

Fixed-Point Aspects of MIMO OFDM Detection on SDR Platforms

Daniel Guenther

Chair ISS Integrierte Systeme der Signalverarbeitung

June 27th 2012

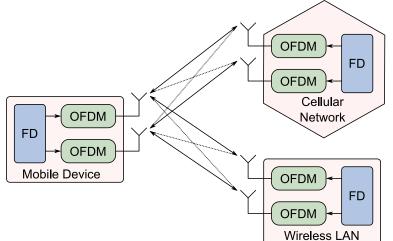
Institute for Communication Technologies and Embedded Systems

- MIMO OFDM Application
- Platform Solutions
 - Exploiting Data Level Parallelism
 - The P2012 Platform

Fixed Point Aspects of MIMO Detection

- Problem & Mitigation (QR Decomposition)
- Algorithmic Performance
- Execution Time
- Summary & Outlook

- Modern wireless communication
 - Wireless LANs (stationary)
 - IEEE 802.11 a/b/g/n
 - Cellular networks (mobile)
 - GSM
 - UMTS
 - LTE
 - Cdma2000
- Merging of stationary & mobile communication
 - You expect your ...
 - ... smartphone to also support wireless LAN
 - ... laptop to also support cellular networks
- Need for a flexible, programmable platform
 - Software Defined Radio



Characteristics of wireless standards (LTE, 802.11n)

- High data rates, low latencies
- MIMO: Multiple antenna transmission
- *OFDM:* Orthogonal frequency-division multiplexing

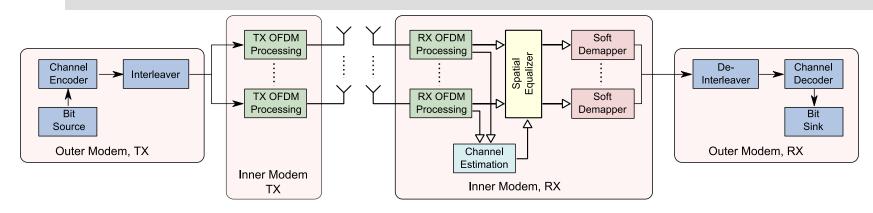
SDR platform requirements

- Multi-core: Handle high throughput, exploit DLP
 - Common solutions: SIMD, VLIW
- Fast signaling: Handle low latency

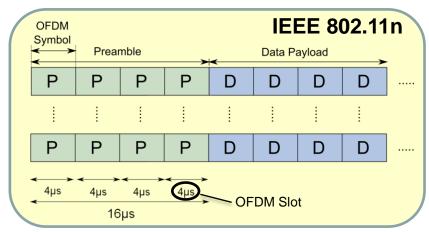
Motivation of Software Defined Radio

MIMO OFDM Application

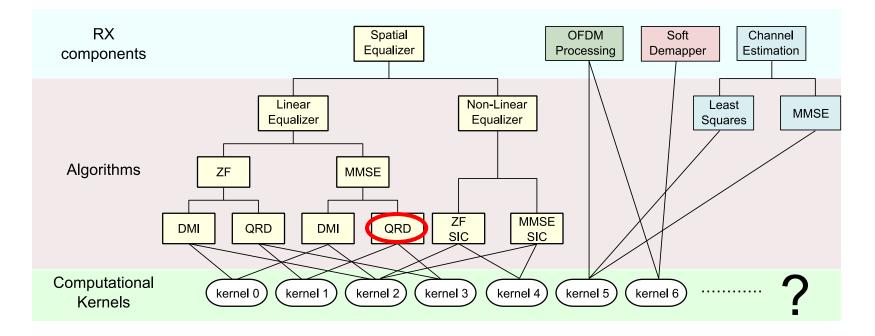
- Platform Solutions
 - Exploiting Data Level Parallelism
 - The P2012 Platform


Fixed Point Aspects of MIMO Detection

- Problem & Mitigation (QR Decomposition)
- Algorithmic Performance
- Execution Time
- Summary & Outlook



MIMO OFDM Application: Transceiver Structure



- Outer Modem
 - Channel (De-)coding
 - (De-)Interleaving
- Inner Modem (RX)
 - RX OFDM Processing
 - Channel Estimation
 - Spatial Equalizing: Mitigate channel impact on payload
 - Soft Demapping: Calculate soft bits (LLRs) BPSK, 4QAM, 16QAM, 64QAM

