

ModemX

Heterogeneous Multi-Core Architecture for SDR Applications

making wireless convergenmaking wireless convergence TRANSPARENT

© 2007-2008 ASOCS Ltd. All rights reserved

Agenda

- Introduction
- ModemX Architecture
- Application Examples
- Summary

Introduction

- ASOCS Introduction
 - Developer of many-core embedded processors enabling seamless connectivity over diverse wireless networks
 - Pioneer of ModemX technology
 - Expertise in algorithms, DSP, software and firmware for wireless, cellular and broadcast
 - ▶ Founded in 2003, Head quarters in Afek Park, Israel
 - Investors

- ModemX technology
 - ► Heterogeneous Many Core Architecture
 - Designed specifically for wireless application
 - Field proven in various applications

Gilder Group

Introduction – Multicomm SDR platform

- Support of various waveforms and technologies.
 - ▶ Modulation schemes, Coding schemes.
 - Multiple access schemes.
 - Bandwidth and bit rates.
- In-the-field upgradability.
- Concurrent operation of multiple standards Waveforms
 - Zero latency re-morphing from one waveform to another
- Competitive in area and power.
- Easy robust development path.
- Scalability: same platform to support a wide range of applications.

Agenda

- Introduction
- ModemX Architecture
- Application Examples
- ► Summary

ModemX architecture – Many Core Approach

- Heterogeneous Multi/Many Core Architecture.
- ► Core = Algorithmic Processing Unit (APU).
- Several types of APU.
 - ▶ # per type design parameter
- Each APU is instantiated multiple times.
- ▶ 10s-100s of APUs in typical designs.

ModemX Architecture – A closer look at APU

- ► Local Sequencer Unit (LSQ)
 - Algo unit control:
 - Cycle by cycle
 - Configuration
 - Flow control:
 - Nested loops, branch, subroutine calls
- Algorithm Unit
 - Specific to APU type.
 - Efficient dedicated design.
 - Multiple ALUs, registers.
 - Access to Data memory
- Interfaces to other APUs
 - Data
 - Control
 - Handshake signals

ModemX Architecture- SSQ and Memory bank

- Standard Sequencer (SSQ)
 - ▶ 16 bit RISC processor
 - High level control
 - APU configuration
 - No participation in Data crunching
 - One for each concurrent standards
 - ▶ # design parameter.
- Memory Bank
 - Pool of single/dual port memories
 - Data for APUs
 - Code Data for SSQs
 - ▶ Very high bandwidth interconnect.

ModemX Architecture - APU Types

- Functional partitioning:
- Result of wide scope survey of wireless communication standards.
- Several APU types: varying in functionality & complexity.
- Some provide a high degree of flexibility and programmability

Memory Gateway APU	
Memory intense operations	
Complex memory structures	
Interleavers	Mem Mem
Delay lines	AGU AGU
Sample buffer	Arith
	Data Manip.
	MGW APU

Multiply Accumulate APU

For real/complex signal processing

Multiply/add/extract

Native complex arithmetic

Polar operations

 $1/x 1/\sqrt{x}$, semi - floating point

Bit Manipulation APU

For operation on bits and words

Scrambling, Encoding/Decoding

Message construction/parsing

	Mem
Bit	AGU
Word	Regs
Arith	Poly

BITMAN APU

ModemX Architecture - APU Types

- More APU examples
- Ubiquitous operations
- More specific functionality
- Less programmability

Front End APU	
Channel Filtering	
Rate conversion	
I/Q Correction	FrEnd
DC correction	
Numerically Controlled Osc	mator APU
Phase/frequency correction	
CORDIC operations	e ^{j@n}
	NCO

ASOCS

ModemX Architecture - Processing Segment

- Multiple APUs form a Processing Segment
- ► Example: OFDM Frequency Domain Processing

ASOCS

ModemX Architecture - Multiple segments

- Zooming out to a complete design: Multiple processing segments
- ► Concurrently, or Sequentially
- ► Multiple Ad-Hoc processors.
 - Each tailored to a specific domain
 - With optimal processing resources
- Significant processing power
 - As required by operation, when & where needed

ModemX Architecture - Concurrent operation

- Operation of multiple standards / waveforms
- One SSQ per Standard
- All resources are divided between standards
 - Orthogonal sets
 - No constraints/ bottlenecks between sets
 - Designer may choose to share resources
- New standards/waveforms can be loaded without affecting the currently active ones.

