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Abstract—Enhancing access to radio spectrum is a growing
need across the country that cognitive radio (CR) can address. CR
systems incorporate learning and decision making into wireless
and networking systems with the goal of improving performance
and interoperability. Optimizing radio and cognitive engine
parameters based on operating performance is a crucial require-
ment. This step is also a needed element within functional testing
and overall evaluation for validating overall systems and specific
algorithms. However, the realities of limited time, manpower,
and resources require efficient methodologies for performing
these tasks. While CR techniques continue to advance, functional
testing methodologies remain largely stagnant and rely on ad
hoc approaches relevant to a specific platform and application
space. Recent CR testing methods are briefly surveyed in this
paper. A generalized statistical framework that is independent
of radio platform and application theater is introduced that
enables a methodological process for configuration optimization
and functional testing of CR systems and components. The
process identifies a minimal number of experiments required to
achieve an understanding trends and interaction of configuration
elements. The need to calibrate transmit-and-receive gain settings
on a software-defined radio illustrates the use of response surface
methodology (RSM). The results indicate that as little as 15 data
points can develop a representative model of system performance.
The RSM analysis shown focuses on response model estimates,
statistical fit of the models, and graphical representation of output
responses.

I. INTRODUCTION

Cognitively inspired radio (CR) mates simple decision mak-
ing, learning algorithms and situational awareness with recon-
figurable wireless communications platforms. Goals include
enabling improved performance and long-term learning based
on past experiences. CR techniques are viewed as enablers to
enhanced access to radio spectrum as well as improving inter-
operability and military radio applications such as electronic
warfare. However, this wide diversity in CR applications has
led to a lack of consistency in testing methodologies.

Testing and evaluation are vital elements for the develop-
ment and validation of cognitive engine (CE) architectures.
Before a system can even be run through overall system tests,
operating ranges of individual configuration parameters of
the CE must be identified. However, testing is bounded by
realistic constraints on time and human resources. Analysts
cannot realistically test every possible configuration of system
parameters. They must also distill the data to a concise
form that decision makers can act on without losing the

understanding of the statistical variations inherent to wireless
systems. Current gaps in CR validation include: 1) lack of
an abstract framework that can be applied across varied
architectures and applications; 2) focus on physical (PHY)-
centric metrics with little emphasis on cognition metrics; 3)
lack of systematic methodologies for making the best use
of limited time and resources; and 4) precise metrics that
frame application specific measures within a context of human
decision making. Such a framework can provide a foundation
for the comparison of architecture and algorithms developed
within varying application spaces.

The identification of operating ranges of internal CE con-
figuration parameters is akin to multi-objective optimization.
This area has been well researched within CR [1]. Some
initial efforts to attack this issue from an empirical perspective
include design of experiments (DOE) approaches [2] that
utilize statistical methods. This paper builds upon statistical
empirical methods of parameter evaluation and system testing
to answer two key questions: 1) How does one identify initial
operating configurations for a CE; and 2) How does one define
a test plan that validates CR architectures?

Contributions of this paper include an abstract CR test-
ing framework that is independent of the specific hardware
platform and application space as well as an application
of RSM to CR testing. This systematic process provides a
missing formalism to assist in evaluating overall CR system
performance, calibration, and tuning of configuration param-
eters. This paper moves beyond factorial DOE methods to
implement Response Surface Methodology (RSM) on a USRP
software defined radio where most existing statistical works
have focused simulation and 802.11 platforms. The method is
utilized to identify hardware configuration parameters that are
often overlooked and selected by ad-hoc approaches.

This paper is organized as follows. Section II surveys
existing CR testing methodologies. Section III proposes an
abstract framework for testing and system parameter tuning
capable of extension to specific applications. Section IV fo-
cuses on applying RSM to a calibration of three SDR hardware
configuration factors: 1) transmitter gain; 2) receiver gain; and
3)transmit signal amplitude from the perspective of optimizing
three responses: 1)output power; 2)bit error rate (BER); and
3)packet error rate (PER). The results of the RMS analysis
are discussed included model development of each response,
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statistical fit of each model, and identification of a favorable
setting for the three input factors. Section V summarizes the
paper and identifies next steps.

II. REVIEW OF CR/SDR TESTING

This section reviews current literature about testing method-
ologies for CR, dynamic spectrum access (DSA) and white
space communications. The majority are typically founded
upon military radio frequency (RF) testing standards devel-
oped in the 1960s [3]. Table I summarizes the reviewed
methods. In general, any of these testing methods can be
abstractly viewed in terms of application of a load placed
upon a system with the corresponding response measured. The
entire system can be viewed as black box or individual system
elements upon which a load and corresponding response can
be measured.

