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ABSTRACT 
 
This paper presents a rapid prototyping system for realizing 
communication waveforms onto a real-time multi-processor 
hardware platform which runs a standard programming 
language such as ANSI C.  The waveform is described in a 
high-level design language, such as The MathWorks 
Simulink, and is transformed to an executable multi-
processor program using C-code generation tools from The 
MathWorks and a software tool flow called the HyperX 
Integrated System Development Environment (hxISDE).  
The transformation is done automatically, and is guided by 
user constraints on the performance of the resulting real-
time design. The verification tests from the user’s high-level 
design environment are employed to verify the resulting C-
code implementation on both software and hardware 
platforms. Using this tool flow and transformation 
procedure, one can rapidly create a verified C-code design 
which runs in real-time on a multi-processor platform.  In 
this paper we present the details of the transformation 
process and demonstrate its operation on a commonly used 
communication waveform. 
 
 

1. INTRODUCTION 
 
With the proliferation of communication waveforms and the 
continuing evolution of waveform standards, a rapid 
methodology for prototyping and developing waveforms on 
a real-time platform has become increasingly important.  At 
the same time, high-level graphical model-based design 
systems [1][2] are now commonly used to define and 
optimize electronic systems without writing any low-level 
source code.  The combination of these two trends promises 
to create a rapid prototyping system that is a major 
improvement in communications waveform development 
methodology. 
 
Previous work includes existing commercial tools that 
attempt to accomplish rapid prototyping to hardware [3][4] 
[5][6]. These systems primarily target hardware 
implementations that incorporate Field Programmable Gate 
Arrays (FPGAs) and Application Specific Integrated 

Circuits (ASICs).  Typically, these systems start with a 
high-level design system such as Simulink and create a 
design description in a hardware description language 
(HDL) such as VHDL[7].  From there, tools exist to 
compile the HDL code for operation on existing FPGA 
development boards. There are two ways the HDL code gets 
created: first, generic HDL code can be generated by tools 
such as Simulink. Second, the tool vendors provide libraries 
of code to implement Simulink blocks.  The reason the 
second approach is taken is that the generic HDL code may 
not produce efficient structures for implementation on 
FPGAs or ASICs.  The vendor specific libraries ensure that 
the generated hardware is efficient on the particular 
platform. The downside of this approach is that often the 
block libraries provided by the vendors do not exactly match 
the behavior of the high-level blocks so there will be 
functional differences between the high-level design and the 
design as implemented on the FPGA development board. 
And consequently, the user can not simply take an existing 
design through the flow without modification. Another 
drawback with this flow is that the user does not get an 
understanding of the performance of their design until it is 
run completely through the implementation flow – this 
process could take hours for a reasonable sized design. 
 
Other work in this area is aimed at implementation on 
ASIC/FPGA platforms using VHDL and custom compute 
structures [8] and implementing Simulink designs using a 
combination of hardware (on ASIC/FPGA) and software (on 
a processor) [9][10]. 
 
In this paper we propose a rapid prototype-to-hardware 
model-based design flow (MBDF) that avoids the 
aforementioned issues by directly using the C-language 
code that is generated by the Simulink tool for each of its 
design entities (called blocks) and by employing a hardware 
platform that is well suited to implementing Simulink 
communication and can natively execute the code for each 
block.  In this flow, the performance of the overall system 
can be calculated from the characterized performances of its 
constituent blocks.  In addition, the verification environment 
used to verify the Simulink design is employed to verify 
both the translations of the individual blocks and of the 
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overall system. We also propose an associated debug and 
performance measurement environment that enables real-
time design visibility and aids in design optimization. 
 
In the following sections, we first describe the hardware 
platform and how it executes Simulink generated code. 
Then we detail the complete MBDF high-level language to 
hardware flow. Finally we show and example of a 
waveform implemented using this system. 
 

2. THE REAL-TIME HARDWARE PLATFORM 
 
The center of the hardware platform is the HyperX™ 
processor from Coherent Logix Inc.™ [11].  This chip has 
100 core processors arrayed in a 10 by 10 grid.  Each core 
processor has a locally stored program and can execute 
integer and floating point operations.  Interspersed with the 
core processors are a 11 by 11 grid of Data, Memory, and 
Router (DMR) blocks which can store and move data across 
the chip and form a memory embedded in a network 
architecture.  DMRs work in concert to efficiently move 
blocks of data from one DMR to another, which may be on 
the other side of the chip – once a connection is established 
between two DMRs, one word of data is transferred every 
clock cycle.  The DMR-to-DMR connections can be created 
and destroyed dynamically. 
 
