
A SOFTWARE DEFINED RADIO APPROACH FOR DIGITAL TELEVISION ISDB-T

TRANSMITTERS

André L. G. Reis (University of Campinas, Campinas, São Paulo, Brazil;
andre.lgr@gmail.com); André F. B. Selva (University of Campinas, Campinas, São Paulo,

Brazil; andrefselva@gmail.com); Karlo G. Lenzi (CPqD, Campinas, São Paulo, Brazil;
lenzi@decom.fee.unicamp.br); Luis G. P. Meloni (University of Campinas, Campinas, São
Paulo, Brazil; meloni@decom.fee.unicamp.br); Sílvio E. Barbin (University of São Paulo,

São Paulo, São Paulo, Brazil; barbin@usp.br)

ABSTRACT

Although most countries already have Digital Television
(DTV) available, there are several others migrating their
infra-structure from analog to digital. One of these countries
is Brazil, which intends to accomplish a full switch up to
2016. This initiative is seen as of extreme importance by
local authorities since Brazil will host the FIFA World Cup
in 2014 and the Olympics Games in 2016, events that will be
seen by millions of viewers around the globe. The Brazilian
DTV is based on the Japanese ISDB-T standard for the
modulation scheme, which is an OFDM system capable of
supporting services from mobile to full-definition. Since the
relevance of the subject, this paper presents a software
defined radio approach to implement a full ISDB-T
transmitter using GNU Radio and USRP, covering a
complete study from modeling to implementation. This
papers aims not only to discuss and clarify several
misinterpretations of the ISDB-T standard, but also to present
an efficient implementation on a SDR architecture, serving as
reference to new developers and as a roadmap for
manufactures.

1. INTRODUCTION

The Integrated Services Digital Broadcasting – Terrestrial
(ISDB-T) [1] was developed to support different services
from mobile to full-definition. Occupying a channel of 6
MHz, it is a versatile and robust system, which integrates
several protections against errors that can occur in the
transmission.

The most common implementation of the ISDB-T
transmitter is based on specialized hardware to perform the
steps required to modulate the signal. Our goal here,
however, is to present a Software Defined Radio [5]
approach to implement such transmitter. SDR platforms are
already widely used in scientific field, allowing several
researches to work on areas like cognitive radios [10],
OFDM modulation [11], among others. A research group in

Italy has already successfully implemented the DVB (Digital
Video Broadcasting) transmitter using SDR [13].

The main reason to implement a ISDB-T transmitter
using a SDR platform is the flexibility offered by the latter.
Characteristics of the system can be easily changed and
upgrades can be performed in short time, without hardware
modification.

This paper describes the ISDB-T Standard, trying to
clarify some of its aspects and particularities. Also, it briefly
discusses the implementation of the transmitter using Matlab
and GNU Radio.

2. ISDB-T STANDARD OVERVIEW

The ISDB-T is an OFDM (Orthogonal Frequency Division
Multiplexing) system with 13 segments per frame organized
in up to 3 hierarchical layers. It supports 3 operation modes,
which defines how many data carriers will be used in each
OFDM segment.

The input of the ISDB-T modulator is a BTS (Broadcast
Transport Stream) file which contains the TSPs (Transport
Stream Packet) used to transport the audio and video data,
among other informations. Fig. 1 below shows the processing
chain of the modulator.

First we have a shortened Reed-Solomon (204,188)
encoder, which includes parity bytes in TSPs, followed by
the hierarchical divider, which is responsible to distribute
TSPs across each hierarchical layer processing chain. Each
hierarchical layer is composed by a sequence of signal
processing chain responsible to adapt the TSPs to
transmission format. This includes an energy dispersal, bit
and byte interleavers, convolutional encoder and mapper.

The final steps include hierarchical layers combiner,
OFDM frame adaptation (allocation of data carriers, pilots
and Transmission and Multiplexing Configuration Control),
IFFT and guard-interval addition. When all these tasks are
completed, the signal is ready to be transmitted. It is worth
noticing that a multiplex frame (which comes from BTS) is

Proceedings of SDR'12-WInnComm-Europe, 27-29 June 2012

©2012 The Software Defined Radio Forum, Inc.-All Rights Reserved 30

aligned with a OFDM frame. All these tasks will be detailed
in following sections.

