
Low-density Parity-check Decoding

on the

Sandbridge Sandblaster SDR Platform

By

Murugappan Senthilvelan *

Meng Yu *

Daniel Iancu *

Mihai Sima ‡

Michael J. Schulte †

* Optimum Semiconductor Technologies Inc.
‡ University of Victoria

†University of Wisconsin – Madison

2

Outline

Research overview and contributions

Background

• LDPC decoding

• CORDIC algorithm

CORDIC algorithm design considerations

CORDIC ISA extensions & hardware estimates

Evaluation platform and methodology

Results

• Computational performance

• Arithmetic accuracy

• Power consumption estimates

Summary

3

Research Overview

Low-density Parity-check (LDPC) Forward Error
Correction (FEC) codes exhibit excellent error
correction capability, close to Shannon capacity

LDPC codes adopted by state-of-art wireless protocols
(WiMAX, LTE) for improving spectral efficiency

Among proposed LDPC decoding algorithms, Belief
Propagation (BP) algorithm is a good approximation to
optimal ideal decoder

BP algorithm requires compute-intensive hyperbolic
trigonometric functions

32% of computation time spent on computing
hyperbolic functions

4

Research Overview

COordinate Rotation DIgital Computer (CORDIC)
algorithm provides convenient ways to compute
hyperbolic functions

However, sequential CORDIC algorithm inefficient
for a full-software implementation

Instruction Set Architecture (ISA) extensions to
support CORDIC algorithm proposed

Proposed ISA extensions are evaluated on the
Sandbridge Sandblaster SB3000 SDR platform

5

Research Contributions

Addresses the high computational complexity of the

LDPC BP decoding algorithm on SDR platforms

Performs analysis to determine the set of CORDIC ISA

extensions to evaluate hyperbolic trigonometric

functions

Provides estimates on computation performance,

arithmetic accuracy, and power consumption when

using CORDIC ISA extensions

Provides hardware estimates for CORDIC functional

unit that implements the CORDIC ISA extensions

6

Summary of Results

Demonstrates computational speed-ups of 1.2x on
the LDPC BP decoding algorithm when using
CORDIC ISA extensions

CORDIC implementations have better numerical
accuracy compared to baseline implementation

Combinatorial area of the CORDIC functional unit
similar to the Vector Multiply-Accumulate unit on
the SB3000 platform

5% to 15% power savings obtained depending on
the type of power saving methodology used

7

Low Density Parity Check Decoding

data nodes

parity check nodesf0

c0 c1 c2 c3 c4 c5 c6 c7

f1 f2 f3

Best error correcting codes, close to Shannon theoretical limits

Decoded iteratively using message passing algorithms

ccf
m]0[m 

  
 2]i[mtanhtanh2]i[m

cf

1

fc

 ]1i[mm]i[m
fcccf

bitssoftoutput

Hyperbolic

Tangents

16%

14%

47%

18%
2% 3%

decoder initialization

compute variable node message

compute hyperbolic tangent

compute check node message

compute hyperbolic arctangent

compute hard bits

8

The CORDIC Algorithm

Iterative sequential algorithm to perform vector rotations in different co-

ordinate systems

Provides convenient ways to move between Cartesian and Polar Coordinate

systems

This freedom provides natural ways to perform

Vector rotations

Multiplication and division

A wide variety of elementary functions

sin(θ), cos(θ), tan(θ), tan-1(θ)

sinh(θ), cosh(θ), tanh(θ), tanh-1(θ)

exp(α), ln(α), sqrt(α)

But…

• CORDIC algorithm slow when implemented completely in software

• Hence, we investigate processor support for the CORDIC algorithm

9

Background: The CORDIC Algorithm

45°

Vector (x = 1,y = 1)

