
Chung-Ching Shen, William Plishker, Hsiang-Huang Wu, and
Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies,
University of Maryland, College Park, MD

A Lightweight Dataflow Approach
for Design and Implementation of

SDR Systems

OUTLINE

 Introduction
Background
Dataflow-based Design Flow
Lightweight Dataflow Programming Approach
Design Example
Conclusion and Future Work

INTRODUCTION
 In SDR, designers attempt to

 Implement most of the complex
signal handling of radio using
software

 Rapidly target a variety of
platforms (retargetability)

 In modern, complex systems we
would like to
 Create an application description

independent of the targeted
platform

 Interface with a diverse set of tools
 Arrive at an initial prototype

quickly
 Achieve high performance, less

resource usage

Low level, high
performance,

implementation
FPGA

Programmable
DSP

GPU

?

Dataflow-based design is a specific form of
model-based design
 i.e., high level application subsystems are specified

in terms of components that interact through formal
models of computation

Dataflow model of computation
 Used widely in design tools for DSP
 Used widely for expressing the functionality of DSP

applications
 Application is modeled as a directed graph
 Data-driven execution model
 Iterative execution

MODEL-BASED DESIGN BASED ON
DATAFLOW MODEL OF COMPUTATION

EXAMPLE: DATAFLOW-BASED DESIGN
TOOLS FOR DSP

Example from Agilent ADS tool

Example from National Instruments
LabVIEW

Vertices (actors) represent computation
Edges represent FIFO buffers
Edges may have delays, implemented as initial

tokens
Tokens are produced and consumed on edges
Different models have different rules for

production and consumption (SDF=fixed,
CSDF=periodic, BDF=dynamic)

X Y 5Z
p1 c1 p2 c2

e1 e2

DATAFLOW GRAPHS AND SEMANTICS

 Divide actors into a set of modes
 Each mode has a fixed consumption and production behavior,

but actors may dynamically switch between modes.

 Write the enabling conditions for each mode
 Write the computation associated with each mode

 Including next mode to enable and then invoke

 For example, consider a standard Switch:

Production & consumption
behavior of switch modes

Production & consumption
behavior of switch modes

Mode Consumes Produces

Control Data True False

Control 1 0 0 0

True 0 1 1 0

False 0 1 0 1

Switch ActorSwitch Actor

SwitchSwitch

1

1

[1,0]

[0,1]
False

Output

True
Output

Control

Data

Mode transition
diagram

between switch modes

Mode transition
diagram

between switch modes

Control
Mode

True
Mode

False
Mode

EXAMPLE: CORE FUNCTIONAL
DATAFLOW (CFDF) MODEL OF
COMPUTATION

EVOLUTION OF DATAFLOW MODELS OF
COMPUTATION FOR DSP: EXAMPLES

 Computation Graphs and Marked Graphs [Karp 1966,
Reiter 1968]

 Synchronous dataflow, [Lee 1987]
 Static multirate behavior
 SPW (Cadence) , National Instruments LabVIEW,

and others.

 Well behaved stream flow graphs [1992]
 Schemas for bounded dynamics

 Boolean/integer dataflow [Buck 1994]
 Turing complete models

 Multidimensional synchronous dataflow [Lee 1992]
 Image and video processing

 Scalable synchronous dataflow [Ritz 1993]
 Block processing
 COSSAP (Synopsys)

 CAL [Eker 2003]
 Actor-based dataflow language

 Cyclo-static dataflow [Bilsen 1996]
 Phased behavior
 Eonic Virtuoso Synchro, Synopsys El Greco and

Cocentric,
Angeles System Canvas

 Bounded dynamic dataflow
 Bounded dynamic data transfer

[Pankert 1994]

 The processing graph method [Stevens,
1997]
 Reconfigurable dynamic dataflow
 U. S. Naval Research Lab, MCCI

Autocoding Toolset

 Stream-based functions [Kienhuis 2001]

