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Design Goals

* Perform specified LTE conformance tests
» Design for long-term reuse

e Compact, simple, and easy to use



Setting the Stage

 Downlink LTE receiver development

« Software simulations only go so far.

* In the process....we had to also develop an
LTE transmitter!

e Testing your receiver with a “golden”
reference signal source has limited use



A Typical OFDM System Model
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Impairments:

« AWGN: faint (noisy) signal

* Frequency shift: errors in RF electronics (TX and RX)

» Channel: Asynchronous startup time, multiple paths, mobility
» Sample Clock Offset



Our OFDM System Model
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Repartitioning of the system:

» The transmitter and receiver are placed in two separate pieces of hardware and
operate asynchronously.

» The transmitter must be capable of producing LTE signals

» The user must be able to program various signal impairments for desired tests



LTE Signal Generator
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Host PC Software

» Generates low-rate baseband signal (repetitive)

* Provides “golden” signal to the hardware

« Software signal generation adds flexibility

X5-TX Firmware

* Run-time configurable core does the “heavy lifting”

* Run-time programmability is ideal for R&D development cycle



LTE Signal Generator
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Channel Emulator:

» Must conform to the LTE specified channels

» Must be capable of emulating a “fading” channel

» Must be very programmable and customizable to maximize reuse and value



LTE Specifications

ITU ETU EVA EPA
channel (extended typical urban) (extended vehicular A) (extended pedestrian A)
models [1]
el S N O I I S )
1 0 1 0 0 0 0
2 50 -1 30 -1.5 30 -1
3 120 -1 150 -1.4 70 -2
4 200 0 310 -3.6 80 -3
5 230 0 370 -0.6 110 -8
6 500 0 710 9.1 190 -17.2
7 1600 -3 1090 -7.0 410 -20.8
8 2300 -5 1730 -12.0
9 5000 -7 2510 -16.9

ITU Channel models [1] :

 Provide statistical references for various channel conditions

« Each channel model is specified as a power-delay profile (PDP)

* In LTE testing, each PDP can be used with a 5, 70, or 300 Hz [1] maximum
Doppler frequency to simulate various mobility scenarios.

» Each path uses a Jakes, or “Classical’” Doppler spectrum



Dynamic Multi-Path Fading Channel

» The radiated signal bounces off of objects in the channel as it propagates

» The receiver hears echoes as the delayed paths arrive

* As the receiver moves throughout the channel, the relative intensity of each path
varies. The rate of variation depends on the mobile’s velocity and the wavelength of
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2D Ray Model

» Assume there are no direct line-of-sight paths, only reflected ones
* “Diffuse” channels can be modeled

with discrete paths

» Path delays are constant

X




2D Ray Model

X
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2D Ray Model

X
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Tapped Delay Line Model

» Each path in the channel is multiplied by a complex coefficient

* Individual paths are delayed by the amount specified in the PDP

» The delayed and attenuated copies all sum together at the receiver
« Convolution!! [2,3]

x(t)
—>

* The minimum tap delay spacing determines the rate of the channel filter
» The channel coefficients must be updated at the operating rate of the filter.
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Channel Emulator “Unit Cell”
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Relative Magnitude

Jakes Process [3]

« Each channel path gain can be modeled by a Jakes process [2]

» Each path coefficient in the emulator is generated by an i.i.d. stochastic Jakes
process, which depends on the carrier wavelength and the mobile’s velocity

» The Jakes spectrum defines the probability distribution function of the Doppler shift

Normalized Jakes Spectrum
1 I I I I I

0.9 .
0.8 | [
07 | [

(o) 1

V)=
0.5 \ 4 ”fd\/l_(u/fd)z

0.4+ | [l A
0.3F \ . ‘U‘S fd fd :%

0.2 S i

0.1 8

0 \ \ \ \ \ \ \ \ \
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

frequency shift x fd




-
@)
it
©
S
D
-
D
O
.
-
Q
O
9=
D
@)
O
L
I
)
al

» To generate a Jakes process, WGN is shaped with a special Jakes filter

» The Jakes filter shapes the WGN spectrum to approximate the “bath tub” shape
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Variable-Rate Upsampler

