

A GRAPHICAL INTERFACE USING FIRMWARE MACRO-CELLS FOR FAST

FPGA DESIGN REVISION IN SOFTWARE-DEFINED COMMUNICATIONS

APPLICATIONS

Frank Raffaeli

Principal RF Engineer, National Instruments, Austin, Texas, USA; frank.raffaeli@ni.com

ABSTRACT

Achieving fast-turnaround on revision cycles is important

both for research and for deployment SDR platforms.

Modern large FPGAs often have prohibitively long compile

times, extending for several hours. Often, the learning cycle

in academic applications is curtailed by the constraint of the

compile operation.

 Using pre-compiled DSP macro-cells within the

LabView FPGA module, a hierarchical design can be

deployed from the simulation phase in a matter of seconds

instead of hours. The macro-cell is a generic DSP engine

that utilizes both a combinatorial and a sequential

framework to combine the DSP blocks within the FPGA’s

infrastructure to build a re-configurable function. The

macro-cells are physically configured using a combination

of mux registers and scripted commands. From the user’s

point of view, a [library] function(s) can be written and

simulated in the graphical language LabView™, then

deployed to the macro-cells at run-time within a few

seconds.

1. OVERVIEW

The premise of this paper assumes the design revision cycle

time is largely due to the compile time of the FPGA. This

method describes a process by which the FPGA can be

loaded with a generic bit-file where the real-time signal

processing is still with the FPGA but the functionality can be

configured at run-time. The generic bit-file is built using the

LabView FPGA module, and its representation is canonical

and hierarchical within the LV FPGA environment. There is

a graphical user interface via the LabView software, which

appears as a block diagram of the communications system

within the LabView interface. The user can utilize the

LabView environment as a simulation engine, with all the

measurement capabilities of the tool, including Frequency

and Time domain analysis.

 Each top-level block’s functionality is configured by the

user at run-time. The block diagram can be re-configured

without re-compilation, provided the functionality fits within

the constraints of the generic macro-cell. For full custom

functionality, a complete FPGA re-compile is required.

2. DESIGNING WITH MACRO-CELLS

Each macro-cell represents a block in the communication

system diagram. Each functional block will require

“software”. In generic terms, the sequential code that runs

the script [dynamic re-configuration] within the macro-cell,

and the register settings that describe the signal routing and

static settings are considered the “Op-codes” referenced in

figure 1, above.

 From the LabView interface, the user selects a function

from the library, or builds a new one with the macro

compiler and then loads each block with the macro-cell’s

script. An FPGA compile is not required since the macro

compiler is only changing the op-code and register memory

embedded within the macro-cell (see figure 2).

Figure 1 – structure of the macro-cell user environment

Proceedings of the SDR 11 Technical Conference and Product Exposition,
 Copyright © 2011 Wireless Innovation Forum All Rights Reserved

404

mailto:frank.raffaeli@ni.com

3. PRACTICAL CONSIDERATIONS

The advantage to this approach is certainly speed of design

revision and short time to first implementation; however,

this approach will only work if the required function fits

within a macro-cell or it can be described by a series of

canonical macro-cells, such as a filter. In order to examine

some of the practical uses and constraints of this technique,

this paper will examine two cases as follows:

 Filter design using linear-phase recursive structures

 Special functions: Oscillator.

Because a function implemented with a macro-cell must be

developed using a compiler, it is handy to have a library of

macro-cell functions already implemented to use as

examples. To facilitate an open source environment for this

work, National Instruments dedicates a web area called NI-

labs [1].

4. ANATOMY OF A MACROCELL

In order to examine the pros and cons of this architecture, it

may be logical to view the structure from the bottom-up.

The macro-cell consists of a main ALU, which is composed

of four cross-connected DSP 48e blocks. The alumode

registers of the DSP48e (see figure 4) and also several of the

configuration registers are controlled via an op-code loop

memory and pre-fetch sequencer that runs the sequential

programming synchronously with the system clock. The mux

is controlled by a static register, and although it is also

configurable at run-time like the op-code registers, it does

not sequence with the input clocking. The DSP48e is the

main signal processing engine, and is configured such that

its op-mode register can be reloaded on each clock cycle.

 The sequencer has two functions: It synchronizes all

four DSP48e’s clocking such that the op-codes are cycle

accurate, and it serves as the pre-fetch and memory

controller for the op-code cycle execution.

5. OPCODE DETAIL

The following shows the basic anatomy of the 16-bit op-

code. An illustration of a static configuration of the DSP48e

can be found in figure 4:

B15 – enable

B [14.. 12] – slice ID

B [11.. 04] – ALU configuration

B [03.. 02] sequencing ID

B [01.. 00] dynamic mux

6. EXAMPLE IMPLEMENTATIONS

The examples chosen were implemented within the macro-

cell architecture, and share a common theme: they either

execute in a single clock cycle using four DSP48e blocks, or

they utilize a sequencing algorithm in order to fit within four

DSP48e blocks. Canonical structures are not explored.

6.1. Linear Phase Recursive Filter

If the phrase “linear phase” seems orthogonal to “recursive”

it is because only a specific type of recursive filter achieves

linear phase. Generically, it is referred to as a comb-

resonator structure [2]. A specific case, where the resonator

is a single integrator, is well-known as a CIC filter.

A macro-cell can be used to implement the generic case, if it

is used in conjunction with the local memory in the macro-

cell.

6.2. Oscillator

The oscillator is the simplest implementation in the macro-

cell structure because it does not have a dynamic sequencing

requirement. The simple oscillator topology shown in the

figure below can be easily translated to a LabView

implementation and simulated in a test bench.

Figure 2 – macro-cell block diagram

Figure 3 – simple oscillator

Proceedings of the SDR 11 Technical Conference and Product Exposition,
 Copyright © 2011 Wireless Innovation Forum All Rights Reserved

405

The oscillator has two coefficients, -1 (a constant), and 2*r

cos (ω). Since r is the radius of the unit circle, the only

variable coefficient is the frequency scaled by a cosine

function. This means it can be implemented with a simple

multiply-add function. In the illustration above (figure 4),

the shaded blocks show a rendering of how LabView FPGA

represents the DSP48e block through the user interface. In

the macro-cell implementation, the alumode register needs

only to be configured by a static value, whereas in a

sequential implementation such as a comb-resonator filter,

the alumode register is configured by the sequencer.

 The diagram in figure 5 illustrates the test bench used to

build the oscillator, which is a bit more complicated, since it

requires an AGC and injection-locking between the two

orthogonal sections to achieve a quadrature relationship

between the two sections.

7. SUMMARY

As FPGA designs become more and more complex, the need

grows for techniques which can speed design iteration times

without placing unnecessary constraints on the user.

LabView and LabView FPGA can be used to build a design

structure using generic macro-cells that can be configured at

run-time. This technique can be useful if the design fits

within a canonical structure or the user can make

modifications to use a sequential architecture.

8. REFERENCES

[1] NI-Labs – http://www.ni.com/labs - keyword search: SDR.
[2] R. Kuc - Introduction to Digital Signal Processing pp 220-

229 ISBN 0-07-035570-3.

Figure 4 – detail of the DSP48e slice as configured by LabView FPGA. Highlighted blocks show enabled resources

Figure 5 – oscillator test bench in LabView

Proceedings of the SDR 11 Technical Conference and Product Exposition,
 Copyright © 2011 Wireless Innovation Forum All Rights Reserved

406

http://www.ni.com/labs