 Parameterized dataflow [Bhattacharya
2001]
 Reconfigurable static dataflow
 Meta-modeling for more general

dataflow graph reconfiguration

 Reactive process networks [Geilen 2004]

 Blocked dataflow [Ko 2005]
 Image and video through

parameterized processing

 Windowed synchronous dataflow
[Keinert 2006]

 Parameterized stream-based functions
[Nikolov 2008]

 Enable-invoke dataflow [Plishker 2008]

 Variable rate dataflow [Wiggers 2008]

MODELING DESIGN SPACE OF
DATAFLOW

X
PSDF

X
PCSDF

E
x

p
r

e
s

s
iv

e
p

o
w

e
r

Verification / synthesis power

X
C, BDF, DDF

X
SDF

X
CSDF

X
CSDF, SSDFMDSDF,

WBDF

X

OUTLINE

 Introduction
Background
Dataflow-based Design Flow
Lightweight Dataflow Programming Approach
Design Example
Conclusion and Future Work

DESIGN FLOW

Actor library

Communication
library

Dataflow graph application

Graph transformation and
analysis

Scheduling and buffer
mapping

Graph-level
function/implementation

validation

Unit testing

Unit testing

X Y 5Zp1 c

1

p2 c2

e1 e2

X Y Z

e1

e2

OUTLINE

 Introduction
Background
Dataflow-based Design Flow
Lightweight Dataflow Programming Approach
Design Example
Conclusion and Future Work

LIGHTWEIGHT DATAFLOW
PROGRAMMING APPROACH

 LWDF
A dataflow programming approach for model-based

design and implementation of DSP systems.
 By ``lightweight‘’: minimally intrusive on existing design

processes, and require minimal dependence on
specialized tools or libraries.

 Features
 Improve the productivity of the design process and the

quality of derived implementations.
 Retargetability across different platforms.
 Allow designers to integrate and experiment with

dataflow modeling approaches relatively quickly and
flexibly into existing design methodologies and processes.

LWDF DESIGN PRINCIPLES I

Each actor has an operational context (OC),
which encapsulates
 parameters
 mode/status variables
 local variables
 references to the FIFOs

 corresponding to the input and output ports of the actor as a
component of the enclosing dataflow graph.

 reference to the execution functions of the actor.

OPERATIONAL CONTEXT – EXAMPLE OF
LWDF-C

inner
product

In1
(vector)

In2
(vector)

out inner
product

In2
(vector)

In3
(vector)

out

In1
(length)

(one mode) (two modes)

LWDF DESIGN PRINCIPLES II

Methods that are involved for the
implementation of an actor
 Construct: connects an actor to its input and output

edges (FIFO channels), and performs any other pre-
execution initialization associated with the actor.

 Execute: implements the operational semantics of a
dataflow model associated with an actor firing.
 e.g, enable and invoke functions of CFDF

 Terminate. performs any operations that are required
for ``closing out'' the actor after the enclosing graph
has finished executing

METHODS – EXAMPLE OF LWDF-C

inner
product

in1
in2

out

length STORE
LENGTH

PROCESS ERROR

ACTOR APIS IN LWDF-C
Type Definitions:
/* An actor’s operational context (OC). */
typedef struct {

/* parameters */
/* local and mode variables */
/* references to FIFO pointers */
/* reference to a pointer of actor’s execution functions */

} [actor_name]_context_struct;

/* A pointer to actor enable/invoke functions, which are functions that
executes an actor with a given context. */

typedef void (*actor_[enable/invoke]_function_type) (struct
actor_context_struct *context);

Key Methods:
[actor_name]_context_type *[actor_name]_new(…);
void [actor_name] enable([actor_name]_context_type *context);
void [actor_name] invoke([actor_name]_context_type *context);
void [actor_name] terminate([actor_name]_context_type *context);

ORTHOGONALIZING DATAFLOW
COMMUNICATION: FIFO

Each data item in the FIFO is referred to as a
"token“, and tokens can have arbitrary types
associated with them.

