
A Lightweight Dataflow Approach for Design and Implementation of

SDR Systems

Chung-Ching Shen, William Plishker, Hsiang-Huang Wu, and Shuvra S. Bhattacharyya

Department of Electrical & Computer Engineering

and Institute for Advanced Computer Studies

University of Maryland, College Park, Maryland, USA

{ccshen, plishker, hhwu, ssb}@umd.edu

Abstract

Model-based design methods based on dataflow mod-
els of computation are attractive for design and imple-
mentation of wireless communication systems because
of their intuitive correspondence to communication sys-
tem block diagrams, and the formal structure that is
exposed through formal dataflow representations (e.g.,
see [2]).

In this paper, we introduce a novel lightweight
dataflow (LWDF) programming model for model-based
design and implementation of wireless communication
and software-defined radio systems. The approach is
suitable for improving the productivity of the design
process; the agility with which designs can be retargeted
across different platforms; and the quality of derived
implementations. By “lightweight”, we meant that the
programming model is designed to be minimally intru-
sive on existing design processes, and require minimal
dependence on specialized tools or libraries. This allows
designers to integrate and experiment with dataflow
modeling approaches relatively quickly and flexibly into
existing design methodologies and processes.

1 Introduction

Software defined radio (SDR) attempts to imple-
ment most of the complex signal handling involved
in receivers and transmitters of radio using software,
rather than being based on special-purpose hardware.
For example, modulation and demodulation and all
of the signaling protocols of a radio are implemented
as software functions [1]. Such designs should be
able to rapidly target a variety of platforms, such
as programmable digital signal processors, field pro-
grammable gate arrays (FPGAs), and graphics pro-

cessing units for functional prototyping and validation.

Model-based design has been explored widely over
the years in many domains of embedded processing.
In model-based design, high level application sub-
systems are specified in terms of functional compo-
nents that interact through formal models of compu-
tation (e.g., see [7]). By exposing and exploiting high
level application structure that is often difficult or im-
possible to extract from platform-based design tools
such as SPEX [12] for SDR applications, model-based
approaches facilitate systematic integration, analysis,
synthesis, and optimization that can be used to exploit
platform-based tools and devices more effectively.

Dataflow is a well known computational model and
is widely used for expressing the functionality of digi-
tal signal processing (DSP) applications, such as audio,
digital communications, and video data stream pro-
cessing (e.g., see [4], [11]).

In dataflow models of computation, applications are
modeled as directed graphs, where vertices (actors)
represent computational functions and edges represent
inter-actor communication channels. Actors produce
and consume data from edges, and edges buffer data
in a first-in first-out (FIFO) fashion. Dataflow actors
can represent computations of arbitrary complexity as
long as the interfaces of the computations conform to
dataflow semantics, which means that actors produce
and consume data from their input and output edges,
respectively, and each dataflow actor executes as a se-
quence of discrete units of computation, called firings,
where each firing depends on some well-defined amount
of data from the input edges of the associated actor.

When designing SDR applications using dataflow
techniques, retargetability is an important issue since
such a wide variety of platforms is available for target-
ing SDR implementations under different kinds of con-
straints and requirements. Following structured design
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methods, designers should be able to port implementa-
tions of dataflow graph components (actors and FIFOs)
across different platform-oriented languages, such as
C, C++, SystemC, Verilog or VHDL. Furthermore, by
promoting formally specified component interfaces (in
terms of dataflow semantics) and modular design prin-
ciples, dataflow techniques provide natural connections
to powerful unit testing methodologies, as well as au-
tomated, unit-testing-driven correspondence checking
between different implementations of the same compo-
nent (e.g., see [16])).

In this paper, we introduce a novel dataflow-based
design approach for model-based design and implemen-
tation of wireless communication and software-defined
radio systems. In contrast to the framework in [8],
which focuses on a specific actor language (C++), spe-
cific application domain (speech recognition), and spe-
cialized dataflow model of computation (synchronous
dataflow [11]), our proposed lightweight dataflow ap-
proach facilitates the processes of cross-language, cross-
platform migration and prototyping on a variety of
signal processing application domains, including SDR,
and efficient implementation by providing a structured,
easily-retargetable approach for implementing dataflow
based DSP systems. Our approach also allows design-
ers to experiment with different dataflow modeling ap-
proaches such as SDF [11], CSDF [5], or CFDF [14].

