

Simulcast Systems for Public Safety

Rick Taylor
Senior Scientist, PSPC
Lynchburg, Va
1 Dec 2011

Public Safety Mission Critical Communications Systems

- Secure Wide-area Voice and Data Networking
- Interoperability and Reliability are Key
- Fragmented Frequency Bands
- Rapid Access Sub-second Across Network
- Mostly Group Calls ("One to Many")
- Near Ubiquitous Coverage

- Coverage Reliability Requirement is Typically 95-98%
- Service Areas: From Small Towns Through Statewide
- 3 Watts Portable Output Power

P25^{IP} Trunked Multisite System

P25^{IP} Simulcast Systems

Simulcast System Transmit Overlap

(Delay Spread Only Significantly Effects the Sites' TX Signal)

Note: Typical Harris simulcast systems have more than two sites

Delay Spread from a P25 (C4FM) 3-Site Simulcast System

What Can Be Done with the Modulation to Improve the Tolerance to Delay Spread?

Backround: Review of Eye Patterns

 An Overlay of Time Segments of the Demodulated Digital Signal, with Each Segment an Integer Multiple of the Bit (or Symbol) Period

Background: Recovering the Information from a 2-Level FSK Modulation

Eye Pattern of P25 Phase 1 4-Level HARRIS **C4FM Modulation**

Deterioration of P25 Eye Due to Simulcast Delay Spread

Strong Signal, no Fading

Strong Signal, 25 usec Delay Spread Fading

Strong Signal, 50 usec Delay Spread Fading

Model of Delay Spread's Effect On the Eye

Eye Patterns of Different Modulations

WCQPSK **π/4** Differential Phase Modulation

Our Patented WCQPSK Modulation Filter 's 2nd Zero Crossing Impulse Response Enables a Wider Eye

Discernible WCQPSK Eyes Remain Even for 120 usec Delay Spread

Static, Strong Signal

Faded, Delay Spread=0

Faded, Delay Spread=40 usec

Faded, Delay Spread=120 usec

BER Versus Delay Spread Comparison HARRIS

BER Versus Delay Spread Measurements

WCQPSK Spectrum Out Of Our Base Station's Linearized PA Meets the Stringent 210d NB Mask

- Peak Hold Measurement
- 100 W Avg Power

Summary of WCQPSK Conceptual Design

- Simulcast Delay Spread BER Can Be Greatly Improved with PSPC's WCQPSK Linear Modulation that Has "Wider" Eyes
 - ✓ > 2X Delay Spread Improvement Over P25
 C4FM
 - ✓ Meets Required FCC Masks and has Low TX ACP
 - ✓ Has Slightly Better Sensitivity than P25 Phase
 1 C4FM Systems

Questions?

Contact Info:

richard.taylor@harris.com