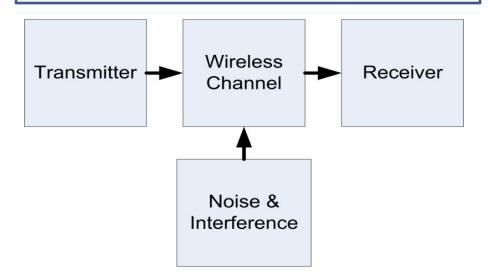
Mobile Wireless Channel Dispersion State Model

Enabling Cognitive Processing Situational Awareness

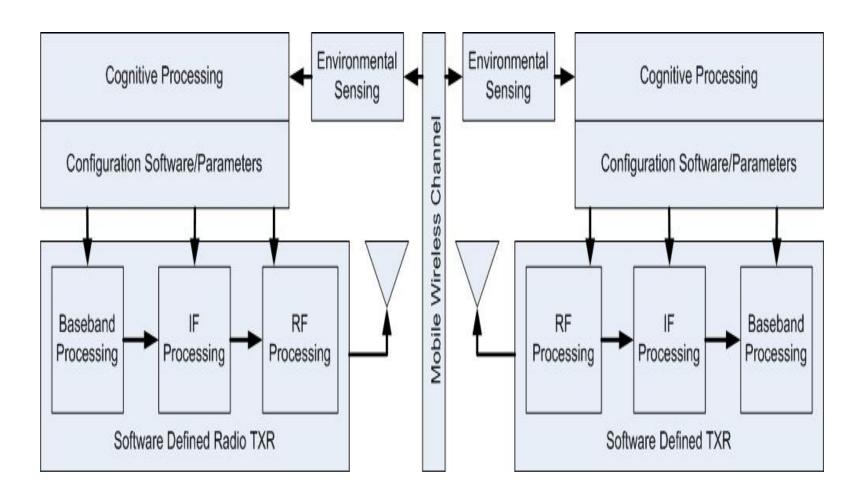
Kenneth D. Brown
Ph.D. Candidate
EECS
University of Kansas
kenneth.brown@jhuapl.edu

Dr. Glenn Prescott
Professor / Department Chair
EECS
University of Kansas
prescott@ku.edu


System Modeling Background

- System engineering models
 - Behavioral (mathematical, logical, flow, state, others)
 - Structural (physical, architecture, interface, others)
- Hidden Markov models
 - Dual statistical model, hidden random sequences, observable random sequences
 - Initial, transition, output probabilities
 - Training, generative, evaluation, decoding modes
 - Applications: automatic speech, image, facial, writing, gait, biological, and network traffic recognition.
- Published multistate mobile wireless channel models
 - •Binary nonfading/fading FSMM,
 - •Amplitude quantized FSMM,
 - •Error rate FSMM
 - •N-state SNR FSMM
 - •N-state pdf FSMM

- •Variable length Markov chain
- •Average dwell time FSMC
- •High order FSMM
- •Statistical distribution FSMM
- •State variable models

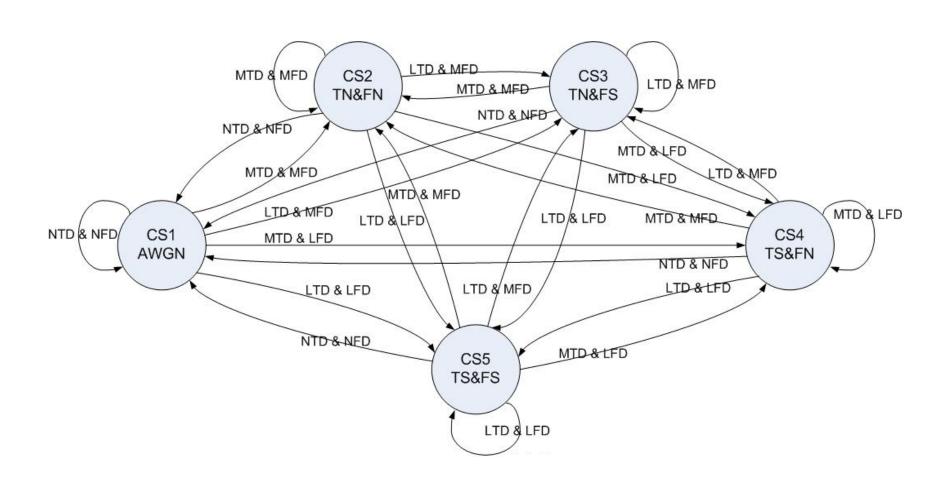

Mobile Wireless Channel Architectural Model

- Mobile wireless channel architecture
 - TX, mobile channel, RX
- Cognitive radio CSR architecture
 - Software defined processing
 - Cognitive processing
 - Environmental sensing
 - Mobile wireless channel

