Northeastern University

Bridging the Gap Between the
Cognitive Engine and the SDR

Jakub Moskal
Mieczystaw Kokar
Shujun LI

Northeastern University

CR Architecture

Cognitive Engine:

» Genetic algorithms

» Case-Based Reasoning

* Knowledge-Based reasoning

Applications

CR operational behavior can be N _
altered by modifying its Cognitive Engine
parameters: =

Knobs Waveform Software Meters

. RF Hardware
 observable Meters, perceptions,

.e.g.:
* bit error rate i
* Doppler spread
* noise power w
« controllable Knobs, actions, e.g.:
* transmitter power
* modulation type

» bandwidth
« carrier frequency

Northeastern University

Knowledge-based CR

Main components:

1. General-purpose reasoner
(inference engine)

Applications

l Data

knobs Waveform Software meters

Cognitive Engine

—
CR Rules
T ~a

2. Ontology - domain knowledge
described with common terms
and concepts

General-purpose | Procedural
Reasoner attachments

CR
Ontology

SDR

RF Hardware

* out of order execution l
» extended with procedural w
attachments — imperative

functions (used for accessing
knobs and meters)

3. Rules
* declarative form

Northeastern University

Knowledge Representation: OWL

* Web Ontology
Language (OWL)

— TBox
— AbOX -, TBox <
i ABoOX “
« OWL and CR:
— TBox — axioms shared KB
by a” radIOS Application l I mul
5 Programs ules
— ABox — axioms

pertaining to particular
iIndividual radios

Northeastern University

Knowledge-based CR: Benefits

- Domain experts are not required to know the
SDR implementation detalls (programming
language, architecture) to write rules

* Rules are declarative, not executed In a
prescribed order — they can be modified
without the need to recompile

* Easier certification and accreditation — once
rules and reasoner are accredited, rules
(policies) can be reused

Northeastern University

Problem Formulation

» Different radios provide different Knobs & Meters (K&M) that need to be accessed by the reasoner
* Lack of standard SDR Application Programming Interface (API)
* Lack of standard CR architecture

—— set knobs, i.e. multiple &

invoke methods heterogeneous
CR Rules

General-purpose | Procedural
Reasoner attachments

—
CR

Ontology

read meters & represent
A them in the KB

Northeastern University

Domain API
Domain-specific API
Procedural Reasoner
Current CR designs interface SDR Attachments
via specific APIs: set V1, set V2...
get V1, get V2...
Reasoner API

Consequences:
« (get) Design-time knowledge Domain-Specific

about the ontology is required to Controller

produce appropriate Abox createABox()

* (set) Reasoner must be
extended with API-specific
procedural attachments

« The same functionality must be F--—-----
coded for each radio API

 API-dedicated code must be
maintained as API changes

* API may become a bottleneck
to support compatibility with
legacy components

get_V1, get_V2..get_Vn

Northeastern University

LiveKB - Motivation

Reasoning
Component

get_txAmplitude()

SDR A
Procedural
Attachments

set_carrierFrequency(2400)

>

Reasoning
Component

get("hasTxAmplitude")

invoke("get_txAmplitude")

SDRA
API

M MEINES

Generic

Procedural set("hasCarrierFrequency”, 2400)

Attachments

inyoke("set_carrierFrequency”, 2400)

SDRA
API

=
o
=
[3)
=
)
o

Northeastern University

Ontology Matching

* Ontology Matching - the process of finding relationships between entities of
different ontologies

* Alignment — result of matching, includes statements like entity equivalence, sub-
super relationship, class intersection, inverse relation, etc.

 Numerous applications, e.g. data integration, semantic web services

» Different ontology heterogeneity: syntactic, terminological, conceptual, semiotic

e Alignment representation: EDOAL, manipulation: Alignment API

e Fully automated only for rather simple correspondences

ontology 1 Matcher ontology 2

!

ontology 1 Matcher

Generator

\4

Northeastern University

LiveKB — Ideal Design

(.
LiveKB

IDL Ontology
» Matcher

Generator

CR Ontology
(TBox)