MIMO OFDM Application: Kernel Identification

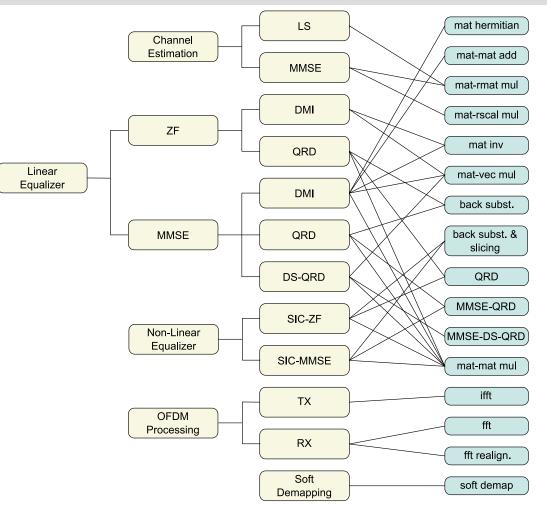
Analyze different algorithmic choices within RX blocks

- Identify computational kernels
 - Recurring tasks
 - Operate on data with certain alignment
- Build application as composition of kernels

• LMMSE MIMO Equalizer with QRD

- Basic transmission equation y = Hx + n
- Linear MMSE equalization $\hat{\mathbf{x}} = \mathbf{G}\mathbf{y}, \quad \mathbf{G} = \left(\hat{\mathbf{H}}^{\mathbf{H}}\hat{\mathbf{H}} + \frac{\sigma_n^2}{E_s}\mathbf{I}\right)^{-1}\hat{\mathbf{H}}^{\mathbf{H}}$
- Regularized QRD

$$\overline{\mathbf{H}} = \begin{pmatrix} \hat{\mathbf{H}} \\ \frac{\sigma_n}{\sqrt{E_s}} \mathbf{I} \end{pmatrix} = \begin{pmatrix} \mathbf{Q}_{\mathbf{a}} \\ \mathbf{Q}_{\mathbf{b}} \end{pmatrix} \mathbf{R}$$


Rewrite G using Q_a and Q_b

$$\mathbf{G} = \frac{\sqrt{E_s}}{\sigma_n} \mathbf{Q}_{\mathbf{b}} \mathbf{Q}_{\mathbf{a}}^{\mathbf{H}}$$

- Computational Kernels
 - Regularized QR decomposition
 - Matrix-matrix multiplication
 - Matrix-vector multiplication

MIMO OFDM Application: Kernel Overview

- Application variants consist of a few kernels only
- Kernels implement vector arithmetic

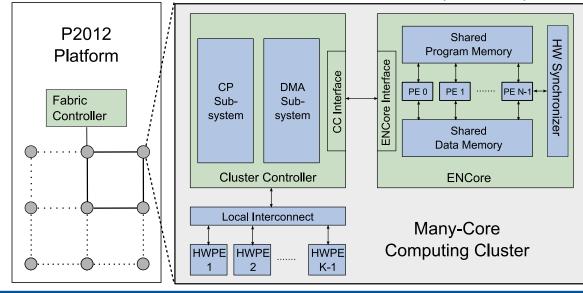
Suitable platform hast to exploit data level parallelism (DLP)

RNTHAAC

- Motivation of Software Defined Radio
- MIMO OFDM Application
 - **Platform Solutions**
 - Exploiting Data Level Parallelism
 - The P2012 Platform

Fixed Point Aspects of MIMO Detection

- Problem & Mitigation (QR Decomposition)
- Algorithmic Performance
- Execution Time
- Summary & Outlook


 \rightarrow

Two common approaches to exploit DLP

- Very Long Instruction Word (VLIW) architectures
 - Instructions are packed into macro instruction and executed in parallel
 - Example: TI TMS320C6000
- Single Instruction Multiple Data (SIMD) architectures
 - One instruction is executed on a set of data
 - Example
 - ST Ericsson EVP
 - Freescale MSC8156
 - STM P2012
- Regular data accesses and vectorial kernels call for SIMD architecture

- SoC platform with maximum of 32 clusters
- One cluster provides
 - Max. 16 RISC cores (STxP70) @ 600MHz
 - VECx vector extension (SIMD)
 - 128 bit vector registers
 - 8x16 bit or 4x32 bit operations
 - Hardware synchronizer for inter-core signaling
 - Interface for hardware accelerators (ASICs)

