

Dynamic Reconfiguration Technologies Based on FPGA in Software Defined Radio System

Ke He

Supervisor: Prof Robert W Stewart

Dr Louise Crockett

Outline

- ➤ Motivation and Objective
- ➤ Reconfiguration Technologies : Dynamic Reconfigurable Ports and Partial Reconfiguration.
- ➤ Multiple Standards Analysis: Modulation and Digital Front End parts of LTE, WiMAX and WCDMA standards
- ➤ Hierarchical Design Methodology
- Results and Comparisons
- > Conclusion

Motivation

- Software Defined Radio can accommodate various standards and services
- Partial Reconfiguration is a promising technology which could increase hardware reuseability therefore reduce hardware cost and has commonalities with SDR
- For some cases, PR can work with Dynamic Reconfigurable Ports (DRP) technology which could lead to a less complex and lower cost SDR architecture.

Objective

- ➤ Implement the key components e.g. Modulation and Digital Front End with PR to support multiple communication standards such as WCDMA WiMAX and 3GPP LTE
- ➤ Integrate these components into a single FPGA device with PR and DRP technologies to build a SDR system with less complex and lower cost architecture, while maintaining a high degree of design and function switching flexibility.

Partial Reconfiguration Technology

The Partial Reconfiguration is such a technology that allows multiple design modules to time-share physical resources. Reconfigurable modules can be swapped on the fly and other parts the remain operation

Advantages:

- Increase hardware reuseability
- Reduce hardware size and cost

Limitation:

The clock frequency could not be reconfigured by PR as the Digital Clock Manager (DCM) are not allowed to place in the reconfigurable logic

Dynamic Reconfigurable Ports Technology

Digital Clock Managers (DCMs): A hardware resource on FPGA to deal with the clock managements

- ➤ Eliminate clock skew
- Shift phase
- > Synthesize a desired clock frequency

Dynamic Reconfigurable Ports Technology

Multiple Communication Standards Analysis

Modulation Analysis

Standards	Monnor	OFDM		OVSF
Stanuarus	Mapper	FFT Size	CP Length	Spreading Factor
LTE 5/10 MHz	QPSK 16QAM 64 QAM	512, 1024	80,72 and 40,36	None
E1E 3/10 WIII2	QIBR 10QIMI 04 QIMI	312, 1024	samples	rvone
			1/4, 1/8, 1/16,	
WiMAX 3.5/5/7/10 MHz	QPSK 16QAM 64 QAM	512, 1024	1/32 of frame	None
			duration	
WCDMA	OPSK	None	None	4,8, 16,32, 64, 128,
WCDMA	Исл	None	None	256, 512

➤ Digital Front End Analysis

Multiple Communication Standards Analysis

Design Bandwidth	Input Sample Rate (Msps)	IF (MHz)	System Clock (MHz)
LTE 5 MHz	7.68	61.44	245.76
LTE 10 MHz	15.36	61.44	245.76
WCDMA	3.84	61.44	245.76
WiMAX 3.5 MHz	4	64	256
WiMAX 5 MHz	5.6	44.8	179.2
WiMAX 7 MHz	8	64	256
WiMAX 10 MHz	11.2	44.8	179.2

Note:

- ➤ Three standards and 7 modes
- System Clock of 4 times of the IF Sample Rate
- Three different clock frequencies are required: 245.76 MHz, 256 MHz and 179.2 MHz

Combination of dynamic reconfiguration technologies

- ➤ Waveforms switching means not only changing functions but also changing the clock frequency of the function
- > PR is insufficient to implement all of the switching functions in isolation
- ➤ The DCM with DRP architecture is able to control for the Reconfigurable Partition

Hierarchical Design Methodology

Advantages:

- PR benefits
- High integration on a single FPGA
- Reconfigurable clock frequencies
- High degree of flexibility
- Easy to maintain and update

Hierarchical Design Methodology

Results: Post-Placed and Route Simulation

Hardware Resource Utilization Results

Table 1: Without PR

RP		LUTs	FFs	Slices	DSP4 8Es	RAMs	(MHz)
	LTE 5	1504	2148	799	11	9	424.1
	LTE 10	1438	2004	872	14	9	355.6
	WCDMA	1493	2020	722	8	9	419.1
DUC	WiMAX 3.5	1629	2223	869	14	9	386
	WiMAX 5	1474	2083	817	14	9	390.9
	WiMAX 7	1540	2194	878	17	9	312
	WiMAX 10	1449	2130	842	20	9	295.3

3430 3570 1405

9

11

34

12

0

5

0

286.9

375.7

OFDM

Spreader

Transform

Table 2: With PR & DRP

RP		LUTs	FFs	Slices	DSP4 8Es	RAMs	(MHz)
	LTE 5	1533	2005	543	11	9	336.2
	LTE 10	1455	1873	557	14	9	374.2
	WCDMA	1532	1899	533	8	9	273.8
DUC	WiMAX 3.5	1663	2079	582	14	9	280.0
	WiMAX 5	1497	1964	554	14	9	269.3
	WiMAX 7	1565	2084	612	17	9	354.1
	WiMAX 10	1466	2014	604	20	9	374.0
Transform	OFDM	3442	3559	1193	12	5	275.6
Transform	Spreader	45	9	12	0	0	188.0

Fix function FPGA Design to support multi-standards

Slices	DSP48Es	RAMs
4657	71	41

PR & DRP Design Architecture

Resource = max(transform(RP)) + max(DUC(RP))

Slices	DSP48Es	RAMs
1805	32	14

Results and Comparison

	Slices	DSP48Es	RAMs
Reduction	61.24%	54.93%	65.85%

Dynamic Reconfiguration

QPSK	Partial Bitstream Library	LTE
16 QAM	IFFT	WiMAX
64 QAM	Spreader	WCDMA

Conclusion

- > Support Baseband and IF processing components
- Support multiple standards and modes
- ➤ High degree of design and function switching flexibility
- Reduction of 61.24%, 54.93% and 65.85% in respect of Slices, DSP48Es and RAMs
- Reduction of two oscillator inputs