
Seamless Dynamic Runtime
Reconfiguration in a

Software-Defined Radio

Michael L Dickens, J Nicholas Laneman, and Brian P Dunn

    —  
WINNF‘11’Europe 2011-Jun-22/24

Friday, May 13, 2011

! Background on relevant SDR

! Problem formulation

! 3 issues and our solutions

! Example: NBFM decoding / CPU load

! Conclusions

Overview
    —  

2 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

Hardware
(Description)

Application
Graph

Quadrature
Demodulator

Source

1:L

Demux

Sink

Subfilter
#1

Subfilter
#L

L-Way
Sync

Adder

.
.
.

.
.
.

.
.
.

SDR Kernel Role

SDR

Kernel}
    —  

Mapping

Buffering

Thresholding

Processing{
 Scheduling

3 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

! Full availability of CPU, GPU,
DSP, FPGA, …

! Any processor that can be
interfaced into CORBA

! Each signal processing block is
processor specific

! Heterogeneous processing
via a-priori scheduling

Relevant Work
    —  

! Continuing to work towards
GPU using NVIDIA CUDA

! Single shared GPP
(C2D, Cell, PPC, Arm)

! Each signal processing block
is processor specific

! Ettus E series: could allow
heterogeneous processing

 GNU Radio

 SCA / CORBA

4 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

    —  

! Pool of Runner
Threads

! Block threshold
determined globally

! Separated block
overhead from
processing

! Overhead load
distributed across all
threads

! Shared and/or
dedicated processors

! Runtime statistics
collection

Hardware

Surfer Operating System and Hardware Abstraction Layer

Host Hardware Abstraction LayerOperating System API, ABI, and Kernel

Surfer

Application
API

Kernel Signal Processing
Block API

Block Runner
API

Scheduler
API

Graphics API
and GUI

Our Work: Surfer ’10

5 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

Problem Statement

To allow waveform reconfiguration at
the block level, during runtime,

without interrupting data processing

    —  

To allow signal processing to be
switched between processing devices

while maintaining state

! Requires a switch … somewhere …

6 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

Primary Issues
    —  

Waveform or
Signal Processing

Block #1

Waveform or
Signal Processing

Block #2

Where and how to switch?

7 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

Our Solution

!
Processing is cleanly
separated from state !

Processing can take
place on any device

    —  

Split blocks

Combined
Processing,

State,
and Glue

Block

Lookup
Table

Processing Flavors

OpenCL
Generic

OpenCL
Optimized

State

Glue

Local CPU
Generic

AltiVec
Optimized

SSE3
Optimized

NEON
Optimized

!
Processing flavor can be
optimized for any device !

User can modify
lookup table with new
processing flavors

8 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

Another Issue
    —  

How to keep state?

!Must be fully interpretable by any processor

!Must be easily copyable; require contiguous memory

!Memory must be resizable, e.g., to accommodate
vectors and strings

!Must provide alignment for each variable in structure

!C++ API should closely match that for scalars,
std::vector, std::string

9 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

Our Solution
Create processor-agnostic dynamic structure

    —  

Dynamic
Pointers

int16 V[N]

int32 I
float64 F

char C[M]

AllocationState

DSScalar<int32>
I: 4 BytesDSScalar<float64>

DSVector<int16>
DSString
DSScalar<bool> bool B

F: 8 Bytes
V: 2N Bytes
C: M Bytes
B: 1 Byte

Static
Handles

Variables

Header

Alignment, Padding, & Type Info

Contiguous
Memory

10 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

Final Issue
    —  

How to control flavor selection?

9 / 17 WINNF‘11’Europe 2011-Jun-22/24

! Currently uses a Scheduler

! Need a way to use

• A-priori collected statistics

• Runtime collected statistics

! Need a way to control

• Computation flavor selection

• Internal Surfer parameters

Friday, May 13, 2011

Our Solution
Create supervisor to handle monitoring system

    —  

• Host CPU load (per core)

• Computation flavor selection (per block)
• Threshold settings (per block)

• Any other Surfer parameters

• System overhead

! Plugins include statistics collection for

• Surfer load (per thread)

• Input / output data
latency (per block)

• Computation throughput
(per block)

• Data transfer throughput
and latency

! Can control

11 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

Hardware

Surfer Operating System and Hardware Abstraction Layer

Host Hardware Abstraction LayerOperating System API, ABI, and Kernel

Surfer

Application
API

Kernel Signal Processing
Block API

Block Runner
API

Scheduler
API

Graphics API
and GUI

Surfer ’11 Changes
    —  

Hardware

Salt: Surfer operating system and hardware Abstraction Layer
naCL: OpenCL Abstraction Layer

Host Hardware Abstraction LayerOperating System API, ABI, and Kernel

Surfer

Application
API

Kernel Signal Processing
Flavor API

Block Runner
API

Supervisor
API

Graphics API
and GUI

! Signal Processing
Block becomes Flavor

! Scheduler becomes
Supervisor

! New C++ namespace
for OS and hardware
abstraction: Salt

! New C++ namespace
for OpenCL
abstraction: naCL

12 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

    —  

Example
1. Start CPU load collection

2. Start Surfer

• Supervisor set to switch block flavors
when host CPU load reaches 60% for 3
consecutive samples (0.3 seconds)

• Decoding NBFM, ~9 seconds of data

3. Wait 1.5 seconds

4. Start CPU load hog, runs for ~4 seconds

! Expect to see Surfer CPU load decrease
when CPU load hog is executing

13 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

Surfer
Starts

External
Load
Starts

External
Load

Finishes
Surfer
Finishes

    —  

CPU Load Graph

15 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

Conclusions

! Enabled seamless dynamic runtime reconfiguration

• Split block implementations

    —  

• Portable state construct

• Supervisor to collect statistics and modify
system runtime behavior

16 / 17 WINNF‘11’Europe 2011-Jun-22/24
Friday, May 13, 2011