Initial angle = 45°

Rotate by z = -30°

Angle accumulator z = -30° Micro-rotation angle =

New angle accumulator =

-45°

15°

26.6°

-11.6°

15°

26.6°

-11.6° -14°

2.5°

14°

initial vector

end result

X

Y

CORDIC iteration 123







1

0

]1[]1[]0[
n

i

iin  

Basic idea is to rotate vectors by splitting rotation angle into a

sequence of micro rotations by known elementary angles

In circular co-ordinate

system elementary angles

computed using formula:

θ[i] = tan-1(2-i)

10

Background: The CORDIC Algorithm

Uses simple lookup, shift, and add operations

where, m = 1 and α[i] = tan-1(2-i) for circular CORDIC

m = 0 and α[i] = 2-i for linear CORDIC

m = -1 and α[i] = tanh-1(2-i) for hyperbolic CORDIC

Scale factor compensation performed by two constant multiplications

Generalized CORDIC equations for vector defined by (x,y) with an angle z

       

       
       iiiziz

ixiiyiy

iyimixix

i

i

















1

21

21

Direction vector

always 1 or -1

Shift right

operation

Table lookup

operation

Four Operand

Operation

11

Background: The CORDIC Algorithm

Two modes of operation

Rotation mode

Angle accumulator is initialized with rotation angle.

Direction of rotation σ[i] chosen to decrease residual

angle magnitude

Vectoring mode

Rotates input vector to align resulting vector with x axis

such that y approaches 0

 
 










otherwise

izif
i

1

01


 
 

otherwise

iyif
i

1

01






vector rotation

operation

Cartesian to

polar conversion

12

CORDIC Algorithm Design Considerations

Convergence

Maximum angle that can be handled by CORDIC algorithm is sum of all

micro-rotation angles

Convergence angle defined by basic CORDIC algorithm for hyperbolic

CORDIC approach is 64˚

For good decoding performance, LDPC decoding requires larger angles

(± 180 ˚), there are two options

Use mathematical identities

Perform negative CORDIC iterations

Coordinate

System

Basic CORDIC algorithm Including two extra iterations

Iteration

sequence

Convergence

range

Scale

factor

Iteration

sequence

Convergence

range

Scale

factor

Circular 0,1,2,..,15 ± 99.88˚ 1.64 -2,-1,0,..,13 ± 239.00˚ 15.18

Linear 1,2,3,..,16 ± 57.29˚ 1.00 -1,0,1,..,14 ±229.18˚ 1.00

Hyperbolic 1,2,3,4,4,..,14 ±64.06˚ 0.83 -1,0,1,..,13 ±197.38˚ 0.26

Simple for circular

Complicated for hyperbolic

Large or Small scale

factors – Loss of Precision

13

CORDIC Algorithm Design Considerations

Operand Representation Format

Coordinates x and y, and iteration counter

Represent using 2’s complement numbers

Angle Representation

2’s complement number in radian format

Commonly used representation for angles

No wrap-around property about Π radians

DSP algorithms typically use radian format, so CORDIC angles

represented using radian format

Pre-computed micro-rotation angles with extra precision stored in lookup

table to match the input fixed-point data format

14

CORDIC Algorithm Design Considerations

Precision and Computational Accuracy

‘n’ CORDIC iterations needed for ‘n’ bits of precision

Wireless algorithms typically use 16-bit data.

16 CORDIC iterations needed

At least log2(n) additional fractional bits needed to reduce

impact of rounding errors

With 16-bit data, 20-bit internal CORDIC precision

15

CORDIC Algorithm Design Considerations

CORDIC Iterations per Instruction

Long latency DSP pipelines can tolerate multiple CORDIC iterations per

instruction

All 16 CORDIC iterations cannot fit in one instruction

Four inputs, four outputs

Not a typical DSP instruction (one to three inputs, one output)

Four inputs can be packed in two registers (feasible)

Four outputs require two register write backs (not feasible with one

register write port)

Two design choices

Use implicitly addressable temporary storage registers

(Full-CORDIC approach)

Split the multiple data paths across multiple instructions

(Semi-CORDIC approach)

16

z[i]