SDR IDL
Model

4

Reasoning
Component l
medlator
Answer
Request

\- J

SDR Runtime

Reflection

Northeastern University

LiveKB — Feasible Design

(.
LiveKB

CR Ontology Alignment Annotated
(TBox) Annotations SDR IDL Model

| /ﬁ

v

CR Ontology
/

S —
CRRules |--#| Reasoning :@uest

Component

IDL Ontology
(TBox)

SDR
Runtime

Reflection

Northeastern University

Generating IDL Ontology
) idl:SignalDetector
module_‘ api { _ /idl:SignaIDetector@sampIeRate| Float
interface SignalDetector {

attribute float sampleRate;

k 4)l idl: Transmitter

. —
interface Transmitter 4= —> idI:TransrPitter@getNominaIRFPower Float
float getNommalRFPower(), — idI:Tran%nitter@getTralismitCycle Integer
Ior?g getTransmltCycIe_(), /7[idI:Trans*itter@setTra mitCycle Integer
void setTansmitCycle(in long
newTransmitCycle);
3 > iq:TestRadio
interface TestRadio { idl:TestRadio@detTxAmplitule | Float

readonly attribute Transmitter transmitter;

readonly attribute SignalDetector v =topDatafjroperty
signalDetector; v mgetterMlethod
mSignal|Detectdr@sampleRate

mTestRadio@gétTxAmpglitude
mTransmitter@getNomjnalRFPower
=Transmitter@getTrangmitCycle

v msetterMethod
mSignalDetector@sampleRate
=Transmitter@setTransmitCycle

float getTxAmplitude();
k

Example of a Bridge Axiom:

Bridge Axioms

An IDL ontology property needs to be maped to a chain of CR ontology properties

Northeastern University

participatesin - carrierFrequency ° hasValue - hasFloat = Transmitter@carrierFreq

Chains can be ambiguous:

* hasSubComponent - componentName C IDLPropertyl
* hasSubComponent - componentName C IDLProperty?2

We add self-restrictions to disambiguate chains:
* hasSubComponent - is_SignalDetector - componentName = IDLPropertyl
* hasSubComponent - is_PowerAmplifier - componentName = IDLProperty2

is_SignalDetector

lhasSubComponent

Radio_1

SignalDetector_1

«componentName

MyDetector

hasSubComponent

Power_Amplifier_1

is_PowerAmplifier

componentName

MyPowerAmp

Radio_1 |

participatesin

Transmitting_1 |

carrierFrequency

Frequency_1 |

hasValue

FloatValue_1 |

hasFloat

Northeastern University

Assisted Matcher — IDL annotations

« Each getter and setter in IDL must be annotated according to the following pattern:
— Classl.(objectProperty.Class)".datatypeProperty

« Annotations explicitly indicate the alignment with the CR ontology

» Assisted Matcher generates self-restrictions and creates bridge axioms

EXAMPLE

module api {
interface TestRadio {
// Radio.hasSubComponent.PowerAmplifier.txAmplitude
float getTxAmplitude();

hasSubComponent ¢ is_PowerAmplifier » txAmplitude = TestRadio@getTxAmplitude

Northeastern University

Invoker and Object Tree

* IDL interfaces provided by SDR are assumed to form a tree-like structure:

* \Vertices —implementations of interfaces

* Edges —interface type attributes or methods with interface return type
* Implementation of the root must be available via CORBA Naming Service
* Could be extended to a forest

Naming Service

module api {
interface SignalDetector { };
interface Power { }; TestRadio

q q aTransmitter
interface Transmitter { getDetector

readonly attribute Power myPower; / Y
}. Transmitter SignalDetector
|
interface TestRadio { myPower
readonly attribute Transmitter aTransmitter; ¢

SignalDetector getDetector(); Power

Northeastern University

Choice of middleware

- CORBA
— Robust and reliable technology

— Already used in SCA-based radios

— Very efficient (implementations of ORBs in DSPs and
FPGAS

 Alternative: Web Services
— IDL = WSDL

— GIOP = SOAP
— Naming Service - UDDI

— Potential problems: additional middleware for SCA radios,
serialization of binary data, convincing the SDR community

Northeastern University

LiveKB API — Simple & Generic

module livekb {

interface LiveKB {
string getAll (),
any get (in string property);
void set (in string property, in any value);

b g

interface LiveKBFactory {
LiveKB getlInstance (in string model,

in string rootName, in string ontology) ;
ti
¥

Northeastern University

Requirements

SDR parameters accessible via CORBA

Run-time objects form a tree-like structure and the root is available via
CORBA Naming Service

