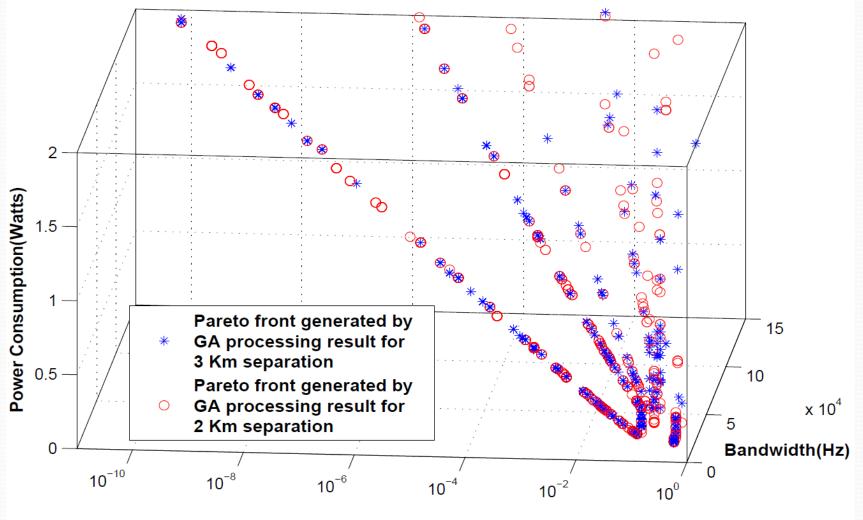
Parameter	Values
Population Size	4000
Non-Dominated Set	5600
Size	
Mating Pool Size	2400
Generations	6
Crossover	0.98
Mutation	0.02

Parameter Space Size= 495229518

Simulation parameters

- Objective space parameters are
 - BER, Bandwidth and Power consumption
- Environment parameter is SNR at receiver.
- A line of sight communication is assumed between transmitter and receiver.

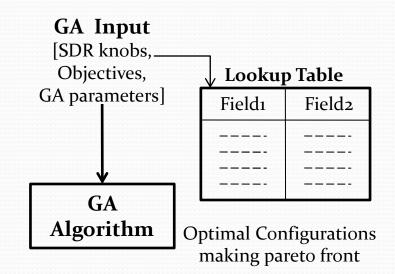
Observation



BER

Proposed Solution and Results

- Make step-1 of process as offline process.
 - i.e. Calculate non-dominated solutions set in advance and store in a lookup table.
- The step-2 takes care of change in environment parameters' value.



Population Size	Using GA (Step-1 & Step-2)	Using Proposed approach
4000	5880.6 Seconds	6.144 Seconds
400	67.22 Seconds	0.1593 Seconds
50	456.8 Milliseconds	48.12 Milliseconds

Execution Time Comparisons

References

- B. Fette, Cognitive Radio Technology, Elsevier, New York, 2006.
- T. W. Rondeau, "Application of Artificial Intelligence to Wireless Communications," *Ph.D. Dissertation*, Virginia Polytechnic Institute and State University, September, 2007.
- T. W. Rondeau, B. Le, D. Maldonado, D. Scaperoth, C. W. Bostian, "Cognitive Radio formulation and implementation" Center for Wireless Telecommunications, Virginia Tech, 2006.
- T. W. Rondeau, B. Le, C. J. Rieser, C. W. Bostian, "Cognitive Radios with Genetic Algorithms:Intelligent Control of Software Defined Radios" *Software Defined Radio Forum Technical Conference, pp. C-3-C-8,* Phoenix, 2004.
- C.M. Fonseca and P.J. Fleming, "Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms" *IEEE Transactions on Systems, Man and Cybernetics, Vol. 28, pp. 26-37, 1998.*
- J. Horn, N. Nafpliotis and D.E. Goldberg, "A Niched Pareto Genetic Algorithm for Multiobjective Optimization" *IEEE Proceedings of the World Congress on Computational Intelligence, Vol. 1, pp. 82-87,* 1994.

References

- J.P. Cohoon, W.N. Martin and D.S. Richards, ``Punctuated Equilibria: A Parallel Genetic Algorithm," *Proceedings of the Second International Conference on Genetic Algorithms, Vol. 1, pp. 148-154, 1987.*
- J. Arabas and S. Kozdrowski, ``Population Initialization in the Context of a Biased Problem-Specific Mutation," *IEEE Proceedings of the Evolutionary Computation World Congress on Computational Intelligence, pp. 769-774, 1998.*
- C.L. Ramsey and J.J. Grefenstette, ``Case-Based Initialization of Genetic Algorithms," *Proceedings of the Fifth International Conference on Genetic Algorithms, Vol. 5, pp. 84-91, 1993.*
- E. Zitzler and L. Thiele, ``An evolutionary algorithm for multiobjective optimization: The strength pareto approach", Swiss Federal Institute of Technology (ETH), TIKReport, No. 43, May 1998.
- E. Zitzler and L. Thiele, ``Multi objective evolutionary algorithms a comparative case study and the strength pareto approach", *IEEE Trans. Evolutionary Computation, Vol. 3, 257 271,* 1999.
- Ivo F. Sbalzarini, Sibylle Muller and Petros Koumoutsakos, ``Multiobjective optimization using evolutionary algorithms", *Proceedings of the Summer Program, Center for Turbulence Research*, 2000.

Thank You

Contact info: Ajay Sharma, Scientist 'C' Defence Electronics Applications Laboratory, Dehradun, DRDO, India. E-mail : contactmeajay@gmail.com