Auxiliary register

Source

register

Destination

register

z[i]

i

i

20

5

CORDIC Functional Unit

Full–CORDIC Approach

Augment the CORDIC unit with auxiliary registers for implicit

source and destination operands

Four different instructions defined for the full-CORDIC approach

Configure Set CORDIC

Configure Read CORDIC

CORDIC Rotate

CORDIC Vector

But …

x[i]

Auxiliary registerSource

register

Destination

register

z[i]

i

y[i]

20

20

20

5

x[i+1]

y[i+1]

CORDIC Functional Unit

Auxiliary register hardware

overhead substantial

Additional state needs to be

saved and restored while

interrupt processing

17

x(i+1) y(i+1) z(i+1)

x(i) y(i)
i

Add/

Subtract

Adder

Shift

Left / Right

XOR

Bank

AND

Bank

Shift

Left / Right

XOR

Bank

Adder

sign sign

MUX

Lookup

Table

Shift

Right

Adder

XOR

Bank

z(i)
Rotate/

Vector
of

Int bits

Blank

Negate

i+1

+1

Semi–CORDIC Approach

Splits execution of four data paths into two instructions

Four different instructions defined for the semi-CORDIC

approach
XY CORDIC Rotation

ZI CORDIC Rotation

XY CORDIC Vectoring

ZI CORDIC Vectoring

Fits in traditional DSP

architecture

No extra state added

But…

Almost doubles the

number of CORDIC

instructions

write-back

x and y
write-back

z and i

18

Evaluation Platform – Sandbridge SB3000

Designed for efficient

software execution of wireless

protocol physical layers,

protocol stacks

Four multithreaded SIMD

VLIW DSP Cores, ARM

applications processor

High-speed RF interfaces and

standard peripheral interfaces

Multiple wireless protocols

implemented; WiMAX,

CDMA, WLAN, GSM/GPRS

State-of-the-art SDR

19

Evaluation Platform – Sandblaster DSP

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

I-Cache

64KB

64B Lines

4W (2-Active)

I-Cache

64KB

64B Lines

4W (2-Active)

I-Cache

64KB

64B Lines

4W (2-Active)

I-Cache

64KB

64B Lines

4W (2-Active)

Bus/Memory

Interface

Program Flow

Control Unit

Integer/Load-Store

Unit

L2 Memory and External

Interface

Vector PHAsScalar PHAs

SIMD Vector Unit

8 threads per processor core, 4 such cores (32 threads total)

Vector processing unit performs four–way SIMD operations on 16-

bit, 32-bit or 40-bit data types

Operations performed in parallel using compound instructions

Threads issue one instruction per cycle – 8 threads total

Vector instruction pipeline consists of 4 execute stages

Inst

Dec

RF

Read
Agen XFer

Int

Ext

Mem

0

Mem

1

Mem

2
WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2
XFer WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2

Exec

3
XFer WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2

Exec

3
XFer WB

Inst

Dec

VRF

Read

Exec

1

Exec

2

Exec

3

Exec

4
XFer

VRF

WB

Ld/St

ALU

I_Mul

Scalar

IPHA

V_Mul

Inst

Dec

VRF

Read

Exec

1

Exec

2

Exec

3

Exec

4
XFer

VRF

WB

Vector

IPHA

Integer

pipeline

Vector

pipeline

Load/

Store

pipeline

Inst

Dec

RF

Read
Agen XFer

Int

Ext

Mem

0

Mem

1

Mem

2
WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2
XFer WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2

Exec

3
XFer WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2

Exec

3
XFer WB

Inst

Dec

VRF

Read

Exec

1

Exec

2

Exec

3

Exec

4
XFer

VRF

WB

Ld/St

ALU

I_Mul

Scalar

IPHA

V_Mul

Inst

Dec

VRF

Read

Exec

1

Exec

2

Exec

3

Exec

4
XFer

VRF

WB

Vector

IPHA

Integer

pipeline

Vector

pipeline

Load/

Store

pipeline

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Area Latency Power

Full-CORDIC

Semi-CORDIC

SB3000 SIMD-Vector-

Multiply-Accumulate

20

Hardware Synthesis Estimates

Synthesis performed using Synopsys Design Compiler and TSMC’s 65nm

CMOS standard cell library.

