The Benefits of Static Compliance

Testing for SCA Next
R-Check™ SCA

James Ezick
Jonathan Springer

Reservoir Labs, Inc.
New York, NY

SDR '11
Wireless Innovation Conference &
Product Exposition

2 December 2011

L]
| . (ata, ('D'?‘AD -\J or
8.5 | fv? =)-F'5 +(3) i’i"ﬂ)?’

)t Jf’{“ i\ g O:J‘qpu- ~x2
s B gtel T = T“L(eed. o jein A
s T G Rl e
) f w,\ e.) /- e Li,/ﬁ(-‘—&“
atloos e M& Lt bleek ¥
-_‘ ! ¥, - " ¥ e - y \ (y
YWAC o) (i r)‘ /é)fJ J/ { e~y %(‘2
k ‘l- Lhwall .‘\ '#QV _*.-
rifet fs'l - (&Vae- b A ‘ e Go’qké
| S -lg - Pos 22
7 'S . 2eco ”
int Useless unless

owd i~ reversal to
dsdlows 0 on liagnl

e e

FTZO =) ‘_’T-)’”’ 253

Reservoir Labs 12.2.11

Static Compliance Testing with R-Check™ SCA

Outline

Introduction to Static Analysis
® What is Static Analysis?
® (Capabilities of Static Analysis
® Successes from the State of the Art

Static Analysis and the SCA
® Relating the Specification to Testing
® Unique Challenges of the SCA

R-Check SCA
® Modern Static Analysis Customized to the SCA
® [ooking Ahead to SCA Next
® What is Possible ...

Reservoir Labs 12.2.11

Introduction to Static Analysis

Static Analysis seeks to find bugs through inspection of
source code rather than through the execution of the program

® Analyzes all possible program paths without bias

® (Can be run on code in an intermediate state B

i

® [ntegrates with development environments

What can it do?
® Provide reproducible, automated tests
® Explain specifications, answer “what ifs"
® (Generate counter-examples

';‘, SN SN e,
Static Analysis:
What are the |imita‘ti0ns? Finding bugs through inspection of source code

® Depending on how specifications are written, some problems are very hard

What infrastructure is needed?
® \Works best within a tool that can break code down into data-structures

Reservoir Labs 12.2.11 3

Foundations of Static Analysis

G. Kildall - Dataflow Analysis (1973)
® Equations for deriving facts that hold at each program point
® Solution reduces to finding a fixed point over a lattice

® Foundation of modern compiler-driven optimization
(e.g., live variable analysis, use-before-def detection)

M. Sharir & A. Pnueli — Interprocedural Analysis (1978)
® [Extended the equations to support flow through procedures
® Added a level of abstraction to support calling contexts

E. Clarke, A. Emerson & J. Sifakis — Model Checking (~1981)

® |ogical sentences (CTL, LTL, etc.) over abstract
labeled transition systems (Kripke Structures) @l—e

® 2007 ACM Turing Award e
Field has a deep history with a solid

mathematical foundation - not just a bag of tricks! Kripke Structure

Reservoir Labs 12.2.11

Successes from the State of the Art

Locks over the Linux Kernel (SATURN, Stanford)
® Precise checking of lock/unlock sequencing
® Use constraints to model conditional branches
® Found hundreds of previously unknown errors, low false positives

Counter-Example Guided Abstraction Refinement (CMU)
® Automate the abstraction process for a program
® Finds faults in programs using model checking techniques
® Big leap forward in proving properties about real systems

Proving Termination (MS Research)
® Provides usable results for an impossible problem!
® Applicable to /iveness properties — what must happen
® Proving Program Termination, CACM, May 2011

The Halting Problem:
There is always a record that breaks the player

Reservoir Labs 12.2.11 5

Static Analysis for the SCA

JTEL SCA 2.2.2 Applications Requirement List

AFD603 Apphications =hall be limited to using the OS services that e |3.2.1.1 Mzmmal
designated as mandatory m the SCA Appheation Environment
Profile (Appendix B).

Simple - Can be performed with search and inspect
® Benefits from a context aware parsing — preprocessor, syntax, library awareness

Appheations shall perform file access through the CF File 3211 Manual
interfaces.