While DSA systems do not always constitute CR, they are
often viewed synonymously. Given their popularity, the major-
ity of existing testing methodologies focus here. The Defense
Advanced Research Projects Agency (DARPA) next genera-
tion (XG) communications program led to the earliest mature
deployment of DSA technology. The XG radios utilized a
policy-based CE to enable nodes to operate in an environment
populated by primary users. Performance metrics included
temporal measures such as abandonment time and network
join time. Posherstnik et al. have proposed an extensible frame-
work for testing DSA policy-based reasoners [4]. The plan
focuses on RF aspects as well as network performance and
describes key procedural steps, needed configuration selection
and the system model.

Arlsan proposed SDR and CR testing that focuses on
waveform analysis, coding and modulation with suggested
metrics to include cyclostationarity, interference temperature,
and interference statistics [5]. A system model is presented
that places a signal analyzer in parallel with SDR components
and excited through a signal generator. Test equipment man-
ufacturers also propose similar strategies for testing CR and
SDR [6].

Government and independent consortia provide important
driving forces for testing and evaluation. Both the Federal
Communications Commission (FCC) and National Telecom-
munications and Information Administration (NTIA) have
active programs for testing and measurement for whitespace
devices (WSD). The FCC has published test plans and results
of preliminary WSDs [7]. The NTIA has proposed a test-bed
pilot program to evaluate DSA devices for sharing spectrum
in the land mobile radio 410-420 MHz federal band and 470-
512 MHz non-federal band. The test bed includes equipment
characterization, evaluation of capabilities, and a field opera-
tions evaluation [8]. The NTIA presents detailed procedures
for conducting a variety of RF tests, including presenting
probability of detection results. The Wireless Innovation Fo-
rum, also known as the SDR Forum, has a standing Test
and Measurement Task group which recommends additional
procedures for the evaluation of cognitive radio for DSA [9].
Metrics and test procedures are still in development phases.

Zhao et al. introduce metrics, utility functions and method-
ology for the performance evaluation of CR [10]. In addition
to the traditional physical layer metrics, the need for cognition-
centric metrics are discussed. The authors generally consider
an evaluation of CR at either the node or network level from
the perspective of one of four domains: cognitive functionality,
overall node performance, complexity, and technical maturity.
Cognitive metrics proposed include “Radio IQ”, while node-
level metrics include the traditional physical metrics such as
bit error rate (BER).

TABLE I
SUMMARY OF CR-SDR TESTING

Name Focus Metrics Ref.
DARPA XG DSA PHY [11]

Temporal
Posherstnik DSA Temporal [4]
Arslan RF testing PHY [5]
FCC TV-WSD % Detection [12]

PHY
NTIA Spectrum Sharing PHY [8]

Detection
Vacating

SDR Forum DSA not available [9]
Zhao Performance Evaluation Detection Rate [10]

PHY
Cognition

III. FRAMEWORK FOR TESTING AND EVALUATION OF CR

This section introduces a concept framework for evaluating
CR. A basic abstraction of testing consists of an application
of a defined load upon a system and measuring the response
output. A load is viewed as stress placed on the system,
such as sending a data file across a network or wireless link.
A supplemental view of load may also include an external
influence such as a noise spike at a specific frequency, or the
presence of a primary user.

A general flowchart for a testing strategy for CR is shown
in Figure 1. This framework provides a systematic approach
and enables customization to the specific platform, cognitive
architecture and application space. Testing and evaluation of a
CR system must start with a frame of reference for desired
functionality. A concept of operations (CONOPS) defines
the overall mission objectives and purpose of the system.
These definitions drive the specific functional requirements
needed to achieve the objective. These requirements then
drive applications-specific performance metrics. Defined test
cases create a controlled setting in which implementation of
the CONOPS is verified against each functional requirement
utilizing the performance metrics. The framework builds upon
two philosophies from computer and software performance
testing known as black box and white box testing [13]. The
former views the internal components of the system, in this
case the CE or radio platform, as one element, and the overall
response to a test load is measured. With the latter, internal
structural elements of the system are analyzed individually
along with interactions. The goal of white box testing is to
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Fig. 1. Testing Flowchart

tune the internal parameters for desired performance prior to
overall black box system testing.