Fig. 1. Block diagram of channel coding [1].

The ISDB-T Standard defines several parameters that are
crucial for good understanding of the system. Below we
clarify some of those definitions presented in [1].

• 1 OFDM Frame = 204 OFDM Symbols

• 1 OFDM Symbol = 13 OFDM Segments

• 1 OFDM Segment = 1 Data Segment + Pilots +
TMCC + AC

• 1 Data Segment = n Data Carriers (n depends on
the operation mode, namely 2k, 4k and 8k)

To illustrate those parameters, in Fig. 2 we see in
Frequency Axis a OFDM symbol composed by sub-carriers
(Data Carriers + Pilots + TMCC + AC) and in Time Axis we

see the propagation of OFDM symbols (204 of these will
constitute a OFDM frame).

Fig. 2. OFDM Symbol in frequency and time domain [3].

2.1. Reed-Solomon

The Reed-Solomon algorithm is an error-corrector code
developed by Irving S. Reed and Gustave Solomon in 1960
[2]. It is capable to correct random errors and burst noise.
Due to its code properties, which makes it very robust to
errors,, it is largely used in storage medias like DVD and CD,
mobile communications, etc.

In the ISDB-T, a shortened version of RS encoder is
used, namely RS(204,188). This is obtained by adding 51
null bytes in the beginning of the TSP and applying it to
RS(255,239). After encoding, the inserted zeros are removed
from the data stream. In the end of this process, the TSP will
have 188 data bytes and 16 parity bytes, composing the 204
bytes BTS packet.

2.2. Hierarchical Divider

The BTS file contains all packets of hierarchical layers A, B
and C. The Hierarchical Divider is responsible to redirect
each TSP to its processing chain, to discard null packets
generally used to maintaining a system’s constant transmit
rate, to store the IIP (ISDB-T Information Packet), which
will configure the parameters used to modulate the signal,
and to shift the sync byte (0x47) from beginning to end of the
packets. More details of its operation are available in [1] and
[12].

2.3. Energy Dispersal

This block randomizes the data within the TSP, in order to
distribute its energy equally along the packet, reducing the
inter symbol interference caused by transmitting repetitive
information. Fig. 3 shows the circuit responsible to perform
this task. It is a simple shift register with a XOR operation.
This polynomial is also used in other OFDM transmission
standards such as WiMAX.

31

Fig. 3. PRSB-Generating Polynomial and Circuit [1].

It is worth emphasizing that the sync byte (0x47) should
not be randomized along with the data bytes.

2.4. Byte Interleaving

This block is responsible of interleaving the data, so that if
frequency selective errors occur in the channel, they do not
corrupt the data block since it’s scattered . The interleaver is
composed by 12 paths with variable delays. Fig. 4 shows its
scheme.

Fig. 4. Byte Interleaving circuit [1].

A delay adjustment is required here, in order to
compensate the delay introduced by the circuit above. Details
on the amount of delay adjustment required are available in
[1].

2.5. Inner Code

This is a very common convolutional encoder with constraint
length k = 7. This inner code allows multiple coding rates
through bit puncturing patterns. Fig. 5 shows its circuit.

Fig. 5. Coding circuit of a convolutional code with

constrain length k of 7 and a coding rate of ½ [1].

The puncturing pattern depends on the coding rate used.
Table I shows puncturing pattern that should be performed to
achieve the coding rates.