» The upsampling factor determines the final Doppler frequency by shrinking the
relative passband of the Jakes filter
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Variable-Rate Upsampler

» The desired Doppler frequency range determines the required upsampling factors
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Variable-Rate Upsampler

» Upsampler is partitioned into fixed and variable stages

» The fixed stage’s factor limits the
programmable Doppler resolution

delay-line in Ai’,- delay-line out . Saves FPGA resources
g; L .
| » Places complex portion at a low rate
o] Takes Vopamme] 4. * 256X balances resources and
Filter 1 performance
\
to summsigg element
L
' fixed upsampling stage (cascade) l
fr°er|';;‘fr:‘t”9§ Upsample Upsample Upsample \?r;abfef?ear Q
— 2 —> 4 — 32 —=»| Interpolation |-
(haf:bana‘) (1/:f§aper) (rea’uizd length)| x(L/256)

Doppler resolution decreased to ~.01 Hz
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Variable-Rate Upsampler

L
fixed upsampling stage (cascade) l
fr(;?;;c:'litngg Up samp le Up samp le Upsample Variable Linear ai
> X2 —>> x4 —> x32 —»| Interpolation |=—pp
: (half-band) (1/f taper) (reduced length)| * x(L/256)

Design Goals
» Minimize resource consumption my maximizing resource sharing
» Saves hardware multipliers and slices
» Place the most complex components at the lowest rate
» Minimize filter lengths
» Saves BRAMSs required to store filter coefficients
» Use special filter designs
* Minimize reduction of Doppler resolution
» fixed upsampler rate must not be too high
» Maximize range of available Doppler frequencies

19



Variable-Rate Upsampler

fixed upsampling stage (cascade)
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Variable-Rate Upsampler
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Variable-Rate Upsampler

» > 80 dB stop-band attenuation
« fast roll-off
« MATLAB double-precision floating point results shown here
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Variable-Rate Upsampler

» 10x magnification along the frequency axis shows Jakes response
» > 80 dB stop-band attenuation
« Total coefficient storage is less than the upsampling factor!!

Jakes/2x/4x/32x Cascade (Passband Zoom-in) - Magnitude Response (dB)
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Variable-Rate Upsampler

L
fixed upsampling stage (cascade) l
from scaling! | (psample Upsample Upsample | & | |variaie Linear| | o,
— X2 — x4 — x32 ——>| Interpolation >
: (half-band) (1/f taper) (reduced fength) | x(L/256)

* Linear interpolation relies on only two points to compute the interpolated values

s[n]= %(x[m]n +x[m-1]1-n))
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Variable-Rate Upsampler

 Fixed-point FPGA hardware results (not simulation — real results)
« Extremely high-quality frequency response
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Variable Delay Element
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Resource Consumption:

Unit Cell

» Post MAP resource usage
 Xilinx Virtex5 SX95T FPGA
 XST MAP — Xilinx tool version 13.2

Occupied 857/14,720 5%
Slices
BRAM 6/244 2%
DSP48E 21/640 3%
delay-line in At,- delay-line out
gi i
Jakes Upsample
—> _
WGN Filter xL

to summing element
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Resource Consumption:

Entire Channel Emulator (9 paths)

» Post Synthesis resource usage
o Xilinx Virtex5 SX95T FPGA

* XST version 13.2

Slice Registers 22,379/58,880 38%
BRAM 45/244 18%
DSP48E 209/640 32%
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Results: EPA Model

* Results from FPGA hardware (100 MHz sampling rate)
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Results: EPA Model
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Results: EVA Model

* Results from FPGA hardware (100 MHz sampling rate)
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Results: Instantaneous PDP

* Results from FPGA hardware (100 MHz sampling rate)
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Conclusions:

* Highly programmable channel emulator core

« Capable of LTE conformance tests and custom tests for R&D
e Low cost

* High reusability potential (expandable to MIMO)

« Small FPGA resource consumption

« Expandable to higher order models using modular design

v Perform specified LTE conformance tests
v Design for long-term reuse
v’ Compact, simple, and easy to use
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