SDR OFDM Waveform design for a UGV/UAV communication scenario

SDR'11-WInnComm-Europe

Christian Blümm 22nd June 2011

Content

- Introduction
- Scenario
- Hardware Platform
- Waveform
- TDMA
- Designing and Testing
- Conclusion

Introduction

Goal:

<u>Robust</u> and <u>flexible</u> wireless communication for UAVs (Unmanned Air Vehicles) and UGVs (Unmanned Ground Vehicles) in civil use

Application Examples:

- Detection and monitoring of hazardous substances
- Search and rescue
- Security services
- Environmental mapping and –monitoring
- Surveillance of major sport events

Introduction

Goal:

<u>Robust</u> and <u>flexible</u> wireless communication for UAVs (Unmanned Air Vehicles) and UGVs (Unmanned Ground Vehicles) in civil use

Approach:

- OFDM (Orthogonal Frequency Division Multiplexing) based waveform
- Highest parameter flexibility for maximum throughput in heterogenous environments with varying demands (e.g. fast changing channels, high speed)
- Two independent logical links for control data and video data (OFDMA)
- TDMA (Time Division Multiple Access) on MAC layer
- Self designed hybrid SDR platform with FPGA (Virtex 5) and GPP (Intel Atom)

Scenario UAV relay Radio link **UGV-UAV** 0,5-1 km Radio link UAV-LOS Base station 5-10 km LOS **NLOS UGV** sensor carrier narrowband, high-available **Base** control-data link, bidirectional station about 115 kbit/s (TCP/IP) broadband mission-data link unidirectional, about 10-20 Mbit/s (UDP/IP) Page 5

Hardware Platform

Platform Setup:

- COTS microprocessor board
- COTS FPGA board
- customized interface board

Characteristics:

- high performance
- small form factor
- universal system interfaces

Hardware Platform

COTS Microprocessor Board

- Intel ATOM processor 1.6 GHz
- 1 GB RAM, 4 GB Flash Memory
- 1 Gbit Ethernet, USB 2.0, monitor IF,...
- compatible with standard Linux kernel

COTS FPGA Board

XILINX[®] Xilinx Virtex 5 FPGA Flash for FPGA configuration 32 LVDS I/Os or 64 LVTTL 2 RocketIO GTP with up to 3.75 Gbit/s

Self-designed Interface Board

- 16 Bit ADC
- 16 Bit DAC

Hardware Platform

Waveform

Runtime-configurable Parameters:

- BPSK, QPSK, 16-QAM, 64-QAM modulation
- Variable FFT length (8...1024)
- Configurable frame layout
 - Number of OFDM symbols
 - Subcarrier usage (control or data or unused)
 - Cyclic Prefix length
 - Fading between OFDM symbold for spectral smoothing: configurable windowing-length
- Convolution encoder / Viterbi decoder with adjustable code rate 1/7 ... 7/8

For Channel access of different users (UGV, UAV, base station)

Users are not equal: One master node to set the timing of the superframe must be visible to all users — UAV

For Channel access of different users (UGV, UAV, base station)

The more traffic a user requires, the more slots are reserved for him to transmit

For Channel access of different users (UGV, UAV, base station)

For Channel access of different users (UGV, UAV, base station)

For Channel access of different users (UGV, UAV, base station)

Designing and testing

1. FPGA design

Hybrid approach of pure VHDL and a model driven design environment (MathWorks Matlab/Simulink including Xilinx System Generator)

allows at a very early stage elaborated simulations (e.g. with Simulink Rayleigh or Rician fading channel models)

2. Hardware tests with fading simulator

Stressing the SDR platform in predefined environment with fading simulator R&S AMU200A static and dynamic real-time fading scenarios, Doppler, AWGN noise, ...)

♦ ROHDE&SCHWARZ

3. Open field tests

Final tests with UAVs (two types, maximum speed 120 km/h) and UGV (maximum speed 12 km/h)

Conclusion

Overview over an OFDM-based waveform, designed for communication links among autonomous robotic platforms

- communication focus: unidirectional video link between a UGV and its base station; established indirectly with an UAV as relay
 (+ further direct and indirect links for video and control data)
- Waveform supports separated logical links for video and control data concurrently
- Waveform offers outstanding flexibility according its parameters on runtime
- Hardware platform features very small form factor
- Hardware platform offers universal system interface (TCP/IP, UDP/IP)

Thank you for your attention!