The HyperX processor is employed in the HyperX 
Hardware Application Development System hxHADS™ 
which is a configurable hardware environment which can 
host numerous HyperX processors, General Purpose 
Processor (GPP) chips, and I/O interface cards.  The 
smallest configuration of an hxHADS includes a HyperX 
processor, an ARM-based general purpose processor and a 
PCIe communication card.  The development system also 
includes the software tool suite called the HyperX 
Integrated System Development Environment (hxISDE™) 
which is a complete development environment for 
compilation, simulation, real-time debugging, and 
optimization of C-language based designs on the HyperX 
processor. 
 
High-level systems, such as Simulink, that model designs as 
networks of communicating computation blocks are 
implemented on the HyperX processor by compiling each 
block to run on one or more core processors.  The data 
communication is implemented using the DMR-to-DMR 
mechanism for moving data. This style is similar to a 
Message Passing model of computation [12].  Thus, at a 
simplified level, the translation of a Simulink design to 
HyperX consists of compiling the Simulink Generated C-
code for each block and implementing the block-to-block 
communication using DMR-to-DMR transfers. 
 

 
3. MBDF - HIGH-LEVEL LANGUAGE TO 

HARDWARE FLOW 
 
The objective of the MBDF is to provide a well defined 
starting point for the initial system design from which a 
designer can rapidly get an accurate understanding of 
system performance and resource requirements without 
writing any low-level implementation code.  The MBDF 
enables rapid characterization of architectural tradeoffs so 
that the designer can explore the impact of different uses of 
parallelism, communication schemes, and resource 
allocations on the system performance. 
 
The MBDF has the capability to measure and optimize the 
performance and resource usage of the design by 
partitioning the design.  Often the number of blocks in the 
high-level design is larger than the number of core 
processors it will be run on.  In this case, the partitioning 
algorithm decides which blocks to place on the same core 
processor (i.e. it serializes those blocks on one core 
processor) while meeting the given performance and 
resource constraints. 
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Figure 1 – MBDF: high-level design to hardware flow. 
 
The user can control this partitioning by setting performance 
and resource constraints on the partitioning optimization 
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algorithm.  The user may also control the partition by 
manually directing that some set of blocks should all reside 
on the same core processor. 
 
Additionally, the code generated by Simulink is serial C-
code that can only be run on a single core processor.  The 
MBDF does not automatically parallelize serial C-code.  So, 
for some performance critical blocks, the user may elect to 
replace the Simulink generated code with a custom 
implementation that has better resource or performance 
properties.  For example, an FFT generated by Simulink will 
run on a single core processor but may be replaced by a 
multiple core processor implementation to create better 
overall system performance.  Another option is to break the 
Simulink block into multiple parallel executing blocks in the 
Simulink editor.  This may not be easy to do for many 
compute intensive blocks. 
 
The major steps in MBDF (see Figure 1) are described here: 
 
• The Editing step is done in the high-level design 

environment.  Here the user can modify the design as 
needed and add system-level performance constraints 
such as system latency, throughput, and resource limits, 
direct a block to be replaced with a custom 
implementation, or manually select parts of the design 
to reside entirely on a single core processor (manual 
partitioning). 

• The translation step utilizes the built-in code generation 
capability of the high-level design environment (in this 
case the Real-Time Workshop Embedded Coder™ 
from The MathWorks) to create code for each block.  
The translator wraps each block with a communication 
layer which creates the block-to-block communication 
and creates block-level and system-level testbenches. 

• The Characterization step determines the expected 
performance and resource requirements of each block 
on the HyperX by compiling the block with its block-
level test bench.  The stimulus for the test bench is 
derived from the simulation done in the high-level 
design environment, in this case from the Simulink 
simulation of the Simulink design.  From this step we 
can, at a minimum, get the block latency and the 
required data and instruction storage for this block. 

• The partitioning algorithm starts with a representation 
of the topology of the system, the block-level 
performance and resource requirements, a hardware 
performance model for computation and 
communication, and user given constraints.  Then the 
partitioning algorithm employs an accurate estimation 
algorithm to determine the system level performance, 
system-level resources, and constraint satisfaction as it 
optimizes the partitioning of the design.  At this point a 
detailed performance report is emitted, and the user has 

the option to further modify the design and constraints 
in the editor and re-run the flow. 