All implementations are 4-way SIMD, fit in four execute stages of SB3000

and contain pipeline registers

30% more area 70% more power due to

auxiliary registers

Latencies of CORDIC units are

similar to SB3000 VMAC

Scale factor used to model

power of CORDIC instructions

21

CORDIC ISA Extensions in Sandblaster Tool Chain

CORDIC instructions added to the SaDL Python files

Sandblaster tools retargeted using new architecture definitions

CORDIC instruction used in wireless algorithms using

intrinsic calls

Compiler inserts assembly instructions, generates supporting

loads/stores, optimizes and schedules the instructions

x86 functions that emulate the functionality of ISA extensions

added to simulator to simulate application functionality

short op1[12], op2[12];

for(i=0;i<(CORDIC_PRECISION/CORDIC_ITR_PER_INST);i++){

 __sb_q_simd_vector_cordic_xy_rotation(op1, op1, op2);

 __sb_q_simd_vector_cordic_zi_rotation(op2, op2);

}

22

Computational Performance & Arithmetic Error

All memory accesses assumed to be single cycle

Wireless algorithms are all single-threaded implementations

Wireless algorithms simulated for functional correctness and

dynamic compound instruction counts measured

Arithmetic error expressed as Normalized Root Mean Square

Error when compared against ideal floating-point

implementation






















tionimplementanewof

countninstructiocompoundDynamic

tionimplementabaselineCORDICnon

ofcountninstructiocompoundDynamic

SpeedupnalComputatio

 
 

100x
Value

ValueValue
ErrorArithmetic

2
float

2
float_to_fixedfloat


 



23

Power Estimation

Analytical methodology using instruction profiling and power

consumption measurements from real hardware

Sandblaster DSP instruction set divided into instruction sub-classes

based on computational complexity

Power for each instruction sub-class measured on hardware using

test programs with infinite loops of instructions from same sub-class

Power of a VLIW compound instruction modeled as

Pbase + Pinst_pipeline1+ Pinst_pipeline2+ Pinst_pipeline3

Pbase is power of NOP instruction – does not include power of

instruction pipeline

Pinst_pipeline can be computed by subtracting Pbase from power of

compound instruction packet with one instruction

24

Power Estimation

Wireless algorithms profiled on the simulator to measure number of
instructions in each instruction sub-class

Divide by total dynamic compound instruction count to compute fraction of
computation time Tfrac utilized by instruction sub-class

Total instruction pipeline power = Σ Tfrac[i] * Pinst_pipeline[i]

To account for capacitive loading, routing, and leakage due to CORDIC
unit, additional 15% of instruction pipeline power added

Total power = Total instruction pipeline power + Pbase

When comparing two implementations, total dynamic compound
instruction count picked from longer running implementation

For shorter running implementation, three options

Always stay ON (base power consumed, Most power)

Clock gate core (leakage power consumed, Nominal power)

Turn OFF core (zero power consumed, Least power)

Verification on real FIR filter yields error within 10%

16%

14%

47%

18%
3%2%

decoder initialization

compute variable node message

compute hyperbolic tangent

compute check node message

compute hyperbolic arctangent

compute hard bits

25

Baseline Implementation

LDPC decoder used in evaluation is from Mobile WiMAX IEEE 802.16e

(block size =2304 bits, half-rate coding)