2 Background

Synchronous dataflow (SDF) [11] is a restricted form
of dataflow that is useful for an important class of DSP
applications, and is used in a variety of commercial de-
sign tools. SDF in its pure form can only represent
applications in which actors produce and consume con-
stant amounts of data with respect to their input and
output ports — that is, data-dependent or otherwise
dynamic data rates are not supported in SDF. By us-
ing SDF, we can efficiently check conditions such as
whether a given SDF graph deadlocks, and whether it
can be implemented using a finite amount of memory
(e.g., see [17]).

An SDF graph, G = (V, E), is a directed graph in
which each vertex (actor) v ∈ V represents a compu-
tational module for executing a given task, and each
directed edge, e ∈ E, represents a first-in-first-out
(FIFO) buffer for holding data values (tokens) and im-
posing data dependencies. SDF graphs represent com-
putations that are executed iteratively on data streams
that typically contain large, often unbounded num-
bers numbers of data samples. Each SDF actor there-
fore executes through a sequence of executions (invoca-
tions) as the enclosing SDF graph operates. An actor
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Figure 1: Proposed dataflow-based design approach.

is enabled to execute its computational task (i.e., its
next invocation) only if sufficient numbers of tokens
are available on its input edges. An actor produces
certain numbers of tokens on its output edges as it ex-
ecutes. For proper operation, the output edges onto
which an actor invocation produces data must have
sufficient numbers of “empty spaces” (vacant positions
in the corresponding FIFO buffers).

There is a wide variety of development environments
that utilize dataflow models to aid in the design and
implementation of DSP applications (e.g., see [7], [10],
[13], [9]). In these tools, an application designer is
able to develop and describe the functionality of an ac-
tor, and capabilities are provided for automated system
simulation or synthesis. Some of these tools employ
graphical user interfaces and support restricted models
of computations, such as SDF.

3 Proposed Design Flow

Fig. 1 shows the overall design flow of the pro-
posed lightweight dataflow approach for wireless com-
munication and software-defined radio systems. Given
an SDR application modeled by dataflow, in our ap-
proach, designers should be able to easily create ac-
tor and FIFO (dataflow graph edge) implementations
along with associated test suites by following the pro-
posed design methods associated with the LWDF pro-
gramming model. Furthermore, by utilizing the LWDF
runtime environment, designers can validate functional
correctness when implementing an application on a
specific target platforms.

Due to the design orthogonality among user-
designed libraries and the runtime environment, de-
sign optimizations for applications can be explored at
a high-level (i.e., inter-actor level) with full interoper-
ability in relation to lower level optimizations provided
by the back-end, platform-specific tools.
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4 Lightweight Dataflow Programming

Model

We propose a new dataflow programming model for
design and implementation of DSP-based SDR sys-
tems. In this model, an each actor has an operational
context (OC), which encapsulates parameters (P ), lo-
cal variables (θl) (variables whose values do not persist
across firings), and state variables (θs) (variables whose
values do persist across firings). The OC for an actor
also contains references to the FIFOs corresponding to
the input (Ri) and output (Ro) ports (edge connec-
tions) of the actor as a component of the enclosing
dataflow graph, as well as a reference to the execution
function (Rξ) of the actor. That is, given an actor
v ∈ V in a dataflow graph, the operational context for
v is defined as

OC (v) = {Ri} ∪ {Ro} ∪ {θl} ∪ {θs} ∪ Rξ. (1)

4.1 Design method of dataflow actors

Our proposed method for the design of dataflow ac-
tors in LWDF is described below. Based on different
dataflow models of computation, the design can be ad-
justed accordingly in terms of the operational sequence
associated with an actor firing.

Actor design in LWDF includes three interface func-
tions — the construct, execute, and terminate func-
tions. The construct function connects an actor to its
input and output edges (FIFO channels), and performs
any other pre-execution initialization associated with
the actor. Similarly, the terminate function performs
any operations that are required for “closing out” the
actor after the enclosing graph has finished executing
(e.g., deallocation of actor-specific memory or closing
of associated files.

In the execute function, the operational sequence
associated with an actor firing is implemented. Here,
various restrictions are imposed on dataflow execution
to make execution more predictable and programming
more structured, while conforming to formal dataflow
semantics. In particular, we impose the restriction
that an actor firing proceeds through a sequence of
steps. Such steps are loosely analogous to the “phases”
of cyclo-static dataflow (CSDF) actors [5]. However,
lightweight dataflow steps are significantly more flexi-
ble than CSDF phases in that they can reconfigure the
behavior of subsequent steps (through changes to as-
sociated parameters or variables in the actor context)
within a given firing. Such a reconfigurable step-based
approach leads to a Turing complete programming ap-
proach in which arbitrary computations can be embed-

ded, and a wide variety of specialized dataflow models
can be accommodated as special cases.