• Finally, once the user is satisfied with the estimated 
performance, a complete realization of the design can 
be created.  The difference in this implementation of the 
design is that any partitions which contain multiple 
blocks are implemented by combining the code for the 
blocks into a single executable entity.  Additionally, the 
C-code for custom blocks that the user selected is 
incorporated into this version of the design. 

One of the more time consuming parts of the MBDF is the 
individual block characterization.  A good sized design may 
have hundreds or thousands of blocks.  Importantly, the 
flow has been designed so that the characterization of a 
block does not depend on its context.  So to reduce runtime, 
any identical blocks need only be characterized once, and 
any commonly used blocks can be pre-characterized and the 
characterization data utilized by the tool flow. 
 

igure 2  - The MBDF control panel. 

.1 Graphical User Interface 

he Simulink design environment is a graphical user 

 
F
 
3
 
T
interface (GUI) for editing and simulating model-based 
designs.  The MBDF flow adds a window to the Simulink 
GUI to control and configure the flow (see Figure 2).  In the 
“Current Design” entry field the user can declare what part 
of the design to translate.  The “Throughput target” entry 
field sets the performance constraint on the partitioning 
algorithm.  The 4 buttons on the left side are activated one at 
a time in descending order.  The first (“Prepare Design”) 
configures the user’s design for translation.  The next three 
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buttons correspond to the flow steps as described in the 
previous section and in Figure 1.  Using these controls, the 
flow may be run many times to explore different 
performance targets, design structures, and manual 
partitions. 
 
The hxISDE is also a graphical design environment (see 

igure 3 - The hxISDE graphical user interface 

sis 

time, 
esign signals, events, and clocks as well as modify key 

ded to support real-
me performance monitoring capabilities such as power 

4. RESULTS 

The MBDF was applie  model of a Scalable 
FDM (SC-OFDM) PHY layer.  The goal of this example 

ved from the multiple access scheme used 
 the 3GPP LTE downlink.  Scalability is supported by 

sign example is built from the SC-
FDM Simulink model which includes both the 

ed in the description of SC-OFDM above, the 
esign can be scaled to various available channel 

ecification, both the 
ransmitter and Receiver algorithm must meet a throughput 

 the model-based translation process, the 
ortion of the design to be implemented was isolated in the 

eiver and Transmitter 
bsystems were created using the MBDF.  During the 

translation, the blocks which make-up each design were 

Figure 3) and is integrated with Simulink GUI so that the 
flow between the tools is consistent and cooperative and the 
user experience is that of a single unified tool. 
 

 
F
 
3.2 Real-time debugging and performance analy
 
This MBDF also allows the user to monitor, in real 
d
system parameters on-the-fly.  This capability gives the user 
a powerful debug and optimization capability for designs 
running on live hardware.  In addition, Logic analyzer-like 
triggering and sampling capabilities can be provided so that 
the user can get specific data from their design and so that 
the volume of data being transmitted from the design is 
minimized.  This capability is controlled through the 
graphical user interface in Simulink.  The translator will 
automatically create the design structures and add them to 
the final implementation of the design in a way that does not 
affect the performance of the design. 
 
In addition, this capability can be exten
ti
performance, constellation diagrams, and BER/PER 
characterizations.  These diagrams would be displaying live 
data streamed from the design running live in hardware. 
 
 

 
d to a Simulink

O
was to validate the capability to automatically implement a 
real-world DSP design, and additionally, to assess the 
ability to meet real-world timing requirements. 
 
4.1. The Design 
 
SC-OFDM is deri
in
adjusting the FFT size while fixing the sub-carrier 
frequency spacing to 15 kHz.  It supports channel 
bandwidths ranging from 1.44 to 20 MHz.  With bandwidth 
scalability, LTE can comply with various frequency 
regulations worldwide. 
 
The scalable OFDM de
O
transmission and reception algorithms and is complete with 
error analysis and signal display blocks (see Figure 7).  The 
model can be simulated within the Simulink environment 
using automatic stimulus generation and post-decode stage 
packet comparison.  The model used for this example was 
created using “single” floating-point datatype within 
Simulink but has also been implemented using fixed point 
datatypes. 
 
As mention
d
bandwidths.  For this example the signal bandwidth was set 
to 1.44MHz bandwidth corresponding to a 128-pt I/FFT 
signal dimension. 
 