- Motivation of Software Defined Radio
- MIMO OFDM Application
- Platform Solutions
 - Exploiting Data Level Parallelism
 - The P2012 Platform

Fixed-Point Aspects of MIMO Detection

- Problem & Mitigation (QR Decomposition)
- Algorithmic Performance
- Execution Time
- Summary & Outlook

 \rightarrow

Problem

- Strict real time constraints of standards imply use of fixedpoint operations
- ASIC implementations choose fixed-point bitwidth freely
- DSPs traditionally use 16bit data types
- Challenge for numerical stability!
- Critical point
 - Matrix Inversions
 - Values run out of fixed point range
 - Example: MIMO Preprocessing

$$\mathbf{G} = \arg\min_{\mathbf{G}} E\left\{ \left| \mathbf{x} - \mathbf{G}\mathbf{y} \right|^2 \right\} = \left(\hat{\mathbf{H}}^H \hat{\mathbf{H}} + N_0 \mathbf{I} \right)^{-1} \hat{\mathbf{H}}^H$$

• QR Decomposition of augmented channel matrix

$$\overline{\mathbf{H}} = \begin{pmatrix} \hat{\mathbf{H}} \\ N_0 \mathbf{I} \end{pmatrix} = \mathbf{Q}\mathbf{R} = \begin{pmatrix} \mathbf{Q}_{\mathbf{a}} \\ \mathbf{Q}_{\mathbf{b}} \end{pmatrix} \mathbf{R} \quad \mathbf{Q}^H \mathbf{Q} = \mathbf{I} \quad \mathbf{Q}_a \mathbf{R} = \mathbf{H}$$

Rewriting equalizer matrix

 $\mathbf{G} = N_0 \mathbf{Q}_{\mathbf{b}} \mathbf{Q}_{\mathbf{a}}^{\mathbf{H}}$

- Choosing Modified Gram-Schmidt (MGS) as QRD algorithm
 - Delivers Q_b for calculation of G
 - Project and subtract column vectors for linear independence

for
$$j = 0$$
 to $N_t - 1$ do
for $i = 0$ to $j - 1$ do
 $r_{ji} \leftarrow \mathbf{v_j^H v_i}$
 $\mathbf{v_j} \leftarrow \mathbf{v_j} - \operatorname{proj_{v_i}}(\mathbf{v_j}) = \mathbf{v_j} - r_{ji}\mathbf{v_i}$
end for
 $r_{jj} \leftarrow ||\mathbf{v_j}||$
 $\mathbf{v_j} \leftarrow \frac{\mathbf{v_j}}{r_{jj}}$
end for
 $\mathbf{Q} \leftarrow [\mathbf{v_0}, \mathbf{v_1}, ..., \mathbf{v_{N_t} - 1}]$

- Problem
 - Repeated projection and subtraction may cause values to run out of fixed point range
 - Problem increases with number of spatial streams (4x4)
- Mitigation: Dynamic Scaling
 - One column vector is projected and subtracted from right hand vectors
 - Check whether vectors exceed certain range and shift back

```
Algorithm 1 MMSE MGS-QRD with DS
 1: \mathbf{V} \leftarrow \mathbf{\bar{H}}
 2: for i = 1 to N_t do
        for j = i to N_t do
  3:
              if \max\{|\Re\{v_{i,1}\}|, |\Im\{v_{i,1}\}|, ..\} < B_l then
  4:
  5:
                 v_i \leftarrow 2v_i
             else if \max\{|\Re\{v_{j,1}\}|, |\Im\{v_{j,1}\}|, ..\} > B_h then
                                                                                                                    Dynamic Scaling
  6:
                 \mathbf{v_i} \leftarrow \mathbf{v_i}/2
  7:
             end if
  8:
        end for
  9:
         \mathbf{v_i} \leftarrow \mathbf{v_i} / \|\mathbf{v_i}\|
10:
         for j = i + 1 to N_t do
11:
              \mathbf{v_i} \leftarrow \mathbf{v_i} - (\mathbf{v_i}^H \mathbf{v_i}) \mathbf{v_i}
12:
         end for
13:
14: end for
15: \mathbf{Q} \leftarrow [\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{N_t}]
```