TABLE I. INNER-CODE CODING RATES AND
TRANSMISSION-SIGNAL SEQUENCE [1]

Coding

rate

Puncturing

pattern

Transmission-signal

sequence

1/2
X : 1

Y : 1
X1, Y1

2/3
X : 1 0

Y : 1 1
X1, Y1, Y2

3/4
X : 1 0 1

Y : 1 1 0
X1, Y1, Y2, X3

5/6
X : 1 0 1 0 1

Y : 1 1 0 1 0
X1, Y1, Y2, X3, Y4, X5

7/8
X : 1 0 0 0 1 0 1

Y : 1 1 1 1 0 1 0

X1, Y1, Y2, Y3, Y4, X5,
Y6, X7

2.6. Bit Interleaving

The same concept used in Byte Interleaving is used here. The
main difference is that now we should parallelize the data
depending on how many bits each modulation scheme uses.
For each modulation scheme we will have a different
interleaver in terms of shift registers and paths. Fig. 6 shows
the bit interleaving for 64QAM, which uses 6 bits per carrier.

Fig. 6. 64QAM Modulation system diagram [1].

It is worth noticing that it is required a delay adjustment
[1], as in Byte Interleaving.

2.7. Carrier Modulation

The ISDB-T supports DQPSK, QPSK, 16QAM and 64QAM.
After the bit interleaving, the data is mapped in a point of the
constellation. As an example, Fig. 7 shows the constellation
of 16QAM modulation scheme.

32

Fig. 7. Constellation of 16QAM [1].

After mapping the data in constellation, a modulation
level normalization is required. Table II shows the
normalization factor.

TABLE II. MODULATION LEVEL NORMALIZATION [1]

Carrier modulation scheme Normalization factor

DQPSK and QPSK Z/√2

16QAM Z/√10

64QAM Z/√42

2.8. Data segment configuration

This step just rearranges data into data segments to make
easier the allocation of data carriers in OFDM symbols. Fig.
8 below shows the organization of data carriers.

Fig. 8. Data-segment configuration [1].

Note that 96, 192 and 384 are the number of data carriers
per OFDM segment used in modes 1, 2 and 3, respectively.

2.9. Hierarchical combiner

The Hierarchical combiner puts all 13 segments together in
order to gather enough data to build a OFDM symbol. The
sequence of segments is shown by Fig. 9.

Fig. 9. Segments order [1].

2.10. Time Interleaving

The Time Interleaver operates separately on each of 13 data
segments. Fig. 10 and Fig. 11 show the schematic of this
block.

Fig. 10. Time Interleaver.

Fig. 11. Configuration of intradata-segment [1].

The parameter I corresponds to the interleave length and
mi is given by

 mi = (5i) mod 96, (1)

where i is the carrier number, that is, each carrier will have
paths with different delays. Also, this step requires a delay
adjustment [1], as Bit and Byte Interleaving.

33

2.11. Frequency Interleaving

This module is divided in three steps: inter-segment
interleaving, intra-segment carrier rotation and intra-segment
carrier randomizing.

2.11.1. Inter-segment interleaving

This step is performed only on hierarchical layers B and C,
since layer A has only one segment. The ISDB-T Standard
shows a confusing figure to describe this interleaving, but it
is simply a matrix interleaver [9]. Suppose we have k
segments and n data carriers per segment. The interleaving
process consists in writing the segments column-wise in a k x
n matrix and reading line-wise, so each line of the matrix is
the interleaved segment. Fig. 12. illustrates this process.

Fig. 12. Matrix Interleaver fictional example for 2 segments

with 3 data carriers each.

2.11.2. Intra-segment carrier rotation

The carrier rotation, as its name says, rotates the carriers
inside the segment according to the segment number. Fig. 13
shows the process for modes 1, 2 and 3.

NOTE: The symbol S’I,j,k represents the carrier symbol of the

kth segment following inter-segment interleaving.

Fig. 13. Carrier rotation [1].

2.11.3. Intra-segment carrier randomizing

This step just randomizes the carriers’ position according to
pre-defined tables available in ISDB-T Standard [1].

2.12. OFDM Frame Structure

The OFDM frame structure is shown by Fig. 13.

Fig. 13. Configuration of the OFDM frame for synchronous
modulation at mode 1 [1].

It is important to notice that Fig. 13. above extends to the
right 12 more times, so we have 13 segments per symbol.

It is also necessary to organize the segment as showed in
Fig. 14.

Fig. 14. OFDM segment numbers on the transmission
spectrum [1].