Mobile Wireless Channel System Model

Mobile Wireless Channel Architectural Model

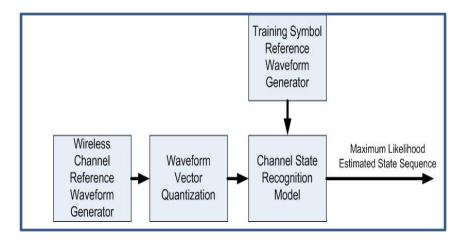
Cognitive Radio CSR Architecture

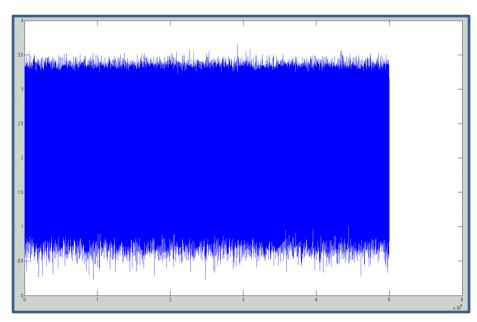

MWC Dispersion State Model

Mobile Wireless Channel DSM

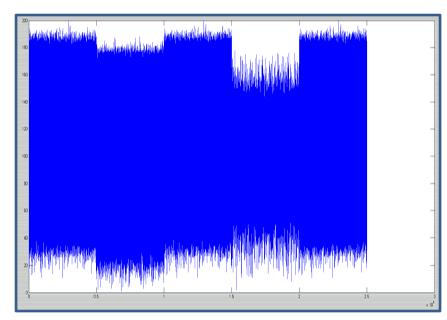
- MWC dispersion state space
 - Non dispersive, single time, single frequency, dual time/frequency dispersion
 - Non fading, flat frequency, frequency selective, time selective
- DSM state transitions
 - Symbol period
 - Symbol rate

NTD&NFD	No Time Dispersion and No Frequency Dispersion	
MTD & MFD	Minimal Time Dispersion and Minimal Frequency Dispersion	
LTD & MFD	Large Time Dispersion and Minimal Frequency Dispersion	
MTD & LFD	Minimal Time Dispersion and Large Frequency Dispersion	
LTD & LFD	Large Time Dispersion and Large Frequency Dispersion	


MWC Dispersion State Model

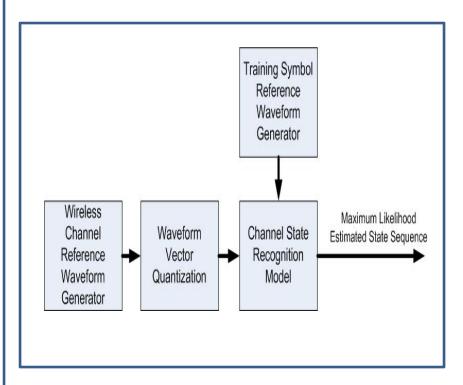

CSR Test System

CSR Test System


- Reference waveform generator
 - Simulink data, TX, channel, RX models
- Statistical quantizer
 - Amplitude histogram bin index
- CSR training RWG
- DSM FSMM embedded in CSR HMM
- Operational sequence decoding

CSR Test System

Reference Waveform Generator Output

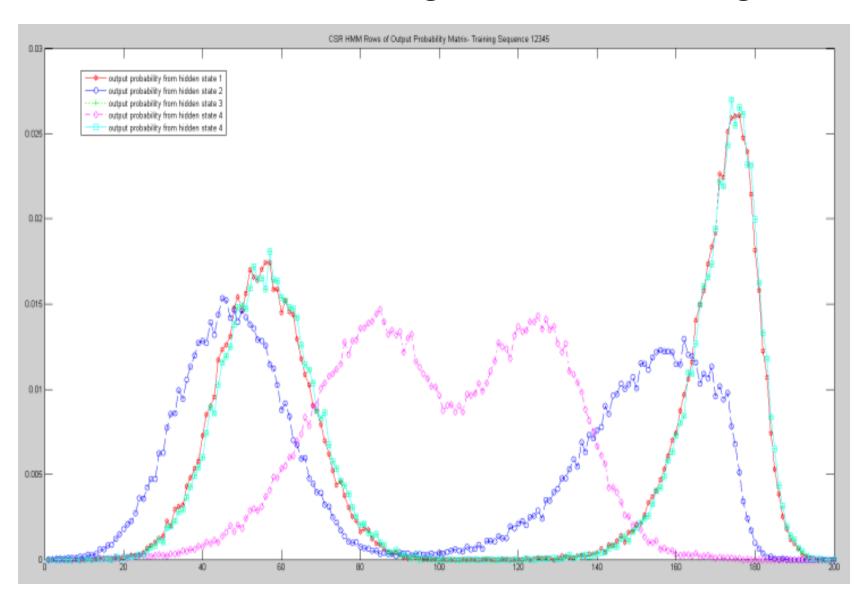


Waveform Quantizer Output

DSM Validation

Accuracy Validation Approach

- CSR Test System
 - Generate calibrated reference waveforms,
 - Apply training hidden state sequences to estimate HMM parameters,
 - Train 5 HMMs with varying combinations of hidden state sequences,
 - Apply a single calibrated operational reference waveform
 - Statistical quantization
 - Decode operational waveform hidden state sequences
- Post processing
 - Enumerate decoded states
 - Quantify statistical sensitivity
 - Quantify statistical specificity