Hyperbolic functions computed using polynomial approximations or table

lookup operations

To meet numerical accuracy table lookup used 8 KB and 32 KB table sizes

32% of computation time spent in evaluation of hyperbolic CORDIC

functions

26

Computational Performance

Significant speed-ups observed on elementary operations - hyperbolic

tangent and arctangent

Speed-ups of 1.27x and 1.21x when using Full-CORDIC and Semi-CORDIC

approaches

Speed-up on elementary operations does not translate to LDPC decoder

because they constitute only 32% of computation time

If the repetitive patterns in WiMAX LDPC decoder used to improve

memory performance, higher speed-ups when using CORDIC instructions

0.00

1.00

2.00

3.00

4.00

Four Hyperbolic
Tangents

Four Hyperbolic
Arctangents

LDPC Decoding
using BP
Algorithm

S
p

e
e
d

-u
p

Non-CORDIC Baseline
Implementation

Full-CORDIC Approach

Semi-CORDIC Approach

27

Arithmetic Error

Non-CORDIC Baseline

Implementation

CORDIC

Implementations

2.08% 0.05%

Both CORDIC implementations demonstrated similar

computational accuracy

CORDIC implementations performed better than the baseline

non-CORDIC baseline implementation when comparing the

NRMS arithmetic error

28

Power Consumption Estimates

Results for semi-CORDIC approach shown, similar results observed for

full-CORDIC approach

CORDIC approaches perform slightly better even without any power saving

technique

With power saving techniques an average of 5% savings in nominal power

mode, 15% savings in least power mode

0.00%

4.00%

8.00%

12.00%

16.00%

20.00%

Full-CORDIC Semi-CORDIC

Most-Power Mode

Nominal-Power Mode

Least-Power Mode

29

Summary

When performing LDPC decoding, CORDIC augmented Sandblaster

implementations exhibits

• 1.2x speedup over non-CORDIC baseline implementation

• Provides better arithmetic accuracy

• 5% to 15% reduced power consumption

• Low memory overhead

Further benefits can be observed if repetitive LDPC decoder patterns can

be exploited

CORDIC ISA extensions presented provide significant performance

benefits with reasonable hardware overhead

Other variations of CORDIC algorithm can provide further improvements

Techniques presented in this research applicable to other high-

performance DSP systems

Thank You !

Questions ?

Backup slides

32

Previous Research – SDR Architectures

SDR architectures in existence / proposed

Sandbridge SandBlaster SB3000

NXP Embedded Vector processor

European Research Consortium – Flexible air interface
baseband processor

Infineon X-Gold SDR 20

Icera Livanto

University of Michigan – SODA, Ardberg, AnySP

(common feature: SIMD architecture, Applications Processor)

Other architectures for Signal Processing and Multimedia

Non-customizable Static ISA – TigerSharc, TI TMS320C6x,

Customizable Static ISA –ARC 700, Tensilica Xtensa

Customizable Dynamic ISA – Stretch S6000, REMARC,
Piperench, MOLEN

33

Evaluation Platform – Sandblaster DSP

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

Data Memory

64KB

8-Banks

I-Cache

64KB

64B Lines

4W (2-Active)

I-Cache

64KB

64B Lines

4W (2-Active)

I-Cache

64KB

64B Lines

4W (2-Active)

I-Cache

64KB

64B Lines

4W (2-Active)

Bus/Memory

Interface

Program Flow

Control Unit

Integer/Load-Store

Unit

L2 Memory and External

Interface

Vector PHAsScalar PHAs

SIMD Vector Unit

8 threads per processor core, 4 such cores (32 threads total)

Operations performed in parallel using compound instructions

Vector processing unit performs four–way SIMD operations on 16-

bit, 32-bit or 40-bit data types

High speed 64-bit data busses allow loading four 16-bit data

into the vector registers

34

Evaluation Platform - Sandblaster DSP

Pipeline length – 8 stages for most instructions

Threads issue one instruction per cycle – 8 threads total

No data hazards in pipeline, so no dependency checking and

forwarding hardware.

Vector instruction pipeline consists of 4 execute stages.

