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ABSTRACT 

 

Although most countries already have Digital Television 
(DTV) available, there are several others migrating their 
infra-structure from analog to digital. One of these countries 
is Brazil, which intends to accomplish a full switch up to 
2016. This initiative is seen as of extreme importance by 
local authorities since Brazil will host the FIFA World Cup 
in 2014 and the Olympics Games in 2016, events that will be 
seen by millions of viewers around the globe. The Brazilian 
DTV is based on the Japanese ISDB-T standard for the 
modulation scheme, which is an OFDM system capable of 
supporting services from mobile to full-definition. Since the 
relevance of the subject, this paper presents a software 
defined radio approach to implement a full ISDB-T 
transmitter using GNU Radio and USRP, covering a 
complete study from modeling to implementation. This 
papers aims not only to discuss and clarify several 
misinterpretations of the ISDB-T standard, but also to present 
an efficient implementation on a SDR architecture, serving as 
reference to new developers and as a roadmap for 
manufactures. 

 

1. INTRODUCTION 

 

The Integrated Services Digital Broadcasting – Terrestrial 
(ISDB-T) [1] was developed to support different services 
from mobile to full-definition. Occupying a channel of 6 
MHz, it is a versatile and robust system, which integrates 
several protections against errors that can occur in the 
transmission.  

The most common implementation of the ISDB-T 
transmitter is based on specialized hardware to perform the 
steps required to modulate the signal. Our goal here, 
however, is to present a Software Defined Radio [5] 
approach to implement such transmitter. SDR platforms are 
already widely used in scientific field, allowing several 
researches to work on  areas like cognitive radios [10], 
OFDM modulation [11], among others. A research group in 

Italy has already successfully implemented the DVB (Digital 
Video Broadcasting) transmitter using SDR [13]. 

The main reason to implement a ISDB-T transmitter 
using a SDR platform is the flexibility offered by the latter. 
Characteristics of the system can be easily changed and 
upgrades can be performed in short time, without hardware 
modification. 

This paper describes the ISDB-T Standard, trying to 
clarify some of its aspects and particularities. Also, it briefly 
discusses the implementation of the transmitter using Matlab 
and GNU Radio. 

 

2. ISDB-T STANDARD OVERVIEW 

 

The ISDB-T is an OFDM (Orthogonal Frequency Division 
Multiplexing) system with 13 segments per frame organized 
in up to 3 hierarchical layers. It supports 3 operation modes, 
which defines how many data carriers will be used in each 
OFDM segment. 

The input of the ISDB-T modulator is a BTS (Broadcast 
Transport Stream) file which contains the TSPs (Transport 
Stream Packet) used to transport the audio and video data, 
among other informations. Fig. 1 below shows the processing 
chain of the modulator. 

First we have a shortened Reed-Solomon (204,188) 
encoder, which includes parity bytes in TSPs, followed by 
the hierarchical divider, which is responsible to distribute 
TSPs across each hierarchical layer processing chain. Each 
hierarchical layer  is composed by a sequence of signal 
processing chain responsible to adapt the TSPs to 
transmission format. This includes an energy dispersal, bit 
and byte interleavers, convolutional encoder and mapper.  

The final steps include hierarchical layers combiner, 
OFDM frame adaptation (allocation of data carriers, pilots 
and Transmission and Multiplexing Configuration Control), 
IFFT and guard-interval addition. When all these tasks are 
completed, the signal is ready to be transmitted. It is worth 
noticing that a multiplex frame (which comes from BTS) is 
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aligned with a OFDM frame. All these tasks will be detailed 
in following sections.  

 

Fig. 1. Block diagram of channel coding [1]. 

 

The ISDB-T Standard defines several parameters that are 
crucial for good understanding of the system. Below we 
clarify some of those definitions presented in [1]. 

• 1 OFDM Frame = 204 OFDM Symbols 

• 1 OFDM Symbol = 13 OFDM Segments 

• 1 OFDM Segment = 1 Data Segment + Pilots + 
TMCC + AC 

• 1 Data Segment = n Data Carriers (n depends on 
the operation mode, namely 2k, 4k and 8k) 

To illustrate those parameters, in Fig. 2 we see in 
Frequency Axis a OFDM symbol composed by sub-carriers 
(Data Carriers + Pilots + TMCC + AC) and in Time Axis we 

see the propagation of OFDM symbols (204 of these will 
constitute a OFDM frame). 

 

 

Fig. 2. OFDM Symbol in frequency and time domain [3]. 