Problem

In high SNR region, scaled identity matrix in augmented channel matrix becomes too small to calculate reliant Qb

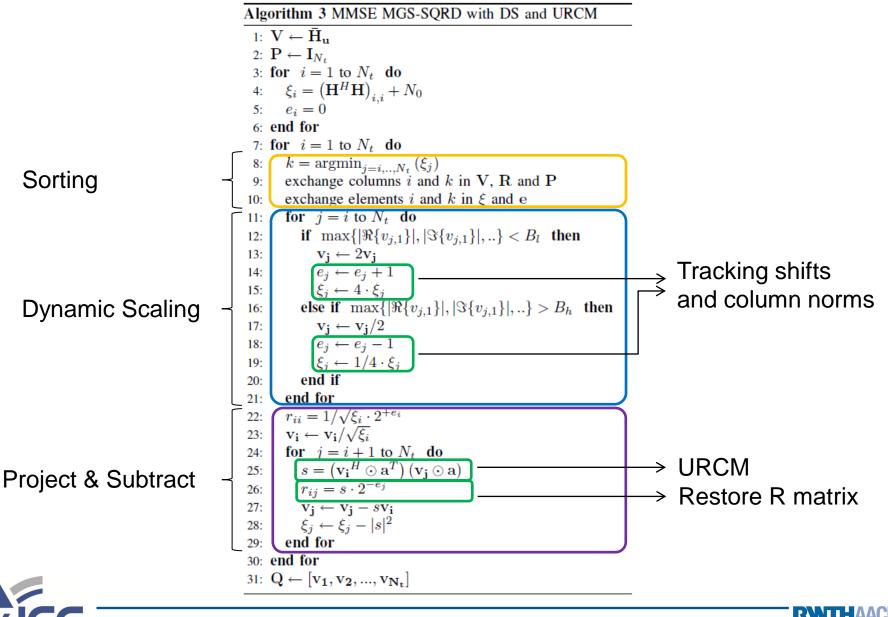
$$\overline{\mathbf{H}} = \begin{pmatrix} \hat{\mathbf{H}} \\ N_0 \mathbf{I} \end{pmatrix} = \mathbf{Q} \mathbf{R} = \begin{pmatrix} \mathbf{Q}_{\mathbf{a}} \\ \mathbf{Q}_{\mathbf{b}} \end{pmatrix} \mathbf{R}$$

- Mitigation
 - Unified Regularized Channel Matrix (URCM)
 - Scale up identity matrix $\overline{\mathbf{H}}_{u} = \begin{pmatrix} \hat{\mathbf{H}} \\ \mathbf{I} \end{pmatrix}$
 - Correction factor in projection
 - No adaption in subtraction

```
Algorithm 2 MMSE MGS-QRD with DS and URCM
  1: \mathbf{V} \leftarrow \mathbf{\bar{H}}_{\mathbf{u}}
  2: for i = 1 to N_t do
          \xi_i = \left(\mathbf{H}^H \mathbf{H}\right)_{i,i} + N_0
  4: end for
  5: for i = 1 to N_t do
          for j = i to N_t do
  6:
              if \max\{|\Re\{v_{i,1}\}|, |\Im\{v_{i,1}\}|, ..\} < B_l then
  7:
                  v_i \leftarrow 2v_i
  8:
                 \xi_i \leftarrow 4 \cdot \xi_i
  9:
              else if \max\{|\Re\{v_{i,1}\}|, |\Im\{v_{i,1}\}|, ..\} > B_h then
10:
                  v_i \leftarrow v_i/2
11:
                 \xi_j \leftarrow 1/4 \cdot \xi_j
12:
              end if
13:
          end for
14:
         \mathbf{v_i} \leftarrow \mathbf{v_i} / |\sqrt{\xi_i}|
15:
          for j = i + 1 to N_t do
16:
              s = (\mathbf{v_i}^H \odot \mathbf{a}^T) (\mathbf{v_j} \odot \mathbf{a})
17:
18:
               v_i \leftarrow v_i - sv_i
              \xi_i \leftarrow \xi_i - |s|^2
19:
20:
          end for
21: end for
22: \mathbf{Q} \leftarrow [\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_{N_t}}]
```