The IDL respects the following constraints:
— Getters have one of the following forms:

» Operations that have no parameters and return primitive value

» Operations that have a single parameter of primitive type, return void and use out
passing direction

« Attributes of primitive types
— Setters have one of the following forms:

» Operations that have a single parameter of primitive type, return void and use in
passing direction

» Attributes of primitive types that are not readonly

— Annotations follow the pattern:
Classl.(objectProperty.Class[*])".datatypeProperty

— All annotations allow the Invoker to generate a proper Abox

Northeastern University

Domain API vs. LiveKB

Domain API LiveKB API
Procedural Procedural
Attachments Reasoner Attachments Reasoner
A A
Reasoner API Reasoner API
Domain Controller Generic Controller |«--------
createABox()
Annotated
IDL
get_V1, get_V2...get_Vn set bootstrap, getAll A
i ied st :
| v 0

Reflection

Domain Software TP

CORBA

Q
o
Y]
W
>

Northeastern University

Comparison: adaptability

Four different scenarios:
1. Ontology has been redesigned — hierarchy changed, available K&M remained the same
2. Ontology has been augmented to include new parameters
3. Switch to a new domain — ontology, rules, domain software replaced
4. Domain software API has changed to a new version, not backwards compatible

1 Rewrite code that creates Abox Adjust IDL annotations

) Develop new procedural attachments, add code that Add IDL annotations to the new
creates new ABox axioms methods
Implemented new domain API, develop new procedural .

3 P . ’ P P Annotate IDL for the domain ontology
attachments, implement code that creates Abox
Either implement adapter, or re-implement domain API,

4 update procedural attachments, rewrite code that Move annotations to the new IDL

generates Abox

Northeastern University

Comparison: complexity

Bootstrap 0(1) O(i*m*c)
i — number of IDL interfaces,
m — number of methods and attributes per interface,
¢ — length of the annotation related to the method/attribute

getAll O(n), n —number of getters O(n), n —number of getters
get 0(1) 0(1)
set 0(1) 0(1)

* Using LiveKB bootstrap operation is more complex, because LiveKB generates artifacts specific
to the domain software. This operation is performed only once.

« LiveKB also produces additional triples that need to be loaded to reasoner’s KB, it is in the order
of O(i*m*c), where | is the number of IDL interfaces with annotated getters or setters, m is the
number of getters and setters per interface, and c is the length of the annotations

Northeastern University

Conclusions

Benefits of using LiveKB:
* Support for knowledge reusability and exchange
* Relatively small effort to adapt to changes
* Inherent domain and platform-independence

Drawbacks of using LiveKB:
* Requirement to use CORBA
* Increased number of facts in the KB (bridge axioms)
* Slower bootstrap

Use of LiveKB is recommended in domains that lack standards, and where
changes are likely to happen in the future — Cognitive Radio is a good match

Northeastern University

SDR’10 Demo

LiveKB was successfully showcased at the SDR’10 Technical Conference

An image was sent pixel-by-pixel to generate data traffic

Radios performed collaborative link optimization, exchanged facts and rules
Meters were accessed and knobs modified using LivekB

(- JeNé) SDR. Connection Statistics

Objective Function and mSNR

50.0
475 g a5.0
| N 425
45077 B 40.0db! !
225 ‘” et 0.0
40.0 | -.\‘;,A__/,,,&.«__J-—.‘;V__ﬁ\\ v, e i sy 375
: =y B | | bl cooratd 35.0
37.5 \ | 35.0db
T 350 \ f 325
';v 325 \ | 300
T 300 o 275
§ s 25.0 2
2 =
§ 50 =
Qo L
225 g
225
= 200
4 200
] 175
175
= 15.0
< 150
125
125
100 10.0
75 75
5.0 5.0
25 25
0.0 0.0
20 40 60 B0 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 58O
Transmission
— Objective Function — Sender's Objective Function — mSNR
Packets ARQ Retransmissions
Sent: 10 Packets: 1
Received: 29,063 ACKs: 1,001

Corrupted: 417

Close

Northeastern University

Thank You