To make up the entire transmission spectrum, a
continuous carrier with its phase defined by Wi is allocated in
right-hand end of the band. This means, each OFDM symbol
will have an extra continual pilot in its structure.

2.13. Pilots, TMCC and AC

The SPs (Scattered Pilot), TMCC (Transmission and
Multiplexing Configuration Control) and AC (Auxiliary
Channel) are dependent on the output Wi. of a PRBS-
generating circuit, because it defines the modulation of these
signals. Fig. 15. shows the circuit that generates de Wi and
Table III shows the point on constellation according to Wi.

.

Fig. 15. PRSB-generating circuit [1].

34

TABLE III. WI AND MODULATING SIGNAL [1]

Wi value Modulating-signal amplitude (I,Q)

1 (- 4/3, 0)

0 (+ 4/3, 0)

In short, the SPs are used by the receiver to synchronize
the signal, the TMCC contains all parameter necessary to
configure the receiver and AC shall be used to transmit
additional information on modulating signal-transmission
control.

A SP is inserted every 12 carriers in OFDM segments
direction. Then its index is shifted 3 positions for each new
OFDM symbol. TMCC and AC carriers are fixed and
defined in tables available in [1]. More details can be found
in the ISDB-T Standard [1].

2.14. IFFT and Guard Interval

Once all processing tasks are completed, it is time to apply
the IFFT (Inverse Fast Fourier Transform) to the signal. The
configuration of the IFFT is showed in Table IV.

TABLE IV. IFFT PARAMETERS

Sample Frequency 8126984 Hz

Number of points for mode 1 2048

Number of points for mode 2 4096

Number of points for mode 3 8192

It is worth emphasizing that it is necessary to use the zero
padding technique [8] in the symbol before applying the
IFFT. The zeros should be inserted in the middle of the
symbol, so that the total data is the same length of the
number of points of the IFFT.

After the IFFT, it is necessary to insert the guard interval
to the signal. This step consists in adding to the beginning of
the effective symbol a part of its end. Fig. 16 illustrates this
process. At this time, the signal is ready to be transmitted.

Fig. 16. Guard interval insertion [1].

3. SOFTWARE DEFINED RADIO

The main idea of a SDR (Software Defined Radio) is to
transfer the tasks performed by hardware to software. By
doing so, the implementation of a communication system
becomes more flexible, allowing a radio to chance its
operation characteristics during run time, such as modulation,
bandwidth, output frequency, etc. Besides flexibility, SDRs
have many other advantages over traditional radio
implementations. They are more immune to temperature
changes and component aging, since they transfer the
processing task to digital domain, no longer depending on the
precision of analog components. They also offer all
advantages that a software environment provides to the
development process, like simulation tools and error
correction. All of these advantages can reduce time-to-
market, since the same hardware platform can be used to
implement different radios, just by replacing the software that
controls the radio.

By transferring most part of processing task to software,
the complexity of modern radios hardware is reduced,
limiting it just to the RF front-end implementation. This also
implies in high integration, given that many passive and
active elements of the radio, once responsible to signal
processing and modulation, are eliminated through the use of
a processor. All these factors have an effect on the product
final cost, which can be reduced.

There are several solutions in the market to implement a
SDR system. In this paper, however, we will present a
solution propose by Matt Ettus, the USRP (Universal
Software Radio Peripheral) [4].

Composed by a motherboard, responsible for the base-
band processing and by many RF daughterboards cards,
which can be chosen according to the application’s needs, the
USRP abstracts the system RF front-end. A Ethernet
interface establishes the communication between the PC and
the USRP radio, allowing data exchange in a full-duplex
manner [5].

GNU Radio is an open-source toolbox kit that provides a
development environment and some processing blocks that
can be used to create software defined radios. The software
provides full integration with USRP boards [6]. It provides
around a hundred signal-processing blocks and allows
developers to design new ones using C++ as programming
language. It also contains specific drives to communicate with
the USRP.

To implement a ISDB-T modulator, though, it is
necessary to create new blocks, since it has some specific
processing steps that are not implemented in this package.
The creation of blocks is not the scope of this paper,
however.