Inst

Dec

RF

Read
Agen XFer

Int

Ext

Mem

0

Mem

1

Mem

2
WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2
XFer WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2

Exec

3
XFer WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2

Exec

3
XFer WB

Inst

Dec

VRF

Read

Exec

1

Exec

2

Exec

3

Exec

4
XFer

VRF

WB

Ld/St

ALU

I_Mul

Scalar

IPHA

V_Mul

Inst

Dec

VRF

Read

Exec

1

Exec

2

Exec

3

Exec

4
XFer

VRF

WB

Vector

IPHA

Integer

pipeline

Vector

pipeline

Load/

Store

pipeline

Inst

Dec

RF

Read
Agen XFer

Int

Ext

Mem

0

Mem

1

Mem

2
WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2
XFer WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2

Exec

3
XFer WB

Inst

Dec
Wait

RF

Read

Exec

1

Exec

2

Exec

3
XFer WB

Inst

Dec

VRF

Read

Exec

1

Exec

2

Exec

3

Exec

4
XFer

VRF

WB

Ld/St

ALU

I_Mul

Scalar

IPHA

V_Mul

Inst

Dec

VRF

Read

Exec

1

Exec

2

Exec

3

Exec

4
XFer

VRF

WB

Vector

IPHA

Integer

pipeline

Vector

pipeline

Load/

Store

pipeline

35

The Sandblaster SDR

Multithreaded SIMD processor executing compound instructions

optimized for handset radio applications

Eight concurrent threads supported on each processor core – Token

Triggered Threading

Each thread executes an instruction simultaneously

Only one thread may issue instruction on cycle boundary

Token passed between threads indicates next issuing thread

Instructions complete in 8 DSP cycles (1 thread cycle) before next

instruction issued, hence all true data dependencies eliminated

4 such processor cores (total of 32 threads) and 1 ARM processor on the

SB3011

T0 T3 T5T2 T1 T6 T4 T7T0 T3 T5T2 T1 T6 T4 T7

36

Evaluation Platform – Sandblaster DSP

Compound instruction implements inner loop of a vector sum-of-

squares computation

4-way SIMD vector operations make use of data level parallelism

Compound instruction packets make use of instruction level

parallelism

Long latency vector-multiply-reduce instruction

Latency hidden by multithreading

L0: lvu %vr0, %r3, 8

|| vmulreds %ac0, %vr0, %vr0, %ac0

|| loop %lc0, L0

37

Evaluation Platform - Sandblaster Tool chain

Sandbridge architecture

Description Language (SaDL)-

collection of Python files that

abstracts architecture from tools

Compiler supports sophisticated

loop optimizations, memory

disambiguation, and automatic

vectorization in addition to standard

scalar optimizations

SaDL

SandBlaster

Compiler

Binary

Translator
Source

Code

Binary

File

x86

asm



Dynamic

Simulator

Compiler packs multiple instructions in compound instructions to utilize

instruction-level parallelism

Compiler generates 4-way SIMD instructions to utilize data-level parallelism

Simulator is cycle-accurate, system-level simulator

38

CORDIC Rotation

45°

Vector V = (1,1)

Initial angle = 45°

Rotate by = -30°

Angle accumulator = -30° Micro-rotation angle =

New angle accumulator =

-45°

15°

26.6°

-11.6°

15°

26.6°

-11.6° -14°

2.5°

14°

initial vector

end result

X

Y

O

CORDIC iteration 123

39

CORDIC Functions

A wide variety of

transcendental functions

can be computed using the

CORDIC algorithm apart

from rotating vectors

40

CORDIC – Special Functions

A wide variety of transcendental functions can be

computed using the CORDIC algorithm apart from

rotating vectors

41

Previous Research – CORDIC

Variations of CORDIC algorithm proposed

On-line CORDIC

Redundant CORDIC

Differential CORDIC

Hardware implementations

Sequential CORDIC hardware

Pipelined CORDIC hardware

Systolic array of CORDIC processing elements for SVD

My research is first time CORDIC instructions are proposed

for programmable DSPs

Hardware designs for the CORDIC function unit will be

investigated

42

CORDIC Algorithm Design Considerations

Operand Representation Format

Coordinates x and y, and iteration counter

Represent using 2’s complement numbers

Angle Representation has two options

2’s complement number in radian format

Commonly used representation for angles

No wrap-around property

2’s complement number in Daggett angle format

Has wrap-around property

Overhead of converting between two formats

All algorithms under investigation use radian format, so CORDIC angles

represented using radian format

43

CORDIC Algorithm Design Considerations

Precision and Computational Accuracy

‘n’ CORDIC iterations needed for ‘n’ bits of precision

At least log2(n) additional fractional bits needed to reduce

impact of rounding errors

Angle Representation

Daggett’s angle format chosen for representing the angle z
in CORDIC iterations.

