Software Defined Modem
A commercial platform for wireless handsets

Charles F Sturman
VP Marketing

June 22nd ~ 24th Brussels

charles.stuman@cognovo.com
www.cognovo.com
Agenda

- SDM – Separating hardware from software
 - Why now
 - Multimode modem processing requirements

- A whole system approach
 - Optimising processor resources for the task in hand
 - Low power design and scalability
 - Performance benchmarks achieved

- Software development methodology
 - Task scheduling and mapping
 - System design, verification and optimisation
 - Bottom up vs Top down

- Modem Compute Engine
 - A commercially available platform for low-power handheld wireless
Why Now?

- A changing market
 - Rapid evolution in applications and services
 - Many products need wireless: Smartphones, Tablets, Gaming, Home entertainment

- Rapidly increasing modem complexity
 - Driven by applications and services
 - Increasing time to market and cost

- SDM delivers
 - Faster: Time to market and market response
 - Flexibility: One chip = many products / many standards
 - Smaller: Smaller die size = Lower cost
Modem Requirements

- Layer 1 combines real-time control with time critical signal processing
Modem Requirements

- Layer 1 combines real-time control with time critical signal processing
- Deterministic operation has traditionally demanded hardware
- SDM enables the entire modem to be expressed in software
Modem Requirements

- Layer 1 combines real-time control with time critical signal processing
- Deterministic operation has traditionally demanded hardware
- SDM enables the entire modem to be expressed in software
A System Solution for SDM – Layer 1 Partitioning

Applications

Protocol Plane
- Layers 2, 3, 4 Protocol Stack

Control Plane
- Layer 1

Data Plane
- Physical Layer

Modem Compute Engine
- Control Processor
- Sequence Processor
- Data Processor

Common Infrastructure

The Soft Modem

External

Software Domain

Modem specific operation

Software Hardware

Generic s/w execution environment

Hardware abstraction & API
- Common services

Common functions
- Code re-use

Heterogeneous Multi-processing

RF
Layer 1 Partitioning

Layer 1 Control
- GP processor support for Layer 1 control

PHY Task Sequencing
- Real-time deterministic task sequencing driven by on-air timing

Hard-real-time Signal Processing
- PPA efficient wireless algorithmic processing
- No modem-specific hardware processing
Layer 1 System Design

- Existing Layer 1 design & implementation must be supported
 - Seamless integration with existing protocol stacks

- Operational control, management & service provision
 - Largely specific to SDM platform: Auto generated code avoids creating extra engineering workload & human error

- Sub-frame sequencing
 - Extension of present PHY modelling carried out with e.g. Simulink or Co-Ware: Graphical capture and auto-compilation of flow control

- Uplink / Downlink PHY algorithms
 - Compilation of existing fixed-point C-code, with efficient profiling and optimisation tools. Must be able to re-validate against reference models
Introducing Cognovo’s Modem Compute Engine (MCE)

Real-time L1 / PHY computing system

- **PHY Data Plane**
 - Multi-core Vector Signal Processing
 - Designed-for-Wireless ISA
 - Instruction & Data parallelism
 - >> 130 GOp/s @500 MHz
 - 11-way VLIW
 - 32-way complex vector data-path

- **Layer 1 Control Plane**
 - ARM CPU hosts SDM OS and Layer 1
 - Mode independent timing / power ctl
 - Multi-standard Turbo engine
 - RF interface

- **SDM Sequencer**
 - Precise scheduling of kernels
 - Autonomous operation removes overhead from L1 CPU

Dual VSP Core (MCE120)

- Cat 4 LTE capable (150Mb DL / 50Mb UL)
 - Simultaneous DL and UL: 62% loaded at 400MHz
 - 7.5 mm² and < 100mw in 32nm
- Similar power consumption to existing baseband silicon but with smaller area
MCE120 Performance Benchmarks @ 40nm LP

- Combined DL / UL estimates for 3GPP Rel5 to Rel8
 - HSPA evolution and LTE : Clock-rate scaling from 75MHz to 300MHz

- Clock rate and power can also scale with signal conditions
 - High SNR (light signal processing) to low SNR (heavy signal processing)

R8 LTE-FDD Configurations
- 5MHz Channel Cat 2 : 5-40 Mbps
- 10 MHz Channel Cat 3 : 5-80 Mbps
- 20 MHz Channel Cat 4 : 20-150 Mbps

R5 to R8 3G HSPA Configurations
- R5 W-CDMA : 384 Kbps
- R6 HSPA : 14 Mbps
- R7 HSPA+ MIMO : 28 Mbps
- R8 HSPA+ Dual Carrier : 42 Mbps

Connectivity
- WiFi 802.11g : 54 Mbps
- DVB-T (HD) : 15 Mbps
Power & Performance Scalability

- The same architecture will scale up or down

- Modem requirements drive Power Performance and Area
- PPA drives silicon implementation and process choice

Higher clock rate
More memory
More processing resources: Multi-core / Multi-way

Lower clock rate
Less memory
Less processing resources: Multi-core / Multi-way
A System Solution for SDM – Development Partitioning

- **Applications**
 - **Modem specific operation**
 - Protocol Plane
 - Layers 2, 3, 4 Protocol Stack
 - Control Plane
 - Layer 1
 - Data Plane
 - Physical Layer
 - **Software Hardware**
 - Protocol Processor System
 - Modem Compute Engine
 - Control Processor
 - Sequence Processor
 - Data Processor
 - **Design Environment**
 - System SDK
 - Kernel SDK
 - **Common Infrastructure**
 - **The Soft Modem**
 - **External**
 - **Software Domain**

- **Software Domain**
- **Common Infrastructure**
- **The Soft Modem**
- **External**
- **Software Domain**
Development Partitioning

- Seamless development flow from modem design through implementation and validation is key

- C-code source compilation, profiling and optimisation
 Re-validation against reference models

- Operational control and management
 OS-like device management and service provision

- Sub-frame flow control and sequencing of PHY operations

- System simulation, visualisation and validation
Traditional Modem Design Flow
Silicon development is outside modem critical path

Software-only flow allows Develop, Integrate and Test in single step
LTE Downlink Control Processing Example

- UML constructs for control and data flow
- Parameterised PHY Kernels
- Co-ordinated by SDM-OS and executed in real-time by SDM Sequencer
System Design Tool – LTE Example

PHY System Design and Capture

LTE PHY Frame Sequence

Symbol 0 Symbol 1 Symbol 2 Symbol 3

RF Front-End Processing OFDM Demultiplexing

RFDMA Signalling

Control Region Decoder

Downlink Control Information Processing

Control Region Processing
Visualisation Tool – LTE Example

Real Time PHY System Trace

10ms LTE Frame Real-time Trace

1ms LTE Sub-frame Real-time Trace

1ms sub-frames

1ms Sub-frame
Conclusion

- Strong demand for a new approach to wireless product development
 - Faster: Time to market
 - Flexibility: Single solution for multiple products, markets and standards
 - Smaller: Cost of development and cost of product

- However, there must be no penalty
 - Existing products must be met or bettered: Power / Cost / Size
 - Legacy investment maintained: e.g. Protocol stack software / multi-mode
 - Seamless design flow

- SDM can deliver on all of these factors
 - Heterogeneous task optimised processing
 - Highly parallel architecture for scalability
 - Whole System approach to power management, programming and debug
 - Control / Real-time scheduling / Data processing