 

2.1. Reed-Solomon 

 

The Reed-Solomon algorithm is an error-corrector code 
developed by Irving S. Reed and Gustave Solomon in 1960 
[2]. It is capable to correct random errors and burst noise. 
Due to its code properties, which makes it very robust to 
errors,, it is largely used in storage medias like DVD and CD, 
mobile communications, etc. 

In the ISDB-T, a shortened version of RS encoder is 
used, namely RS(204,188). This is obtained by adding 51 
null bytes in the beginning of the TSP and applying it to 
RS(255,239). After encoding, the inserted zeros are removed 
from the data stream. In the end of this process, the TSP will 
have 188 data bytes and 16 parity bytes, composing the 204 
bytes BTS packet. 

 

2.2. Hierarchical Divider 

 

The BTS file contains all packets of hierarchical layers A, B 
and C. The Hierarchical Divider is responsible to redirect 
each TSP to its processing chain, to discard null packets 
generally used to maintaining a system’s constant transmit 
rate, to store the IIP (ISDB-T Information Packet), which 
will configure the parameters used to modulate the signal, 
and to shift the sync byte (0x47) from beginning to end of the 
packets. More details of its operation are available in [1] and 
[12]. 

 

2.3. Energy Dispersal 

 

This block randomizes the data within the TSP, in order to 
distribute its energy equally along the packet, reducing the 
inter symbol interference caused by transmitting repetitive 
information. Fig. 3 shows the circuit responsible to perform 
this task. It is a simple shift register with a XOR operation. 
This polynomial is also used in other OFDM transmission 
standards such as WiMAX. 
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Fig. 3. PRSB-Generating Polynomial and Circuit [1]. 

It is worth emphasizing that the sync byte (0x47) should 
not be randomized along with the data bytes. 

 

2.4. Byte Interleaving 

 

This block is responsible of  interleaving the data, so that if 
frequency selective errors occur in the channel, they do not 
corrupt the data block  since it’s  scattered . The interleaver is 
composed by 12 paths with variable delays. Fig. 4 shows its 
scheme. 

 

 
Fig. 4. Byte Interleaving circuit [1]. 

 

A delay adjustment is required here, in order to 
compensate the delay introduced by the circuit above. Details 
on the amount of delay adjustment required are available in 
[1]. 

 

2.5. Inner Code 

 
This is a very common convolutional encoder with constraint 
length k = 7. This inner code allows multiple coding rates 
through bit puncturing patterns. Fig. 5 shows its circuit. 

 
 

 
Fig. 5. Coding circuit of a convolutional code with 

constrain length k of 7 and a coding rate of ½ [1]. 

The puncturing pattern depends on the coding rate used. 
Table I shows puncturing pattern that should be performed to 
achieve the coding rates. 

TABLE I.  INNER-CODE CODING RATES AND 
TRANSMISSION-SIGNAL SEQUENCE [1] 

Coding 

rate 

Puncturing 

pattern 

Transmission-signal 

sequence 

1/2 
X : 1 

Y : 1 
X1, Y1 

2/3 
X : 1 0 

Y : 1 1 
X1, Y1, Y2 

3/4 
X : 1 0 1 

Y : 1 1 0 
X1, Y1, Y2, X3 

5/6 
X : 1 0 1 0 1 

Y : 1 1 0 1 0 
X1, Y1, Y2, X3, Y4, X5 

7/8 
X : 1 0 0 0 1 0 1 

Y : 1 1 1 1 0 1 0 

X1, Y1, Y2, Y3, Y4, X5, 
Y6, X7 

   

2.6. Bit Interleaving 

 

The same concept used in Byte Interleaving is used here. The 
main difference is that now we should parallelize the data 
depending on how many bits each modulation scheme uses. 
For each modulation scheme we will have a different 
interleaver in terms of shift registers and paths. Fig. 6 shows 
the bit interleaving for 64QAM, which uses 6 bits per carrier. 

 

Fig. 6. 64QAM Modulation system diagram [1]. 

 

It is worth noticing that it is required a delay adjustment 
[1], as in Byte Interleaving. 

 

2.7. Carrier Modulation 

 

The ISDB-T supports DQPSK, QPSK, 16QAM and 64QAM. 
After the bit interleaving, the data is mapped in a point of the 
constellation. As an example, Fig. 7 shows the constellation 
of 16QAM modulation scheme. 
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Fig. 7. Constellation of 16QAM [1]. 

 

After mapping the data in constellation, a modulation 
level normalization is required. Table II shows the 
normalization factor. 