. . .

-180° 90° 45° 360°/2n

‘n’ is total number of bits

‘k’ is bit position (0 to n-1)

22.5° 360°/2n-k

0 1 1 0 0 = 135°1 1 1 0 0 = -45°

44

Step 2: Propose CORDIC Instructions

1st CORDIC Instruction

2nd CORDIC Instruction

3rd CORDIC Instruction

4th CORDIC Instruction

1st CORDIC Iteration

2nd CORDIC Iteration

3rd CORDIC Iteration

4th CORDIC Iteration

13th CORDIC Iteration

14th CORDIC Iteration

15th CORDIC Iteration

16th CORDIC Iteration

1 CORDIC Operation

5th CORDIC Iteration

6th CORDIC Iteration

7th CORDIC Iteration

8th CORDIC Iteration

9th CORDIC Iteration

10th CORDIC Iteration

11th CORDIC Iteration

12th CORDIC Iteration

Multiple CORDIC

iterations in one CORDIC

instruction

One/Multiple CORDIC

instruction(s) in one

CORDIC operation

k-way SIMD CORDIC

instructions

45

Full–CORDIC Functional Unit

of

Frac bits

x(i+4) y(i+4) z(i+4)

Rotate/

Vector

x(i) y(i) iz(i)

MUX MUX

Rotate/

Vector

MUX MUX

Destination

Register SIMD

Element

Source

Register SIMD

Element

Auxiliary

Registerm

one CORDIC iteration in one SIMD element

x(i+1) y(i+1) z(i+1)
im

one CORDIC iteration in one SIMD element

x(i+2) y(i+2) z(i+2)
im

one CORDIC iteration in one SIMD element

x(i+3) y(i+3) z(i+3)
im

one CORDIC iteration in one SIMD element

x(i+4) y(i+4) z(i+4)

Rotate/

Vector

x(i) y(i) iz(i)

MUX MUX

Rotate/

Vector

MUX MUX

Destination

Register SIMD

Element

Source

Register SIMD

Elementm

one CORDIC iteration in one SIMD element

x(i+1) y(i+1) z(i+1) i+1
m

one CORDIC iteration in one SIMD element

x(i+2) y(i+2) z(i+2) i+2
m

one CORDIC iteration in one SIMD element

x(i+3) y(i+3) z(i+3) i+3
m

one CORDIC iteration in one SIMD element

m

Lookup

Table &

Right Shift

m

Lookup

Table &

Right Shift

m

Lookup

Table &

Right Shift

m

Lookup

Table &

Right Shift

i+1

+1

i+2

+1

i+3

+1

i+4

+1

Auxiliary

Register

Auxiliary

Register

46

Full–CORDIC Basic Hardware Block & Interfaces

a

d

d

i

t

i

o

n

a

l

c

i

r

c

u

i

t

i

n

s

t

a

n

c

e

s

(SIMD size -1)

x(i+1) y(i+1) z(i+1) i+1

additional circuit instances (# of CORDIC iterations/instruction -1)

Rotate/

Vector

+1

x(i) y(i) i

Add/

Subtract

Adder

Shift

Left / Right

of

Int bits

XOR

Bank

AND

Bank

Shift

Left / Right

XOR

Bank

Adder

sign sign

MUX

Lookup

Table

Shift

Right

Adder

XOR

Bank

z(i)

m
NegateBlank

MUX MUX

Rotate/

Vector

MUX MUX

Destination

Register SIMD

Element

Source

Register SIMD

Element

m

Auxiliary

Register

Auxiliary

Register

47

Semi–CORDIC Basic Hardware Block & Interfaces

a

d

d

i

t

i

o

n

a

l

c

i

r

c

u

i

t

i

n

s

t

a

n

c

e

s

(SIMD size -1)

x(i+1) y(i+1) z(i+1) i+1

additional circuit instances (# of CORDIC iterations/instruction -1)