ModemX Development Tools

- Main Challenges
 - Real time code development in a Heterogeneous Many Core system
 - Programming for Concurrent
 Operation
 - ModemX Architecture abstraction
- Solution
 - StudioX: Integrated Development Environment.
 - MPSD: Multi Protocol System Designer.
 - SSQ/APU Compilers and Assemblers.
 - Real- time debugging and monitoring tools.
 - Function libraries for frequently used algorithms.

MPSD problem statement

ModemX Architecture - Key points

- Significant Processing power
 - Example LTE (Cat 4 UE)
 - ► 100 real Multiply accumulate / cycle
 - ▶ 50 complex memory transfers per cycle
 - Available for multiple operations across the design
 - Elevates traditional SIMD limitations.
- Power/Area efficiency
 - ► Data path approach provides near dedicated H/W power consumption
 - Thin control layer
- Scalability
 - Resources are readily tuned to requirements
 - Same platforms for
- One Stop Shop for All processing requirements
 - In contrast to DSP + Accelerator suites

Agenda

- Introduction
- ModemX Architecture
- Application Examples
- ► Summary

ModemX Applications

- Mobile applications
- ► Digital TV
- ► Aerospace
- Infrastructure and Cloud RAN

Mobile Applications

- ► Field proven applications developed using ModemX technology
- Implemented on MP100 baseband processor chip:
 - ► GSM/EDGE
 - ► TD-SCDMA
 - CMMB (Chinese mobile Digital TV standard)
 - WiFi 802.11g
- Diverse requirements and technologies
 - Bandwidth from 200KHz to 20MHz.
 - ▶ Bit rates 240Kb/s 54 Mb/s
 - Plethora of modulation scheme and demodulation techniques
 - Soft output trellis equalizers (GSM/EDGE)
 - Successive Interference Cancelation joint Detection (TD-SCDMA)
 - ► OFDM-11g variant: short symbols and burst, fast acquisition time.
 - ► OFDM-CMMB variant: long symbols, scattered pilots.
- Concurrent operation
 - ▶ GSM/ WiFi operation

Digital TV applications

- ► Terrestrial/Satellite Digital TV is an excellent playground for SDR:
- Various regional standards and modulation technologies.
 - ► DVB-T/T2 (Europe) ISDB (Japan) : OFDM
 - ► DVB-S/S2 (Europe) Satellite: Single carrier
 - ► ATSC- ATSC-M/H (USA): Terrestrial, single carrier
 - ▶ DTMB- (China) TDS-OFDM
- Receiver configuration and antenna diversity options
- ASOCS MT101
 - ModemX based IP for digital TV

Aero space application

- Developed per requirement of leading Aerospace company
- ► Two Concurrent Modems, 4MHz, 10Mb/s
- Coded OFDM over frequency hopping
- Small form factor module: 11x6x2.5 cm
- ► True SDR with a 400MHz- 4 GHz RF transceiver.

Cloud RAN applications

- ► Cloud RAN Background:
 - Entire C-RAN processing is delegated to the 'cloud'.
 - Implemented in large data centers.
 - On general purpose servers (x86)
- CAPEX reduction
 - economics of scale, GP
- OPEX reduction
 - lower power consumption
- ► Facilitates novel techniques:
 - Cooperative Multipoint (CoMP) operation

ModemX in cloud RAN

- C-RAN implementation on x86 very challenging
 - High bandwidth/strict latency requirements
 - Processing tasks which are not in x86 architecture
 - E.g. Turbo decoding
 - Data transfers bottlenecks
 - Power efficiency for vector operations
- Proposed approach:
 - CPU off loading to Modem Processing unit (MPU)
 - Implemented using ModemX technology
- Requirements
 - ▶ Same solution for 2G,3G 4G
 - ► Support of complex and irregular algorithm
 - Easy to change and modify data path architecture
 - On the fly re-configurability
 - Power Efficiency

Agenda

- Introduction
- ModemX Architecture
- Application Examples

Summary

Summary

- Presented ModemX architecture and applications
- New concept and architecture
- Facilitates true concurrent operation
- Powerful and flexible
- Scalable solution, supports a wide range of applications.
- Mobile applications
 - ► Power and size competitive with dedicated H/W solutions.
- Infrastructure applications
 - High processing for infra structure applications
 - Power consumption well below other SDR solutions.

Thank you

making wireless convergenmaking wireless convergence TRANSPARENT

© 2007-2008 ASOCS Ltd. All rights reserved.