TABLE II.  MODULATION LEVEL NORMALIZATION [1] 

Carrier modulation scheme Normalization factor 

DQPSK and QPSK Z/√2 

16QAM Z/√10 

64QAM Z/√42 

 

2.8. Data segment configuration 

 

This step just rearranges data into data segments to make 
easier the allocation of data carriers in OFDM symbols. Fig. 
8 below shows the organization of data carriers. 

 

Fig. 8. Data-segment configuration [1]. 

Note that 96, 192 and 384 are the number of data carriers 
per OFDM segment used in modes 1, 2 and 3, respectively. 

 

2.9. Hierarchical combiner 

 

The Hierarchical combiner puts all 13 segments together in 
order to gather enough data to build a OFDM symbol. The 
sequence of segments is shown by Fig. 9. 

 

 
Fig. 9. Segments order [1]. 

 
 

 

2.10. Time Interleaving 

 

The Time Interleaver operates separately on each of 13 data 
segments. Fig. 10 and Fig. 11 show the schematic of this 
block. 

 

Fig. 10. Time Interleaver. 

 

 

Fig. 11. Configuration of intradata-segment [1]. 

 

The parameter I corresponds to the interleave length and 
mi  is given by 

  mi = (5i) mod 96,  (1) 

where i  is the carrier number, that is, each carrier will have 
paths with different delays. Also, this step requires a delay 
adjustment [1], as Bit and Byte Interleaving. 
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2.11. Frequency Interleaving 

 

This module is divided in three steps: inter-segment 
interleaving, intra-segment carrier rotation and intra-segment 
carrier randomizing. 

 

2.11.1. Inter-segment interleaving 

 
This step is performed only on hierarchical layers B and C, 
since layer A has only one segment. The ISDB-T Standard 
shows a confusing figure to describe this interleaving, but it 
is simply a matrix interleaver [9]. Suppose we have k 
segments and n data carriers per segment. The interleaving 
process consists in writing the segments column-wise in a k x 
n matrix and reading line-wise, so each line of the matrix is 
the interleaved segment. Fig. 12. illustrates this process. 
 

 
Fig. 12. Matrix Interleaver fictional example for 2 segments 

with 3 data carriers each. 

 
2.11.2. Intra-segment carrier rotation 

 

The carrier rotation, as its name says, rotates the carriers 
inside the segment according to the segment number. Fig. 13 
shows the process for modes 1, 2 and 3. 
 

 

 
NOTE: The symbol S’I,j,k represents the carrier symbol of the 

kth segment following inter-segment interleaving. 

Fig. 13. Carrier rotation [1]. 

 

 

2.11.3. Intra-segment carrier randomizing 

 

This step just randomizes the carriers’ position according to 
pre-defined tables available in ISDB-T Standard [1]. 

 
 

2.12. OFDM Frame Structure 

 

The OFDM frame structure is shown by Fig. 13. 
 

 

Fig. 13. Configuration of the OFDM frame for synchronous 
modulation at mode 1 [1]. 

 

It is important to notice that Fig. 13. above extends to the 
right 12 more times, so we have 13 segments per symbol. 

It is also necessary to organize the segment as showed in 
Fig. 14. 

 

 

Fig. 14. OFDM segment numbers on the transmission 
spectrum [1]. 

 

To make up the entire transmission spectrum, a 
continuous carrier with its phase defined by Wi is allocated in 
right-hand end of the band. This means, each OFDM symbol 
will have an extra continual pilot in its structure. 

 

2.13. Pilots, TMCC and AC 

 

The SPs (Scattered Pilot), TMCC (Transmission and 
Multiplexing Configuration Control) and AC (Auxiliary 
Channel) are dependent on the output Wi. of a PRBS-
generating circuit, because it defines the modulation of these 
signals. Fig. 15. shows the circuit that generates de Wi and 
Table III shows the point on constellation according to Wi. 

. 

Fig. 15. PRSB-generating circuit [1]. 
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TABLE III.  WI AND MODULATING SIGNAL [1] 

Wi value Modulating-signal amplitude (I,Q) 

1 (- 4/3, 0) 

0 (+ 4/3, 0) 

 

In short, the SPs are used by the receiver to synchronize 
the signal, the TMCC contains all parameter necessary to 
configure the receiver and AC shall be used to transmit 
additional information on modulating signal-transmission 
control. 

A SP is inserted every 12 carriers in OFDM segments 
direction. Then its index is shifted 3 positions for each new 
OFDM symbol. TMCC and AC carriers are fixed and 
defined in tables available in [1]. More details can be found 
in the ISDB-T Standard [1]. 