XY / ZI

instruction

+1

x(i) y(i)

i

Add/

Subtract

Adder

Shift

Left / Right

of

Frac bits

XOR

Bank

AND

Bank

Shift

Left / Right

XOR

Bank

Adder

sign sign

MUX

Lookup

Table

Shift

Right

Adder

XOR

Bank

z(i)

m
NegateBlank

MUX MUX

Rotate/

Vector

Destination

Register SIMD

Element

m

Source

Register 2

SIMD Element

Source

Register 1

SIMD Element

MUX

Adder

-4

XY_VEC

instruction

3-bit

adder

48

Step 4: Hardware of Semi-CORDIC Rotation

M instances of the circuit can be deployed to perform M
iterations per CORDIC

XY_ROT_CORDIC and ZI_ROT_CORDIC must be issued in
order

Semi-CORDIC rotation

49

Hardware of Semi-CORDIC Vectoring

M instances of the circuit can be deployed to perform M
iterations per CORDIC

ZI_VEC_CORDIC and XY_VEC_CORDIC must be issued in
order

Semi-CORDIC vectoring

50

Instruction Properties in the SaDL Python Files

Name of the instruction

Instruction type (scalar, SIMD vector, or memory access)

SIMD instruction data size (16, 32, or 40-bits)

Number and type of input registers

Number and type of output registers

Instruction optimization properties, such as unmovable, optimization

barrier, not dead

Instruction opcode

Functionality of the instruction in x86 host code

51

Hardware Synthesis Estimates

Synthesis performed using Synopsys Design Compiler and TSMC’s 65nm

CMOS standard cell library.

CORDIC ISA Extensions

Area (um2)

Latency

(ns)

Power

(mW)Combinational

Area

Non-

Combinational

Area

Total

Area

Full-CORDIC 24540 11349 35889 1.64 10.53

Semi-CORDIC 22847 5964 28811 1.66 7.08

SB3000 SIMD-Vector-Multiply-Accumulate 24025 3709 27734 1.65 6.20

52

Hardware - Software Performance Tradeoff

Straight-forward way to reduce size of CORDIC unit is to reduce number of

CORDIC iterations per instruction

Software performance reduces at a slower rate than CORDIC unit area and

can be traded off without too much impact

Software performance speedup drops from 7.2x to 5.2x for an 86%

reduction in area going from 4 iterations to 1 iteration per instruction

0.80

1.00

1.20

1.40

1.60

1.80

2.00

4 iterations per

instruction

2 iterations per

instruction

1 iteration per

instruction

CORDIC Unit Area

CORDIC Unit Power

Software Performance

53

Arithmetic Error

Wireless Algorithms
Non-CORDIC Baseline

Implementation

CORDIC

Implementations

LDPC Decoder 2.08% 0.05%

54

LDPC- BP versus Min-Sum

Signal-to-Noise Ratio Vs Bit Error Rate

20 iterations of LDPC

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 1.25 1.5 1.75 2 2.25 2.5

Signal-to-Noise Ratio (dB)

B
it

 E
rr

o
r

R
a

te BP Algorithm with minsum

criterion

BP Algorithm with

hyperbolic tangents

Block Size = 2304 bits input, 1152 bits output

of iterations = 20

55

Block Size = 2304 bits input, 1152 bits output

LDPC- BP Iteration Count

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

FE
R

1.
25

1.
75

2.
25

2.
75

3.
25 BP Algorithm with

hyperbolic tangents -

20 iterations

BP Algorithm with

hyperbolic tangents -

10 iterations

BP Algorithm with

hyperbolic tangents -

5 iterations

