

IP CREW

Cognitive Radio Experimentation World

A Set of Methodologies for Heterogeneous Spectrum Sensing

W.Liu, S. Bouckaert, I. Moermann, S. Pollin, P. v. Wesemael, C. Heller, D. Finn, D. Willkomm, J.-H. Hauer, M.Chwalisz, N.Michailow, T.Solc Z.Padrah WInnComm – Europe, 27th of June 2012

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 258301 (CREW project).

Introduction

Why heterogeneous sensing?

Cognitive radio

first

- ISM band is getting overcrowded
- Cognitive Radio

demands spectrum sensing

and then talk

 Cost vs Performance -- Cooperative sensing with portable and small devices is desired

Challenges

 Goal : spectrum sensing achieved by small, portable and heterogeneous devices, in a distributed manner
 How many ?

The FP7 Project CREW

Heterogeneous Sensing Equipments in CREW

- Overview of devices
- Heterogeneity of devices

Proposed Methodologies and Related Experiments

- Determine power offset among heterogeneous devices
- Common Data Format
- Experiment specific methodologies

Conclusions

Project Partners:

IBBT, imec, CTVR, TU Berlin, TU Dresden, Thales, EADS, JSI

- Project Start: October 2010
- Project Goal: Development of a Federated Testbed for Cognitive Radio Experimentation <u>http://www.crew-project.eu/</u>

The CREW Project offers the unique chance to compare a great number of sensing solutions from different project partners

Cross-Platform Study

- Comparison of inexpensive off-the-shelf to customized sophisticated solutions
- Comparison of different processing approaches
- Methodologies dealing with
 - Heterogeneity in hardware
 - Heterogeneity in software

Sensing Equipments

6

CREVV			PRO
	Device	Signal processing	Customization
imec		Fixed-point FFT on Embedded uP	HW + SW
USRP	Ettus Research mail USR2 See See	Configurable periodogram on GPP	SW only
Airmagnet	MILLINE MILLINE MitWorks. Antiquer landau	Fixed-point FFT hardware processing	None
Wispy		RSSI measurement	None, open source SW
Telos B		RSSI measurement	SW only
JSI		RSSI measurement	HW + SW

Power Spectrum Density (PSD) in dBm is the common output for all devices
PSD (dBm)

Heterogeneity

- Spectrum matrices
 - Resolution bandwidth (df)
 - Span
 - Time resolution (dt) : Time to collect sample + processing time
- Output format:
 - Binary ? CSV? XML ?.....

The FP7 Project CREW

- Heterogeneous Sensing Equipments in CREW
 - Overview of devices
 - Heterogeneity of devices

Proposed Methodologies and Related Experiments

- Determine power offset of heterogeneous devices
- Common Data Format
- Experiments Related Methodologies

Conclusions

- Distortion at each amplification stage
- Limited ADC resolution
- Processing : e.g., FFT windowing function, overlapping..
- Power offset refers to the difference in measured power by heterogeneous devices given the same input signal

Experiment setup

- Measurements with coaxial cable connection
- Perform measurement for various input signal types and strength

- Desired metric : The power measured in a certain band
- Difficulties : No common frequency resolution and span
- Methodology

- Power Offset = TxPower Attenuation Measured Power
- Calibrated Power = Measured Power Power Offset

Measure Offset Airmagnet Example

Input signal 60 dBm => offset is 2.6 dBm

WIFI channel 6

Zigbee channel 16

Metadata

- Metadata of the experiment
 - Tx signal pattern, Tx power level, background environment
- Metadata of each trace
 - Device name
 - Location of the device
 - Calibration offset (obtained by pre-calibration)
 - Frequency bins
 - Array defining center frequencies of the rows of the power matrix
 - Resolution bandwidth
 - Band width around each center frequency
 - Starting time
 - The starting time of the experiment
 - Relative time
 - The time stamp of each sweep relative to the start time

- Data -- Power matrix
 - The matrix containing PSD and relative time stamp.
 - Obtained by a dedicated script for each device

- Focus : Temporal accuracy
- Scenarios
 - Tx signal Slow On/Off Pattern (60 s On / 60 s Off)
 - Tx signal Fast On/Off Pattern (10 ms On / 100 ms Off)
- Channel Characteristics
 - Static (no people in room) and Dynamic (10...15 people moving randomly around between TX and sensing nodes)

Desired Comparing metrics

- Receiver Operating Characteristic
 - Probability of False Alarm VS Probability of Missed
 Detection

Sig	nal Present	Signal not present	
Signal detected		False Alarm	
Signal Not detected	Missed Detection		

Difficulties

- No common data rate in time domain
- Different frequency coverage => fairness?

Methodology

• Average / Resample the PSD matrix so all devices have the common data rate in time domain

• Determine actual sample collection for a specific band

Post processing

- Vary probability of false alarm (PFA) from zero to 100%
- For each PFA, calculate the threshold of energy detection
- Use this threshold to calculate PMD
- Obtain the receiver operation characteristic (ROC) plot

Exp .Leuven – Spatial accuracy

- Where ? imec cafeteria
 large indoor environment
- Transmitter at fixed location, continuous 20 Mhz OFDM signal
- Heterogeneous devices are used to measure spectrum at all locations.
- Least Squares method used to generate the pathloss model for each device.

Desired metrics

- Path loss vs distance model
 - PL = β + 10x α x log10 (d / d*) + Δ

Difficulties:

- How to determine the "ground truth" ?
- How to generate the path loss model ?
- How to compensate for the power offset?
- How to determine outlier of the experiment ?

Experiment Leuven

Conclusions

Heterogeneity	Methodology
Output format	Dedicated script + Common Data Format
Overall power loss in receiver chain	Power offset measured by coaxial cable experiment
Frequency Resolution	Integration over a specific band
Sweep time	Averaging and resample
Reference determination	(Weighted) mean of all devices

Thank you!

- More info
 - http://www.crew-project.eu/
 - Contact for information:

Wei Liu (University Gent - IBBT) email: <u>wei.liu@intec.ugent.be</u> phone: +32 9 33 14 946 (office)