 

2.14. IFFT and Guard Interval 

 

Once all processing tasks are completed, it is time to apply 
the IFFT (Inverse Fast Fourier Transform) to the signal. The 
configuration of the IFFT is showed in Table IV. 

 

TABLE IV.  IFFT PARAMETERS 

Sample Frequency 8126984 Hz 

Number of points for mode 1 2048 

Number of points for mode 2 4096 

Number of points for mode 3 8192 

 

It is worth emphasizing that it is necessary to use the zero 
padding technique [8] in the symbol before applying the 
IFFT. The zeros should be inserted in the middle of the 
symbol, so that the total data is the same length of the 
number of points of the IFFT. 

After the IFFT, it is necessary to insert the guard interval 
to the signal. This step consists in adding to the beginning of 
the effective symbol a part of its end. Fig. 16 illustrates this 
process. At this time, the signal is ready to be transmitted. 

 

 

Fig. 16. Guard interval insertion [1]. 

 

3. SOFTWARE DEFINED RADIO 

 
The main idea of a SDR (Software Defined Radio) is to 
transfer the tasks performed by hardware to software. By 
doing so, the implementation of a communication system 
becomes more flexible, allowing a radio to chance its 
operation characteristics during run time, such as modulation, 
bandwidth, output frequency, etc. Besides flexibility, SDRs 
have many other advantages over traditional radio 
implementations. They are more immune to temperature 
changes and component aging, since they transfer the 
processing task to digital domain, no longer depending on the 
precision of analog components. They also offer all 
advantages that a software environment provides to the 
development process, like simulation tools and error 
correction.  All of these advantages can reduce time-to-
market, since the same hardware platform can be used to 
implement different radios, just by replacing the software that 
controls the radio. 

By transferring most part of processing task to software, 
the complexity of modern radios hardware is reduced, 
limiting it just to the RF front-end implementation. This also 
implies in high integration, given that many passive and 
active elements of the radio, once responsible to signal 
processing and modulation, are eliminated through the use of 
a processor. All these factors have an effect on the product 
final cost, which can be reduced.  

There are several solutions in the market to implement a 
SDR system. In this paper, however, we will present a 
solution propose by Matt Ettus, the USRP (Universal 
Software Radio Peripheral) [4]. 

Composed by a motherboard, responsible for the base-
band processing and by many RF daughterboards cards, 
which can be chosen according to the application’s needs, the 
USRP abstracts the system RF front-end. A Ethernet 
interface establishes the communication between the PC and 
the USRP radio, allowing data exchange in a full-duplex 
manner [5]. 

GNU Radio is an open-source toolbox kit that provides a 
development environment and some processing blocks that 
can be used to create software defined radios. The software 
provides full integration with USRP boards [6]. It provides 
around a hundred signal-processing blocks and allows 
developers to design new ones using C++ as programming 
language. It also contains specific drives to communicate with 
the USRP.  

To implement a ISDB-T modulator, though, it is 
necessary to create new blocks, since it has some specific 
processing steps that are not implemented in this package. 
The creation of blocks is not the scope of this paper, 
however. 

GNU Radio applications are developed using the Python 
language, where the connection between blocks are made. 
The blocks are built in C++, for performance issues.  A 
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graphical user interface, called GNU Radio Companion 
(GRC), is also provided. GRC could be used to simplify the 
system design, just like Simulink does with projects 
developed on Matlab. 

 

4. MODELING AND IMPLEMENTATION 

 

A model of the ISDB-T modulator was implemented in 
Matlab [7] as a reference for the SDR GNU Radio 
development. Each block of the system was implemented 
first as a Matlab Function and then, as a GNU Radio signal 
processing block. Comparisons between GNU Radio and the 
simulation outputs were made to validate each processing 
block. 

In the simulation, the parallel processing of the three 
hierarchical layers were saved as states. Each component, 
when necessary, has a workspace to store its last state, so it is 
possible to reuse the same components in all 3 hierarchical 
layers without having data overwrite problem. 

The simulator works with one OFDM frame for each 
iteration, once the multiplex frames that come from BTS are 
aligned with the OFDM frames. All configuration parameters 
of the modulator are automatically acquired from IIP (ISDB-
T Information Packet) available in the BTS data stream. Each 
multiplex frame has one of these packets. 

 Concerning the implementation in GNU Radio, it was 
necessary to make an in-depth study of how to write blocks 
in this platform, since the open-source library does not offer 
all of the processing blocks needed to implement a ISDB-T 
modulator. Although this is not the scope of this paper, we 
will present part of the code of the Energy Dispersal in 
Matlab and GNU Radio (that is, in C++) in order to establish 
some comparisons between them.    