As required by the 3GPP LTE PHY sp
T
requirement of 83.33 µs for the useful symbol period.  This 
constraint was used by the optimization algorithm to 
produce a design with the lowest resource usage while 
meeting this throughput constraint. 
 
4.2. The Process 
 
In order to initiate
p
Simulink model.  In this case, both the Transmitter portion 
and Receiver portion of the design are isolated into their 
own Simulink subsystems.  These subsystems represent two 
independent designs to be translated. 
 
A C implementation for both the Rec
su
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characterized for performance, memory usage and 
instruction usage.  Using these values, the partitioning 
algorithm produced an optimized partition of the design. 
 
During characterization, the C-code implementation of each 
block was functionally verified using vectors generated 

om Simulink simulations.  After partitioning, the C-code 

.3.1. The Transmitter 

itial leaf characterization: 54 Simulink intrinsic blocks 
r sage: 12 core processors 

ost partitioning throughput achieved: 60.7 µs 

r 

Block Name Latency

fr
generated for each partition was verified using Simulink 
simulation vectors.  Finally, both the complete transmitter 
and the complete receiver were verified using Simulink 
simulation vectors. 
 
4.3. Summary of Results 
 
4
 
In
Post pa titioning resource u
P
 
Figure 4 - The final performance of the transmitte
blocks 

Encoder 7.8 µs
Puncture 2.0 µs
Matrix Interleaver 4.3 µs
Block Interleaver 4.3 µs
QAM 9.6 µs
Mod 2.2 µs
Group 12.5 µs
Pilots 0.3 µs
Assemble 15.0 µs
Pad 3.3 µs
Transform 60.7 µs
Cyclic_Multiplex 6.2 µs

 
Based o nd instruction space r for each 
intrinsic ioning algorithm was able to 

plement the design using 12 core processors.  

of the FFT block (labeled 
ransform in Figure 2). The throughput could be further 

itial leaf characterization: 55 Simulink intrinsic blocks 
ar e usage: 12 core processors 

ost partitioning throughput achieved: 1224.3 µs 
cell 

Latency

n the data a equired 
 block, the partit

im
Additionally, all 12 partition implementations meet the 
timing constraint of 83.3 µs. 
 
The throughput of this implementation is limited by the 
generated implementation 
T
improved by replacing the FFT with a custom high-
performance multi-core-processor implementation. 
 
4.3.2 The Receiver  
 
In
Post p titioning resourc

P
Post partitioning throughput achieved (after library 
replacement): 56.8 µs 
 
Figure 5 - The initial performance of the receiver blocks 

Block Name 
Remove_Demulti 3.4 µs
Transform 56.8 µs
Select 5.1 µs
Equalizer_Sub1 6.7 µs
Equalizer_Sub2 31.5 µs
Dissassemble_Sub1 29.7 µs
Dissassemble_Sub2 9.4 µs
QAM_demod 19.8 µs
blockDeinterleaver 4.3 µs
matrixDeinterleaver 8.2 µs
Viterbi 1224.3 µs
Demod_1 27.1 µs

 
Based o ta and instruction space for each 
intrinsic partitioning algorithm was able to 

plement the design using 12 core processors.  However, 

t 
any varieties of decoders. Consequently, a custom hand-

-

 
rbi block. 

Block Name Latency

n the da  required 
block, the 

im
in the case of the Receiver block, the generated Viterbi 
implementation does not meet the throughput performance 
constraint.  Since this block is a Simulink intrinsic block, it 
cannot be further optimized by the partitioning algorithm. 
 
The Simulink generated Viterbi decoder block is inefficient 
because it is generic parameterized code that can implemen
m
coded Viterbi implementation was substituted to meet the 
required design performance.  The custom version of the 
Viterbi decoder uses one core processor and has been hand
optimized specifically for the HyperX architecture.  The 
performance of the final implementation with the library 
cell replacement is shown in Figure 6. 
 
Figure 6 - The final performance of the receiver blocks
with a custom implementation of the Vite

Remove_Demulti 3.4 µs
Transform 56.8 µs
Select 5.1 µs
Equalizer_Sub1 6.7 µs
Equalizer_Sub2 31.5 µs
Dissasseble_Sub1 29.7 µs
Dissassemble_Sub2 9.4 µs
QAM_demod 19.8 µs
blockDeinterleaver 4.3 µs
matrixDeinterleaver 8.2 µs
Viterbi 45.0 µs
Demod_1 27.1 µs
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