Status

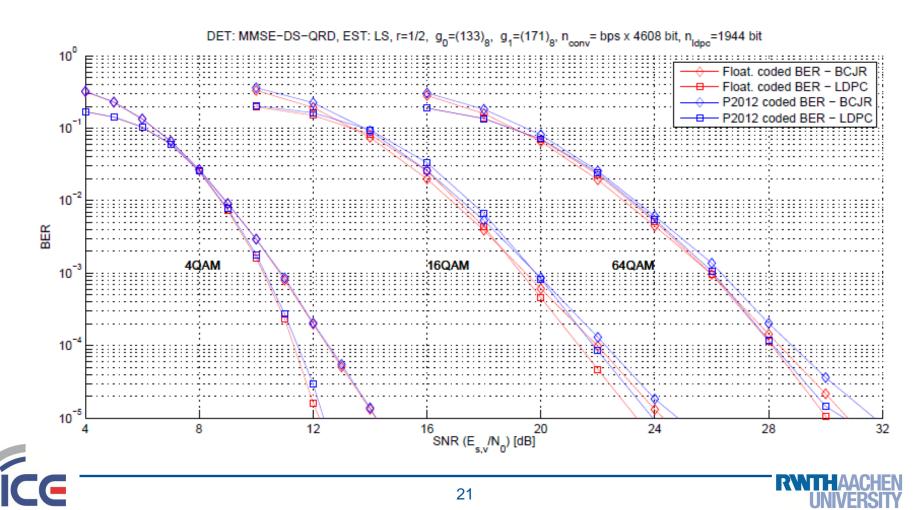
Current algorithm allows 4x4 MIMO LMMSE Detection with algorithmic performance close to floating point


Limitation

- Matrix R is lost due to DS
- No Sorting
- Both expected certain other MIMO detector types
 - MMSE-SIC
 - Sphere Detection
- Mitigation
 - Keep track of DS shifts to restore R and original column norms

Fixed-Point Aspects: Mitigation 5

- Motivation of Software Defined Radio
- MIMO OFDM Application
- Platform Solutions
 - Exploiting Data Level Parallelism
 - The P2012 Platform
- Fixed-Point Aspects of MIMO Detection
 - Problems & Mitigation (QR Decomposition)
 - Algorithmic Performance
 - Execution Time


Summary & Outlook

 \rightarrow

Channel Simulation

- AWGN
- Rayleigh Fading (20dB drop along 150ns)

- Motivation of Software Defined Radio
- MIMO OFDM Application
- Platform Solutions
 - Exploiting Data Level Parallelism
 - The P2012 Platform
- Fixed-Point Aspects of MIMO Detection
 - Problem & Mitigation (QR Decomposition)
 - Algorithmic Performance
 - Execution Time

Summary & Outlook

 \rightarrow

 Algorithmic improvements (DS, URCM) come at the cost of increasing execution time

System	2x2		4x4]
Operation	cycles	T (μs)	cycles	Τ (μs)]
MIMO Preprocessing (per frame)]
mgs-mmse-qrd	22,848	38.08	55,536	92.56	
mgs-mmse-ds-qrd (UMCR)	35,424	59.04	66,624	111.04	
mgs-mmse-ds-sqrd (UMCR)	43,248	72.08	85,392	142.32	
gr-mmse-sqrd	-	-	112,032	186.72	
matrix-matrix mul.	2,496	4.16	11,472	19.12	
sinr-calc-r	9,456	15.76	25,824	43.04	
sinr-calc-r-inv	7,248	12.08	15,600	26.00	
Spatial Equalizing (per OFDM slot)					1
back substitution	1,188	1.98	2,736	4.56]
matrix-vector mul.	1,968	3.28	3,312	5.52	

Note

- QRD algorithms with lower operation count (Givens Rotation) are not faster on SIMD platform
- Reason: Irregular data accesses

- Motivation of Software Defined Radio
- MIMO OFDM Application
- Platform Solutions
 - Exploiting Data Level Parallelism
 - The P2012 Platform
- Fixed-Point Aspects of MIMO Detection
 - Problem & Mitigation (QR Decomposition)
 - Algorithmic Performance
 - Execution Time

Summary

- Numerical stability is a critical point in MIMO detection
- MIMO detection can reach close to floating point algorithmic performance on 16bit fixed point DSPs
- Moderate additional costs in execution time

Outlook

- VLIW architectures
- Advanced, iterative receivers
- Customized ASIP for baseband processing

Thank you!