 

% MATLAB CODE 
function [tsp_ed] = 
isdbt_energy_dispersal(tsp_rs, state , 
reset) 
 
length_tsp_rs = length(tsp_rs) - 1; % The 
sync. byte should not be randomized 
tsp_syncByte = tsp_rs(end); % Sync Byte 
is the last one of the input vector 
% Convert data in a stream of bits 
... 
size  = length(data_in); 
  
if reset == 1, % This value should be 
initialized every OFDM frame. 
    prbs_state = [1 0 0 1 0 1 0 1 0 0 0 0 
0 0 0]; % Initial value of PRBS-gen 
else 
    load(state); 
end 
  

% randomize 
for k=1:size 
    fdB   = 
bitxor(prbs_state(14),prbs_state(15)); % 
calculate the feedback bit 
    prbs_state = [fdB prbs_state(1:end-
1)]; % shift right and insert the fd bit 
    data_out(k) = bitxor(data_in(k),fdB); 
end 
  
% rearrange bit stream in bytes 
... 
save(state,'prbs_state'); 
 

 

// C++ CODE 
... 
int  
gr_isdbt_energy_dispersal_ff::work (int 
noutput_items, 
            gr_vector_const_void_star 
&input_items, 
            gr_vector_void_star 
&output_items) 
{ 
  const int *in = (const int *) 
input_items[0]; 
  int *out = (int *) output_items[0]; 
  int x = 1000; 
  for (int i = 0; i < noutput_items; 
i++){ 
    cont_sinc++; 
    if 
((cont_sinc>INIBYTESINC)&&(cont_sinc<FIM
BYTESINC)) { 
        out[i]=in[i]; 
        continue; 
    } 
    else if (cont_sinc==FIMBYTESINC) { 
        out[i]=in[i]; 
        cont_sinc=0; 
        continue; 
    } 
    else { 
        out[i] = in[i] ^ prbs(v); 
        shifter(v,1,'R'); 
    } 
  } 
  return noutput_items; 
} 

      
  

Analyzing both codes we see that they do not differ 
much. Except by syntax differences (Matlab Script and C++), 
the C++ code seems to be a direct transcription of the Matlab 
code. Though, in GNU Radio we need to care about input 
and output size precisely, data rate, etc, what makes the 
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porting process more complicated than expected. Despite 
those aspects, the simulation is still a good reference for 
implementation. 

 
5. DISCUSSIONS 

 

We have seen that the performance of the implementation in 
GNU Radio is far better than simulations. Maybe some 
improvements will have to be performed in order to achieve 
the real-time constraints of ISDB-T system. 

Our next steps are toward concluding the implementation 
in GNU Radio. We are at the final stages of porting the code 
and then we have to integrate the blocks and perform tests in 
order to validate the implementation against the model. 

 
6. FUTURE WORK 

 

Currently, we are optimizing our ISDB-T simulator, using 
techniques such as parallel computing, GPU programming 
and hybrid implementation (C and Matlab), since the 
processing of one BTS for a full-seg transmission involves a 
great deal of data, which in turns make the simulation very 
slow. At the moment, the simulation time needed to generate 
1 frame is around 7 minutes. It began taking 35 minutes. We 
believe that is possible to reduce the simulation time to 1. 

We are also working on the conversion of the model, 
implemented through scripts to a Simulink model, since 
Mathworks recently offered support to communicate with 
USRPs via a specific driver, making possible to use the 
original model to generate data to the USRP, offering an 
alternative to the GNU Radio approach. For this reason, it is 
important to improve the simulation performance so it can 
emulate a real-time system for the ISDB-T transmission.  

In terms of the SDR, it would be interesting to study 
some way to embed the ISDB-T transmitter within the 
USRP, so that the PC would be no longer necessary to the 
system, creating then a stand-alone application that still 
integrates a flexible hardware. There are indeed in the market 
some SDR platforms that incorporate a microprocessor, so 
this idea could become more feasible with such hardware. 

 
7. CONCLUSION 

 

This paper aimed not only to clarify some aspects of the 
ISDB-T Standard that can be confusing and lead to 
misinterpretations, but also to briefly discuss the 
implementation of a ISDB-T transmitter in GNU Radio and 
Matlab. 

Offering great flexibility, SDR platforms show 
themselves as interesting solution to implement 
communication systems such as DVB [13] and ISDB-T. 
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