When the overall scheduler (lightweight dataflow
runtime environment) executes an actor firing, it
starts at a common initial step, which we call the
FIRING START step, and keeps executing steps sequen-
tially until one of the following happens.

• the current step gets suspended because required
input data is not available,

• the current step gets suspended because required
output buffer space is not available, or

• the last step in the enclosing firing (called the
FIRING DONE step), is reached.

Thus, FIRING START and FIRING DONE are two com-
mon steps for all actors, and monitoring of the other
steps can be used as a way to gauge how far a given ac-
tor firing has progressed within its current firing (e.g.,
for real-time analysis or dynamic scheduling purposes).

4.2 Hardware/software retargetability

As an example of applying the LWDF programming
model for DSP software design using C, a C-based
LWDF actor can be implemented as an abstract data
type (ADT) to enable efficient and convenient reuse
of the actor across arbitrary applications. In typical
C implementations, ADT components include header
files to represent definitions that are exported to appli-
cation developers and implementation files that con-
tain implementation-specific definitions. We refer to
this integration of LWDF and C as LWDF-C. In Sec-
tion 5, we will show a design example for implementing
a dataflow actor using LWDF-C.

To target an LWDF design for FPGA implemen-
tation using the Verilog hardware description language
(HDL), we design a dataflow actor as a Verilog module,
where input and output ports of the actor are mapped
to unidirectional module ports. Such an actor-level
module can contain arbitrary sub-modules for complex
actors, and the functionality of an actor can in general
be described in either a behavioral or structural style.
Similarly, we refer to this integration of LWDF with
Verilog as LWDF-V.

A finite state machine (FSM) is designed within an
actor as a controller for implementing the associated
step transition graph that represents the firing sequence
of that actor. A step transition graph can be viewed
as a restricted form of FSM where each LWDF actor
step corresponds to a vertex (actor firing state), and
a directed edge from one step s1 to another step s2
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indicates that actor firing state can transition from s1

to s2 unconditionally or under some conditions in terms
of the input data and values in the operational context.

For example, the one-hot strategy [6] is a natural
state encoding in order to simplify the state decod-
ing logic in the associated FSM. In general, a one-hot
strategy is well suited to implementing step transition
graphs where the number of steps is not excessive and
area constraints are not extremely tight.

4.3 Orthogonal design for dataflow FIFOs

FIFO design for dataflow edge implementation is
orthogonal to the design of dataflow actor in LWDF.
That is, by using LWDF, application designers can fo-
cus on design of actors and mapping of edges to lower
level communication protocols through separate design
processes (if desired) and integrate them later through
well-defined interfaces. Such design flow separation is
useful due to the orthogonal objectives, which center
around computation and communication, respectively,
associated with actor and FIFO implementation.

FIFO design in LWDF typically involves different
structures in software compared to hardware. For soft-
ware design in C, tokens can have arbitrary types asso-
ciated with them — e.g., tokens can be integers, float-
ing point values, characters, or pointers (to any kind
of data). Such an organization allows for flexibility in
storing different kinds of data values, and efficiency in
storing the data values directly (i.e., without being en-
capsulated in any sort of higher-level “token” object).
For hardware design in HDLs, a dataflow graph edge
is typically mapped to a FIFO module, and design-
ers should have mechanisms for developing interfaces
between actor and FIFO modules. For maximum flex-
ibility in design optimization, LWDF provides for ef-
ficient retargetability of actor-FIFO interfaces across
synchronous, asynchronous, and mixed-clock imple-
mentation styles.

4.4 Integration with the DICE unit testing frame-
work

The DSPCAD Integrative Command-line Environ-
ment (DICE) is a package of utilities that facilities
efficient management of software projects, especially
for cross-platform design, and provides a lightweight,
flexible, and language-agnostic unit testing environ-
ment [3]. Building on the modularity of dataflow based
design, and the key LWDF feature of design orthogo-
nality between dataflow actor and edge (FIFO), actors
and FIFO implementations in LWDF can be seam-
lessly integrated with the DICE software package for
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Figure 2: Design hierarchies for implementing dataflow
graph components in LWDF using DICE.

unit testing. Such integration allows for efficiently con-
figurable, cross-platform unit testing of LWDF actors
and edges — e.g., across hardware and software actor
implementations, or different types of communication
mechanisms, such as block RAM, distributed or shared
memories, for FIFO implementation.