Performance metrics, as seen from Table I, vary depending
on the functional requirements. In general, metrics are a
system response to a load and can be viewed in two categories:
Higher is Better (HIB) and Lower is Better (LIB). This distinc-
tion has bearing towards visualization methods for presenting
overall results. The Kiviat diagrams technique alternates HIB
and LIB metrics in a circular plot, also known as a spider
plot [14]. This enables visual comparisons between system
configurations and identification of balanced operation.

The first step in the white box testing is to identify the
internal configuration parameters that have the potential to
affect the system response. One can manipulate one config-
uration parameter at a time to elicit the single variable effects;
however, this does not take into account interaction effects
incurred by changing multiple variables at the same time.

With performance metrics defined for the specified applica-
tion, the next step is tuning the internal elements of the system
to ensure that overall system testing occurs from a sound
foundation. This white box-level testing may be required for
calibrating radio knobs and setting specific CE parameters
such as case-based reasoning settings or genetic algorithm

settings. The concept of load application and correspond-
ing response is implemented across defined test settings of
these internal parameters. The first goal is to identify which
parameters induce the most effect on the response and to
identify interaction effects as multiple settings are changed
simultaneously. Depending on the complexity of the system,
the number of parameters could be high. An initial screening
can help minimize the number of tests needed in later steps by
identifying effect parameters that are statistically insignificant
to the response outcome. DOE is a technique used across the
sciences that is suggested at this stage to identify statistically
significant effect parameters. DOE has been utilized as a
method to dynamically configure a CR [2] and identify routing
and protocol factors that impact the performance of ad hoc
networks [15],[16]. In this analysis all effect parameters had
statistical significance to the output response either as a main
factor or as a part of a two-way factor, therefore this paper
focuses more on the RSM analysis.

A. 2k Factorial DOE

One can consider hardware and CE configuration param-
eters to consist of a variable value between a minimum and
maximum range, designated as −1 and +1 and 0 for a nominal
midpoint value. Given k factors it is unrealistic to be able
to test every combination of k factors across each factor’s
range. The 2k factorial DOE methodology tests the boundary
settings of the factors as an initial screening to identify which
parameters impact system performance, gauge impact magni-
tude and identify interactions between parameters. Figure 2
illustrates three parameters and boundary points consisting of
the corners of a cube. 8 points are required in a three factor
system. Face and center points, indicated in gray, are used in
central composite design (CCD) RSM as discussed later.

The theory behind DOE is founded in Analysis of Variance
(ANOVA) and is detailed in [17]. Fundamentally, each main
factor setting, paired combinations, and the joint combination
of all factors are analyzed to quantitatively determine the
effect that each factor or combination of factors has on
the output. This enables identification of the most important
parameter with regards to affecting the output as well as
identifies interaction effects between parameters that would
be impossible to uncover when varying only one factor at a
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Fig. 2. Data points for 23 Factorial and Response Surface Method
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time. An ANOVA procedure seeks to partition the variation
in the output response into components that tie to the sources
of the variation. The procedure breaks the total variation in
the output response into the part due to random error and
the part due to changes in the each of the individual factors
as well as the combinations of factors. A linear model of the
system response as a function of the input factors is developed
through the method of least squares and linear regression. This
model will be expanded to incorporate curvature in the RSM
procedure.

B. RSM

The RSM builds upon the initial factorial DOE screening by
adding test configurations beyond the factorial design which
contribute to the development of a second order quadratic
model capable of identifying curvature in the response. The
quadratic approximation of the response for a three-effect
parameter system is shown in Equation (1). Y is the output
response under study, Xi is input factor i, β0 is the intercept,
βi is the coefficient for Xi, and ε is the statistical error.
While this model is still only an approximation, it provides
a foundation for the pursuit of minimization of LIB metrics
and maximization of HIB metrics. A basic summary of the
theory behind solving for the coefficients is presented here.
For more details refer to [18].

Y =β0 + β1X1 + β2X2 + β3X3 + β11X1
2 + β12X1X2

+ β22X2
2 + β13X1X3 + β23X2X3 + β33X

2
3 + ε

(1)

Equation (1) is a multiple-regression model and can be rewrit-
ten into the matrix form shown in Equation (2), where y is
an n × 1 vector of the responses where n is the number of
responses, X is n × k matrix of the factors where k is the
number of factors, and β is a k × 1 vector of the regression
coefficients. A least squares solution can be identified by
Equation (3). An estimation of the regression equation is
Equation (4) which can be written in a final form of the
estimation as shown in Equation (5).

y = Xβ (2)

β̂ =
(
X′X

)−1 y (3)

ŷ = Xβ̂ (4)

ŷi = β̂0 +

k∑
j=1

β̂jxij i = 1, 2...n (5)

Section IV-B identifies the coefficients for models of the three
responses under study based upon analysis of the experimental
results. Typically, a three dimensional graph of the response
surface is combined with analytical results to draw conclu-
sions.