Deceptive — Simple statement, but non-trivial to test
® Requires an enumeration of what is not allowed - domain & language expertise

APDOTS The releaseObject operation shall release all internal memory 3.1.3.1.2523 |Manual
allocated by the component dunng the hie of the component.

Holy grail = Reducible to the locking or termination problems

® Simple and intuitive statement - really hard to get right
® Balance between eliminating false-negatives, limiting false-positives, speed
® QOpens the door to the deepest types of analysis available today

Reservoir Labs 12.2.11

Why Memory Leaks are Hard

Lessons from Examples

Memory leaks cannot be found by
simply inspecting the memory
allocation/deallocation lines
Context, sequencing matter

Semantics matter

These errors occur in real code

Linux kernel (c.2005)

Open source -

thousands of sets of eyeballs -
hundreds of undiscovered lock bugs

A safe, conservative analysis requires
deeper analysis tools

Example 1: Memory Leaks through Pointer Reassignment

Component::method_al() {
p = malloc(...);

;: malloc(...);

}

Component::releaseObject() {
free(p);

}

Second malloc() leaks memory allocated by first malloc()

Example 2: Memory Leaks through Control Flow
Component::method_a() {
if (A) {
p = malloc(...);
}
}

Component::releaseObject() {
if (B) {
free(p);
}
}

If “A" evaluates to true, but “"B" does not, then memory
allocated by malloc() will be leaked

Reservoir Labs 12.2.11

Static Analysis for the SCA

Static Analysis isn't limited to just C/C++ source code

SCA 2.2.2 also puts requirements on XML domain profile files ...

AP0G13 174 The devicethatloadedthiscomponentref element refers to a specific(D.6.1.5.1.1.6
component found m the assembly, whach 15 used to obtam the
logical CF Device that was used to load the referenced component

from the CF ApplicationFactory.

May also want to analyze CORBA IDL files ...
® These files define implementation contracts with the source code

And check consistency requirements across file types ...
® Profile matches interface description matches implementation

Or check non-SCA-specific properties
® Memory leaks, memory/pointer usage
® APl usage requirements

Reservoir Labs 12.2.11

R-Check SCA

Goal: Draw from the most successful
ideas in S ta tic a na Iys is to de ve Iop a) R-Check Merge Report: source file C:/cvsroot/n185/n07-185/rcheck/src/host_envir.c - Mozilla Fir. ..

il Edt View History Bookmarks Tools Help
. .
(s
solution customized to the SCA OB C X & o Qe) @er 2
Most Visited 4P Getting Started 51 Latest Headines *J Google
| '] R-Check Merge Report: source file Ci.. | + -
2584 lenl = strlen(strl); ~
2565 lenZ = styZ == MNULL * 0 : scrlen(scrZ); u
n 2586 if ((lenl + lenZ + (int)ilenZ != 0)) > &) {
2587 % The string (not including the file name) is longer than 8
Version 1.0 e o e i e) - oy
u 2569 wnsigned long cre:
2590 crc = crc_32(strl, (unsigned long)0);
2591 if (lenZ !'= 0} crc = erc_3Z2(strZ, cre);
2592 APD603 sprintf(crc_buf, "w081lx", crc);
(] St ru Ct re an d nt t 2593 el = cre but:
u context aware e
2595 strZ = MNULL;
2596 lenz = 0;
2597 | VA S
. C d C 2598 #* Exclude the directory portion of the file name. */
a n + + a n S u Or 2599 { char *end_of_dir;
I 2600 end of_dir = end_of_directory name{file name);
2601 if (end of_dir != NULL} file name = end of dir+l;
2602 i
. I t - - 2603 file_nsme_len = strlenifils_name]:
ntermediate representation that supports o0 P e T hame i pragedad by fix langi mclored in wndecssorer. *f
2605 APDO603 (void)sprintf{len buf " %lu ", (unsigned long)file name len);
2606 wodule_id = alloc_general (scrlen(len buf) + file name len + 1 +
- - 2607 lenl + lenZ + (int)ilenZ != 0) + Ll);
2608 {void}stropyimedule_id, len bufi;
a Va n Ce a n a yS I S ec n I q u eS 2609 APD603 (void)strcat¢module id, file_name);
2610 APD603 (vroid)streat (module_id, "_"):
2611 APO603 (veid)strcat (module id, strl);
2617 if (str2 1= NULL) {
2613 APD603 (void)strcat (module_id, "_");:
— e S S e m 2614 APD603 (roid)strcat (module id, str2):
2615 | VAT S]
2616 /* Change non-identifier characters to "_". */
2617 change_non_id_characters{module_id} ;
- 2616 T
— Control-flow abstraction
2620 if {db_flag_is_set{'module_id"}} {
2621 fprincfi(f debuy, "make module id: final string = #s\n", wodule id);
2622 }oAm At s
2623 fendif f* DEBUG */
® Support for XML, CORBA IDL
p 1 2625 return module_id;
2626 } /% nake_module_id */
2627
- 2628 fendif /* MODULE_ID_NEEDED */
. 629 ()
Cal€S 10 €nterpris€ coac pone o