GNU Radio applications are developed using the Python
language, where the connection between blocks are made.
The blocks are built in C++, for performance issues. A

35

graphical user interface, called GNU Radio Companion
(GRC), is also provided. GRC could be used to simplify the
system design, just like Simulink does with projects
developed on Matlab.

4. MODELING AND IMPLEMENTATION

A model of the ISDB-T modulator was implemented in
Matlab [7] as a reference for the SDR GNU Radio
development. Each block of the system was implemented
first as a Matlab Function and then, as a GNU Radio signal
processing block. Comparisons between GNU Radio and the
simulation outputs were made to validate each processing
block.

In the simulation, the parallel processing of the three
hierarchical layers were saved as states. Each component,
when necessary, has a workspace to store its last state, so it is
possible to reuse the same components in all 3 hierarchical
layers without having data overwrite problem.

The simulator works with one OFDM frame for each
iteration, once the multiplex frames that come from BTS are
aligned with the OFDM frames. All configuration parameters
of the modulator are automatically acquired from IIP (ISDB-
T Information Packet) available in the BTS data stream. Each
multiplex frame has one of these packets.

 Concerning the implementation in GNU Radio, it was
necessary to make an in-depth study of how to write blocks
in this platform, since the open-source library does not offer
all of the processing blocks needed to implement a ISDB-T
modulator. Although this is not the scope of this paper, we
will present part of the code of the Energy Dispersal in
Matlab and GNU Radio (that is, in C++) in order to establish
some comparisons between them.

% MATLAB CODE
function [tsp_ed] =
isdbt_energy_dispersal(tsp_rs, state ,
reset)

length_tsp_rs = length(tsp_rs) - 1; % The
sync. byte should not be randomized
tsp_syncByte = tsp_rs(end); % Sync Byte
is the last one of the input vector
% Convert data in a stream of bits
...
size = length(data_in);

if reset == 1, % This value should be
initialized every OFDM frame.
 prbs_state = [1 0 0 1 0 1 0 1 0 0 0 0
0 0 0]; % Initial value of PRBS-gen
else
 load(state);
end

% randomize
for k=1:size
 fdB =
bitxor(prbs_state(14),prbs_state(15)); %
calculate the feedback bit
 prbs_state = [fdB prbs_state(1:end-
1)]; % shift right and insert the fd bit
 data_out(k) = bitxor(data_in(k),fdB);
end

% rearrange bit stream in bytes
...
save(state,'prbs_state');

// C++ CODE
...
int
gr_isdbt_energy_dispersal_ff::work (int
noutput_items,
 gr_vector_const_void_star
&input_items,
 gr_vector_void_star
&output_items)
{
 const int *in = (const int *)
input_items[0];
 int *out = (int *) output_items[0];
 int x = 1000;
 for (int i = 0; i < noutput_items;
i++){
 cont_sinc++;
 if
((cont_sinc>INIBYTESINC)&&(cont_sinc<FIM
BYTESINC)) {
 out[i]=in[i];
 continue;
 }
 else if (cont_sinc==FIMBYTESINC) {
 out[i]=in[i];
 cont_sinc=0;
 continue;
 }
 else {
 out[i] = in[i] ^ prbs(v);
 shifter(v,1,'R');
 }
 }
 return noutput_items;
}

Analyzing both codes we see that they do not differ
much. Except by syntax differences (Matlab Script and C++),
the C++ code seems to be a direct transcription of the Matlab
code. Though, in GNU Radio we need to care about input
and output size precisely, data rate, etc, what makes the

36

porting process more complicated than expected. Despite
those aspects, the simulation is still a good reference for
implementation.

5. DISCUSSIONS

We have seen that the performance of the implementation in
GNU Radio is far better than simulations. Maybe some
improvements will have to be performed in order to achieve
the real-time constraints of ISDB-T system.

Our next steps are toward concluding the implementation
in GNU Radio. We are at the final stages of porting the code
and then we have to integrate the blocks and perform tests in
order to validate the implementation against the model.