Fig. 2 illustrates design hierarchies for implement-
ing unit tests for dataflow graph components in LWDF
using the DICE unit testing framework.

5 Design Example: A Reconfigurable

Phase-Shift Keying System

In this section, we present a reconfigurable phase-
shift keying (RPSK) system as an SDR application ex-
ample using the proposed approach. PSK is a digital
modulation technique in which patterns of data bits
form data symbols, and are mapped to corresponding
phase status configurations, which are then conveyed
by modulating the phase of a carrier wave. In an agile
SDR environment, RPSK is a useful subsystem because
it allows the specific form of PSK employed to be dy-
namically adapted based on the existing status of the
communication channel.

Fig. 3 shows a dataflow model of our targeted RPSK
application. Three different modulation schemes can
be configured in this application. They are binary PSK
(BPSK), quadrature PSK (QPSK), and 8PSK.

Among these, BPSK is the most robust modulation
scheme in the presence of high levels of noise in the
communication channel. On the other hand, QPSK
and 8PSK provide decreasing levels of robustness, but
offer faster levels of data transfer and lower levels of re-
ceiver and transmitter energy requirements when chan-
nel conditions are better.

As shown in Fig. 3, actors T1 and T2 are table
lookup actors used in the modulator and demodulator,
respectively, for converting between binary sequences
and phase status configurations. Each of these actor
has a parameters M , which can be configured to se-
lect either BPSK (M = 1), QPSK (M = 2), or 8PSK
(M = 3) as the modulation and demodulation schemes.
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Figure 3: Dataflow graph for the RPSK application.

The parameter M also specifies the consumption rate
of T1, and production rate of T2.

5.1 Simulation based on LWDF-C

Functional correctness of the LWDF design for
the RPSK application can be verified by simulating
its LWDF-C implementation using a simple schedul-
ing strategy, which is an adaptation of the canoni-
cal scheduling strategy of the functional DIF environ-
ment [15]. Since the semantics of LWDF dataflow
guarantee deterministic operation (i.e., the same in-
put/output behavior regardless of the schedule that is
applied), validation under such a simulation guarantees
correct operation regardless of the specific scheduling
strategy that is ultimately used in the final implemen-
tation. Such a simulation approach is therefore use-
ful to orthogonalize functional validation of an LWDF
design before exploring platform specific-schedule op-
timizations.

Fig. 4 shows LWDF-C implementation of the table-
lookup actor in the RPSK application. Due to space
limitations, we omit implementation details for the
other actors in this application example.

In our experiments with our LWDF-C implementa-
tion, we simulated operation of the RPSK system on
a bit stream consisting of 10,000 bits. This simula-
tion was carried out in approximately 1.5 seconds on
an 3GHz Intel Pentium PC with 2GB of RAM.

5.2 FPGA implementation based on LWDF-V

After validating functional correctness using LWDF-
C, we manually implemented the RPSK application by
applying LWDF-V together with a self-timed schedul-
ing strategy. In such a self-timed implementation, an
actor module fires whenever it has sufficient tokens
(as required by the corresponding firing) available on
its input FIFOs. The synthesis result derived from
our LWDF implementation of the RPSK application
uses 1,484 LUTs and 1,464 CLBs on a Xilinx Virtex-
4 FPGA, which correspond to approximately 5% and
10% of the total available LUT and CLB resources,
respectively, on the targeted FPGA device.

#include <stdio.h>
#include <stdlib.h>

#include "table_lookup.h"
#include "util.h"

table_lookup_context_type *table_lookup_new(file *file, int size, 
        disps_fifo_pointer in, disps_fifo_pointer out) {
    table_lookup_context_type *context = null;

float data = 0;
int i = 0;

if (size <= 0) {
        fprintf(stderr, "table_lookup_new error: invalid size");
        exit(1);
    }
    context = util_malloc(sizeof(table_lookup_context_type));
    context->table = util_malloc(size * sizeof(int));
    context->size = size;
    context->execute = (actor_execution_function_type)table_lookup_execute;

for (i = 0; i < size; i++) {
if (fscanf(file, "%f", &data) != 1) {

            fprintf(stderr, "table_lookup_new error: integer expected");
            exit(1);
        }   
        (context->table)[i] = data;
    }

    context->status = actor_new_firing;
    context->in = in;
    context->out = out;

return context;
}

void table_lookup_execute(table_lookup_context_type *context) {
float result = 0;

switch (context->status) {
case actor_new_firing:

if (disps_fifo_population(context->in) == 0) {
return;