The experimental design, or the choice of what input
configurations to implement, has important bearing on the
effectiveness of fitting the response surface. Several methods
exist for how to approach the experimental design. This
paper utilizes the Box-Wilson CCD approach. Other popular

techniques include the Box-Behnken design that collects data
points along the midpoints of the cube edges.

C. Drawbacks / Limitations

These techniques are based on statistical models conceived
from empirical data. Given the stochastic nature of wire-
less communications, all collected data contain a level of
uncertainty. Models generated from the RSM, while better
approximations than first-order DOE representations, are still
only estimates. Furthermore, the limited data points utilized
in the 2k factorial and the RSM, regardless of the particular
method used (CCD versus Box-Behnken), may fail to capture
key configurations that affect overall system response. These
methods suffer from the potential of uncertainty in collected
data combined with limitations in the RSM. A common
criticism of the proposed methods is that they do not identify
true optimality; rather, they point the user towards the potential
ranges for improved performance. The black box methodology
does not compare the CE decisions against a theoretical
optimum. Rather, it serves to provide a performance snapshot
essential to draw conclusions about system verification and
evaluation.

IV. CALIBRATION OF RECEIVER/TRANSMIT GAIN

A hybrid case-based reasoner-genetic algorithm CE de-
signed for a railway application is in implementation on a
universal serial radio peripheral (USRP) SDR. Performance
measures include BER and Packet Error Rate (PER).

Transmit power amplitude is a reconfigurable parameter that
the CE may modify during operation. Initial testing showed
that two other initialization elements on the USRP, transmitter
(Tx) gain and receiver (Rx) gain, impacted the useful range of
available output power measured at minimum and maximum
settings of the amplitude. Some combinations of Rx/Tx gains
showed limited change in output power regardless of whether
the amplitude was set to the minimum or maximum setting.
Determining both gain settings represents a white box testing
calibration step. Proper operation of the CE requires this cal-
ibration prior to performing overall black box system testing.
The goal is to identify a general range for Rx and Tx gain
settings that provide adequate change in power output across
the available amplitude settings without negatively affecting
performance metrics such as the BER and PER.

A. Experimental Procedure

The empirical procedure and associated results illustrate
the response surface screen, development of polynomial re-
sponse model, and optimization against metrics portion of the
Flowchart in Figure 1. A Tx/Rx USRP1 link utilizing the
RFX900 daughter card transmitting at 920 MHz was set up at
a fixed distance of 35 feet. The benchmark.ty script enabled
transmission of a photograph in bitmap format modulated
with Gaussian minimum shift keying (GMSK). One hundred
packets, consisting of a 1,500 bytes each, were sent across the
link during each test creating a total 1.2e6 bit transmission. A
spectrum analyzer recorded average output power from the Tx
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during transmission, while a comparison between the received
bits and sent bits provided an estimation of the BER and PER.
In some cases, no link could be established, and the BER was
listed as 0.5 while the PER was listed as 1.

A 23 CCD RSM design was followed where the three
parameters under consideration were Tx gain, Rx gain, and
the USRP transmit amplitude. Table II lists the response factor,
the associated coded variable, and the min, max and nominal
values. The upper and lower bounds of the effect parameters
are: 1) Rx gain(dB): [0,50]; 2) Tx gain(dB): [0,25]; and 3) Am-
plitude(V): [0.05, 0.99]. These ranges are represented in the
DOE methodology as -1,+1. Nominal values, represented as 0,
were 25 for Rx gain, 12.5 for Tx gain, and 0.5 for Amplitude.
Table III shows the configuration settings for each test run.
For example, point (-1,-1,-1) represents the configuration (Rx
gain=0, Tx gain=0, Amplitude=0.05) while the point (0,0,0)
represents (RxGain=25, TxGain=12.5, Amplitude=0.5). The
listed settings are configurations that are entered into GNU
radio, the software controller for the USRP, at the beginning
of transmission.