6. FUTURE WORK

Currently, we are optimizing our ISDB-T simulator, using
techniques such as parallel computing, GPU programming
and hybrid implementation (C and Matlab), since the
processing of one BTS for a full-seg transmission involves a
great deal of data, which in turns make the simulation very
slow. At the moment, the simulation time needed to generate
1 frame is around 7 minutes. It began taking 35 minutes. We
believe that is possible to reduce the simulation time to 1.

We are also working on the conversion of the model,
implemented through scripts to a Simulink model, since
Mathworks recently offered support to communicate with
USRPs via a specific driver, making possible to use the
original model to generate data to the USRP, offering an
alternative to the GNU Radio approach. For this reason, it is
important to improve the simulation performance so it can
emulate a real-time system for the ISDB-T transmission.

In terms of the SDR, it would be interesting to study
some way to embed the ISDB-T transmitter within the
USRP, so that the PC would be no longer necessary to the
system, creating then a stand-alone application that still
integrates a flexible hardware. There are indeed in the market
some SDR platforms that incorporate a microprocessor, so
this idea could become more feasible with such hardware.

7. CONCLUSION

This paper aimed not only to clarify some aspects of the
ISDB-T Standard that can be confusing and lead to
misinterpretations, but also to briefly discuss the
implementation of a ISDB-T transmitter in GNU Radio and
Matlab.

Offering great flexibility, SDR platforms show
themselves as interesting solution to implement
communication systems such as DVB [13] and ISDB-T.

8. REFERENCES

[1] “Digital terrestrial television – transmission system”,

Associação Brasileira de Normas Técnicas (ABNT), ABNT
NBR 15601:2007, Dec. 2007.

[2] I. S. Reed and G. Solomon, “Polynomial code over certain
fields”, J. Soc. Ind. Appl. Math., 8:300-304, June 1960.

[3] HSCTechnicalWiki, “Orthogonal Frequency Division
Multiplexing”. [Online]. Available:
http://wiki.hsc.com/wiki/Main/OFDM

[4] M. Ettus, “Universal Software Radio Peripheral”. [Online].
Available: http://www.ettus.com.

[5] A. F. B. Selva, A. L. G. Reis, R. U. Labsch, K. G. Lenzi, L. G.
P. Meloni and S. E. Barbin, “A software-defined radio
approach: GNU Radio”, 10th International Information and
Telecommunication Technologies Conference, 2011, São José,
SC. Proceedings of the 10th International Information and
Telecommunication Technologies Conference, 2011. v. 1. p.
48-52.

[6] GNU Radio. [Online]. Available: http://gnuradio.org.
[7] Mathworks Matlab. [Online]. Available:

http://www.mathworks.com/products/matlab/
[8] R. V. Van Nee and R. Prasad, “OFDM for Wireless

Multimedia Communications Norwood”, MA: Artech House,
Jan. 2000.

[9] M. C. Paiva, “Uma implementação em software do subsistema
de transmissão do padrão ISDB-TB”. Master Thesis, INATEL,
2010.

[10] Z. Yan, Z. Ma, H. Cao, G. Li, and W. Wang, “Spectrum
sensing, access and coexistence testbed for cognitive radio
using USRP”, 4th IEEE International Conference on Circuits
and Systems for Communications, 2008. ICCSC 2008, 26-28
May 2008.

[11] A. Marwanto, M. A. Sarijari, N. Fisal, S. K. S. Yusof and R. A.
Rashid, "Experimental study of OFDM implementation
utilizing GNU Radio and USRP - SDR," Communications
(MICC), 2009 IEEE 9th Malaysia International Conference,
15-17 Dec. 2009.

[12] “Digital terrestrial television – Operational guideline part 1:
transmission system – guideline for ABNT NBR 15601:2007
implementation”, Associação Brasileira de Normas Técnicas
(ABNT), ABNT NBR 15608-1:2008, Aug. 2008.

[13] V. Pellegrini, G. Bacci, and M. Luise, “Soft-DVB, a Fully
Software, GNURadio Based ETSI DVB-T Modulator,” in 5th
Karlsruhe Workshop on Software Radios, 2008.

37