For a given FIFO instance, there is a fixed
token size (number of bytes per token).

Tokens have arbitrary types
 e.g., integers, floating point values (float or double),

characters, or pointers (to any kind of data).

FIFO APIS IN LWDF-C

Type Definitions:
/* A FIFO. */
typedef struct _fifo_struct fifo_type;
/* A pointer to a fifo. */
typedef fifo_type *fifo_pointer;

Key Methods:
fifo_pointer fifo_new(int capacity, int token_size);
int fifo_population(fifo_pointer fifo);
int fifo_capacity(fifo_pointer fifo);
void fifo_write(fifo_pointer fifo, void *data);
void fifo_write_block(fifo_pointer fifo, void *data, int size);
void fifo_read(fifo_pointer fifo, void *data);
void fifo_read_block(fifo_pointer fifo, void *data, int size);

IMPLEMENTATION IN VERILOG

LWDF-V
Dataflow actor ->Verilog module

 This module can contain arbitrary sub-modules for
complex actors

 This module can be behavioral or structural
 Actor port -> module port
 Actor constructor -> module instantiation

Step/Mode transition graph -> FSM within actor
 Controls actor execute function
 One or more concurrent processes that make up the

steady-state behavior of the actor

EXAMPLE: IMPLEMENTATION
TEMPLATE IN LWDF-V

`include "actor_modules.v"
`include "libs.v"

/* Common actor steps */
`define FS 4'b0001

/* Number of steps */
`define STEP_COUNT 4

`define S2 4'b0010
`define S3 4'b0100
`define FD 4'b1000

module actor_name(port_list);
//parameters
parameter …
//output and input ports
output …
input …

//internal registers and wires

//Verilog structural modeling
//Instantiation of the step transition controller
actor_controller fsm(post_list);

//Verilog behavior modeling
always@(posedge clock) begin

//sequential logics based on step transition
case (state)

`FS:
`S2:
`S3:
`FD:

endcase
end

always@(*) begin
//combinational logics based on step transitions
case (state)

`FS:
`S2:
`S3:
`FD:

endcase
endmodule

OUTLINE

 Introduction
Background
Dataflow-based Design Flow
Lightweight Dataflow Programming Approach
Design Example
Conclusion and Future Work

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

 M=1 for BPSK, M=2 for QPSK, and M=3 for 8PSK

0°180°

01

BPSK
45°135

°

225
°

315
°

11

10

01

00

QPSK

22.5°

112.5°

292.5°

337.5°

247.5°

202.5°

67.5°

157.5° 111

011

001

101100

110

010

000

8PSK

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

LWDF-C implementation for the table-lookup actor in RPSK

actors[ACTOR_BINARY_SIGNAL_SOURCE] = (actor_context_type *)(file_source_new(in_file, fifo2));
actors[ACTOR_PSK_PACK] = (actor_context_type *)(psk_pack_new(fifo1, fifo2, fifo3));
actors[ACTOR_TABLE_LOOKUP] = (actor_context_type*)(table_lookup_new(table_file, table_size,
fifo3, fifo4));
actors[ACTOR_FORK] = (actor_context_type *)(fork_new(fifo4, fifo5, fifo6));
actors[ACTOR_CARRIER_FREQ_MUL1] =
(actor_context_type*)(carrier_freq_mul_new(CARRIER_FREQ_MUL_TYPE_FORWARD,
CARRIER_FREQ_TYPE_COS, INIT_AMPLITUDE, CARRIER_FREQ, COS_SIGN,
DEMODULATE_PTS, fifo5, fifo7));
actors[ACTOR_CARRIER_FREQ_MUL2] = (actor_context_type*
(carrier_freq_mul_new(CARRIER_FREQ_MUL_TYPE_FORWARD, CARRIER_FREQ_TYPE_SIN,
INIT_AMPLITUDE, CARRIER_FREQ, SIN_SIGN, DEMODULATE_PTS, fifo6, fifo8));
actors[ACTOR_PSK_ADD] = (actor_context_type*)(psk_add_new(500e-6, fifo7, fifo8, fifo9));
actors[ACTOR_FILE_SINK] = (actor_context_type *)(file_sink_float_new(out_file, fifo9));