R-Check HTML report for the SCA AP0603

~ Including incomplete/in-development code core POSIX requivment (SCA 2.2.2. App B)

® Push-button support for SCA tests

Reservoir Labs 12.2.11

R-Check SCA Workflow

IDL/XML
.IDL Extract
XML R-Check SPaR
CORBAIDL
& XM L Project
Descriptors Ct;ylnfig
g 1] e
“as is
Source
CPP Configure
.C R-Check ProCon
C/C++

Source Code
for Analysis
“as iS”

With GNU Make Enabled Scripting:

Summary
XML

Feature
Summary

[Flags |
Source
.CPP
.C

Source Code
Paired with
Compilation
Flags

Analyze

R-Check

Source Compiler Replacement

Reports
XML

Consolidate

R-Check Blender

Compliance
Report for
Each Source
File

&

O

ot
Report R z
XML Zporl

Merged O

i ¢

Compliance

Report

Linker Replacement

Build Targets

Reservoir Labs

12.2.11

10

Looking Ahead to SCA Next

We expect static testing to become an even more
integral component in SCA Next certification

New Challenges making Dynamic Analysis Harder
® More flexibility in interface (e.g., CORBA vs. no-CORBA)
® More flexibility in capability supported
® Data hiding - component interfaces behind Domain Manager

Opportunities

® Static testing tool can be used to “teach” the specification
with each compile operation

Providing meaningful guarantees requires an accord among
® Specification authors: What the specification says
® Testers: Tools available (time vs. precision), what can be tested
® Developers: How code is written

Reservoir Labs 12.2.11 1

What is Possible

SCA Next
® R-Check SCA architecture extends to SCA Next
® SCA Profiles

® Support for Platform Specific Model
® Retain push-button functionality >

Deeper Analyses

® Add flow and path-sensitivity, more precision

Static Analysis:

® Supported by R—CheCk SCA architecture Find & eliminate bugs earlier in the process

Direct Query Interface
® \Write new analyses using structured natural-language syntax
® Motivated by model-checking ideas (logic sentences)
® Ask questions about what the radio might do

Reservoir Labs 12.2.11 12

About Reservoir Labs

Privately owned, Reservoir Labs has been providing
leading-edge consulting and contract R&D to the
computer industry, business, end-users, and the
US Government since 1990

Expertise
® (Custom verification solutions

® Applied compiler research for emerging
high-performance and embedded architectures

® Reasoning, constraint solving, and mathematics
® (Cyber-security, deep network content inspection

Technologies

R-Check Static Analysis Platform

R-Stream Mapping Compiler

R-Solve Reasoning and Planning Technology
R-Scope Network Security Technology

Reservoir Labs' offices in
New York, NY and Portland, OR

Reservoir Labs 12.2.11

13

Acknowledgements

Development funded by SPAWAR
under Navy Phase Il SBIR Contract
“Static Analysis Tool for Interface
Compliance Verification and Program
Comprehension”

Thanks!
John Thom, TPOC (SPAWAR)

JTEL Test Execution Team

Jim Kulp, Parera Information Services

SPAVAR

JTRS
Test & Evaluation
Laboratery

Reservoir Labs 12.2.11

14

For More Information on R-Check SCA

Visit our website
® https://www.reservoir.com/rcheck

Contact us by email
® rcheck-support@reservoir.com

Updated version of this presentation
® https://www.reservoir.com/rcheck

Reservoir Labs 12.2.11

15