        }
        disps_fifo_read(context->in, &(context->index));

if (((context->index) < 0) || ((context->index) >= (context->size))) {
            context->status = TABLE_LOOKUP_ERROR_INDEX;

return;
        }

        context->status = TABLE_LOOKUP_INDEX_READ;
        /* falls through */

case TABLE_LOOKUP_INDEX_READ:
if (disps_fifo_population(context->out) >= 

                disps_fifo_capacity(context->out)) {
return;

        }
        result = (context->table)[context->index];
        disps_fifo_write(context->out, &result);
        context->status = ACTOR_FIRING_DONE;
        /* falls through */

case ACTOR_FIRING_DONE:
return;

default:
        context->status = TABLE_LOOKUP_ERROR_ENTRY;

break;
    }
}

void table_lookup_terminate(table_lookup_context_type *context) {
    free(context->table);
    free(context);
}

Figure 4: LWDF-C implementation of the table-lookup ac-
tor in the RPSK application.

Fig. 5 illustrates a design example of an actor tem-
plate in our application of LWDF-V. By following such
a structured format, designers can focus on implement-
ing the core functionality of each actor for rapid proto-
typing, systematic validation, and efficient exploration
of intra-actor optimization alternatives.

As shown in Fig. 5, actor controller is a step transi-
tion controller, which implements a one-hot state ma-
chine and can be used, through appropriate parameter-
ization, within all of the LWDF-V actor implementa-
tions. STEP COUNT represents the number of bits
used to store the state, and each state corresponds
to a unique bit in the state storage. The next input
gives the number of bits to “left shift” the state. Thus,
next = N means that we want to “skip” N − 1 states,
and next = 0 means that we stay in the same state.
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/* actor design template */
module actor_name([port_list]);
    /* parameter declarations */

parameter …
    /* port declarations */

output …
input …

    /* wire/reg declarations */
reg …
wire …

/* Verilog structural modeling:
    instantiation of actor’s controller 
 */
     actor_controller fsm(post_list);

/* Verilog behavior modeling */
/* sequential logics based on step 
   transition 
 */
always@(posedge clock) begin
    case (state)

`FS:
`S2:
`S3:
`FD:

    endcase
end

 /* combinational logics based on step  
    transitions
  */
always@(*) begin
    case (state)

`FS:
`S2:
`S3:
`FD:

endcase
endmodule

/* Common actor steps */
`define FS 4'b0001

/* User-defined number of steps */
`define STEP_COUNT 4

/* User-defined step symbols */
`define S2 4'b0010
`define S3 4'b0100
`define FD 4'b1000

/* Step transition controller implemented as a 
    one hot state machine.
 */
module actor_controller(state, next, clock, reset); 

parameter STEP_COUNT = 1;
parameter NEXT_LENGTH = 1;

output [STEP_COUNT - 1 : 0] state;

input [NEXT_LENGTH - 1 : 0] next;
input clock;
input reset;

reg [STEP_COUNT - 1 : 0] state;

always @(posedge clock or negedge reset) 
    begin

if (~reset) begin
            state <= 1;

end
else begin

            state <= state << next;
end

end
endmodule

Figure 5: Design template for dataflow actor in LWDF-V.

6 Conclusion

In this paper, we have introduced a novel lightweight
dataflow programming approach for design and imple-
mentation of software-defined radio systems. We pro-
vided a comprehensive specification of the proposed
methodology, and demonstrated it concretely with ac-
tor implementation examples in C and Verilog that are
oriented for fast simulation, embedded software real-
ization, and FPGA mapping. We also demonstrated
an SDR application example of a reconfigurable phase-
shift keying (RPSK) system, which is a useful subsys-
tem for agile SDR environments. Experimental results
on our RPSK system are presented to demonstrate
efficient high-level simulation based on C, and retar-
getability from C to Verilog based on the lightweight
programming interface of LWDF, and a well-defined,
structural HDL actor design methodology.
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