BER, PER and Output Power were recorded for each test.
Two replicates of the CCD design shown in Table III were
implemented. Statistical analysis was performed using the
model fitting capability of SAS JMP version 9.0. An effect
leverage standard least squares fit was followed. Models for
each response output matching the format of Equation (1) are
reported as well as a measure of how well the model fits the
collected data known as R2. R2 estimates how much of the
variation around the mean is caused by the model rather than
random error. A perfect fit would have an R2 value of 1.

TABLE II
MAPPING FACTORS TO CODED VARIABLES

Factor Code -1 0 1
Tx Gain(dB) X1 0 12.5 25
Rx Gain(dB) X2 0 25 50
Tx Amplitude(V) X3 0.05 0.5 0.99

TABLE III
CCD RESPONSE SURFACE DESIGN

Test TxGain RxGain Transmit Power
1 1 -1 -1
2 0 0 0
3 -1 -1 -1
4 -1 1 1
5 -1 1 -1
6 0 0 1
7 1 1 1
8 1 0 0
9 0 -1 0

10 0 1 0
11 0 0 -1
12 1 -1 1
13 -1 0 0
14 1 1 -1
15 -1 -1 1

B. Results

The results presented here focus on the RSM analysis of this
system, specifically response model estimates, statistical fit of
the models, and graphical representation of output responses.

Table IV lists each output response and the identified
coefficients that define a prediction model for the response
as a function of the input factors. These coefficients map to
Equation (1). Also listed is the R2 value of each response
model that corresponds to a measure of statistical fit of the
RSM model. In general, R2 measures the percentage of the
variation of the response around the mean identified from the
regression analysis. Graphically this is represented by Figure 3
which illustrates the actual values of PER on the y-axis and the
estimated values of PER on the x-axis. The dotted horizontal
line is the mean, and the solid diagonal line represents a perfect
fit where actual values equal predicted values. The vertical
distance from the data point to the perfect fit line is called the
residual and is used in the calculation of R2. Refer to [18]
for more details on the mathematical theory behind the model
fitting and statistical analysis. The JMP analysis calculated
that the models for BER and PER achieved an R2 value of
0.82522 and 0.844152 respectively. The model prediction for
output power obtained an R2 value of 0.930937.

A benefit of RSM is the capability to graph the response
output in three dimensions enabling the analyst to visualize
how the output response changes across varied settings of
effect factors as shown in Figure 4. Only two effect factors at a
time can be graphed for a single response while the other effect
factors are kept constant. In this case, the effect parameter of
transmit amplitude is kept constant, while TxGain and RxGain
are varied. A surface contour, similar to a topographic map,
can be generated to provide a two dimensional view of the
response profile. This is equivalent to viewing the response
surface from above.

The contour profile of this response surface has been placed
underneath the surface to assist in identifying where the
minimum ranges are. If one desires a target for a response

Fig. 3. PER Actual by Predicted Plot
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TABLE IV
RSM MODEL COEFFICIENTS AND R2 MEASURE OF FIT

Response β0 β1 β2 β3 β11 β12 β22 β13 β23 β33 R2

BER -0.08301 0.645543 -0.03084 0.007735 0.106261 0.132056 0.123761 0.081327 0.210156 0.108761 0.825222
PER -0.22778 -0.008 -0.1105 -0.0015 0.287222 0.173125 0.304722 -0.33125 0.191875 0.289722 0.844152

Output Power -20.8689 2.6211.02 11.02 8.335 -2.38889 3.24375 -6.53889 3.4125 -3.68125 -7.11389 0.930937

output rather than the absolute minimum, then contour profiles
illustrate how there exist multiple sets of solutions to meet the
desired target.

Contour profiling is a useful tool when attempting to overlay
several response outputs at at time. By overlaying multiple
profile’s contour responses on top of another, one can identify
desired regions based on combinations of output responses.
Intersections of desired contours can show regions where
several responses meet desired values.

Fig. 4. PER Response Surface

V. SUMMARY AND NEXT STEPS

This paper presented an abstract framework for approaching
the testing of CR systems. This framework included a sys-
tematic approach to setting internal configuration parameters
based on statistical methods as well as an overall system
testing method. These methods support the realistic constraints
placed upon testing and validation that often include limited
time, manpower, and the need to minimize costs. An illustra-
tive example of parameter tuning for an SDR utilized in a CE
was presented that utilized 15 data points. Next steps include
expanding the application of this framework to more internal
CE configuration parameters and performing full system level
tests.
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