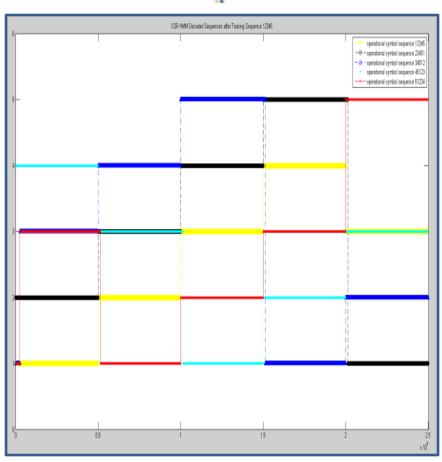

CSR Test System

Channel State Recognition HMM Training

- Viterbi parameter estimation
- Baum-Welch parameter estimation
 - Initial state probability
 - State transition probability
 - Output probabilities

0.999920006399	1.9998400127e-05	1.9998400127e-05	1.9998400127e-05	1.9998400127e-05
1.9998400127e-05	0.999920006399	1.9998400127e-05	1.9998400127e-05	1.9998400127e-05
1,9998400127e-05	1.9998400127e-05	0.999920006399	1.9998400127e-05	1.9998400127e-05
1,9998400127e-05	1.9998400127e-05	1.9998400127e-05	0.999920006399	1.9998400127e-05
1,9998400127e-05	1.9998400127e-05	1.9998400127e-05	1.9998400127e-05	0.999920006399

Channel State Recognition HMM Training

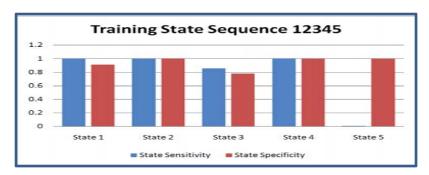

CSR Operational Sequence Decoding

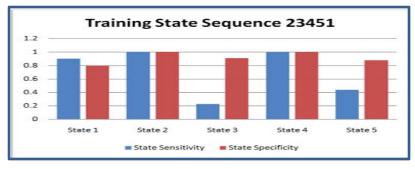
Hidden Sequence Decoding

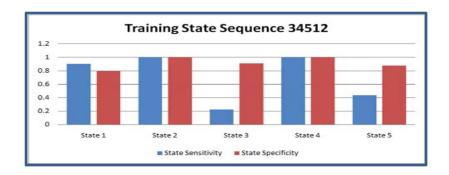
- Maximum likelihood
- Viterbi algorithm
- Response to operational sequences
 - 12345
 - 23451
 - 34521
 - 45123
 - 51234

$$\pi^* = \max_{\pi} P(x,\pi)$$

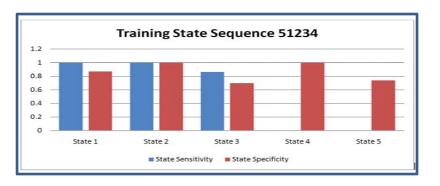
$$v_l(i) = e_l(x_i) \max_{k} (v_k(i) a_{kl})$$




DSM CSR Accuracy Results


Statistical Accuracy

- Decoded hidden state sequences
- Statistical accuracy results
 - Sensitivity
 - Specificity


$$Sensitivity = \frac{TP}{TP + FN} \qquad Specificity = \frac{TN}{TN + FP}$$

CSR Accuracy Conclusions

- None of the HMMs discriminated dual dispersive state 5 from the frequency selective state 3. More effective training required. Output probabilities are similar.
- All HMMs recognized the absence of dual dispersive state 5.
- All HMMs recognize the presence of nonfading state 1 with >85% accuracy and the absence of state 1 with > 80% accuracy.
- Two of the HMMs would recognize the presence of frequency selective state 3 with > 80% accuracy while all HMMs would recognize the absence of state 3 with > 70% accuracy.
- Accuracy improvements will be topic of future CSR research.

CSR Accuracy Conclusions

- If the HMMs were logically combined, states 1,2, and 4 could be recognized with 100% accuracy and state 3 would be recognized with > 90% accuracy. A subject for further CSR research.
- The results suggest that CSR is insensitive to waveform parameters such as modulation or symbol period. Topic for further CSR research.
- Convergence is delayed for some state transitions and will be a topic for further CSR research.
- State sensitivity and specificity performance are less than 100% and will be a topic for further CSR research.