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

Graph topology designed in LWDF-C (i.e., example of RPSK modulator)

T1

T1A T1B

 Simulation based on LWDF-C
 3GHz Intel Pentium PC with 2GB of RAM
 Input bit stream: 10,000 bits
 Simulation time: 1.5 seconds

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

void util_simple_scheduler(actor_context_type *actors[], int actor_count,
char *descriptors[]) {
boolean progress = FALSE;
int i = 0;

do {
progress = 0;
for (i = 0; i < actor_count; i++) {

progress |= util_guarded_execution(actors[i], descriptors[i]);
}

} while (progress);
}

Application simulation driven by a simple scheduler

guarded execution for
CFDF model

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

file_source #(.DATA_WIDTH(DATA_WIDTH), .IN_FILE(IN_FILE)) fs_module1(.out(fifo1_in), .write(fifo1_write),
.out_full(fifo1_full), .clock(clock), .reset(reset), .enable_firing_reset(1'b1));
psk_table_lookup #(.BLOCK_SIZE(BLOCK_SIZE), .INPUT_DATA_WIDTH(DATA_WIDTH),
.OUTPUT_DATA_WIDTH(DATA_WIDTH), .COUNTER_WIDTH(COUNTER_WIDTH)) psk_table_lookup_module (.out(fifo2_in),
.read(fifo2_read), .write(fifo2_write), .in(fifo1_out), .in_empty(fifo1_empty), .out_full(fifo2_full), .clock(clock), .reset(reset),
.enable_firing_reset(1'b1));

actor_fork #(.DATA_WIDTH(DATA_WIDTH)) fork_module (.out1(fifo3_in), .out2(fifo4_in), .read(fifo2_read),
.write(fifo3_4_write), .in(fifo2_out), .in_empty(fifo2_empty), .out1_full(fifo3_full), .out2_full(fifo4_full), .clock(clock), .reset(reset),
.enable_firing_reset(1'b1));

multiplier #(.INPUT_DATA_WIDTH(DATA_WIDTH), .OUTPUT_DATA_WIDTH(DATA_WIDTH)) mul_module1 (.out(fifo5_in),
.read(fifo3_read), .write(fifo5_write), .in1(fifo3_out), .in2(1), .in1_empty(fifo3_empty), .in2_empty(0), .out_full(fifo5_full),
.clock(clock), .reset(reset), .enable_firing_reset(1'b1));

multiplier #(.INPUT_DATA_WIDTH(DATA_WIDTH), .OUTPUT_DATA_WIDTH(DATA_WIDTH)) mul_module2 (.out(fifo6_in),
.read(fifo4_read), .write(fifo6_write), .in1(fifo4_out), .in2(1), .in1_empty(fifo4_empty), .in2_empty(0), .out_full(fifo6_full),
.clock(clock), .reset(reset), .enable_firing_reset(1'b1));

add #(.DATA_WIDTH(DATA_WIDTH)) add_module (.out(fifo7_in), .read(fifo5_6_read), .write(fifo7_write), .in1(fifo5_out),
.in2(fifo6_out), .out_full(fifo7_full), .clock(clock), .reset(reset), .enable_firing_reset(1));

file_sink #(.DATA_WIDTH(DATA_WIDTH), .OUT_FILE(OUT_FILE)) fk_module(.read(fifo7_read), .in(fifo7_out),
.in_empty(fifo7_empty), .clock(clock), .reset(reset), .enable_firing_reset(1'b1));

fifo #(.DATA_WIDTH(DATA_WIDTH), .CAPACITY(CAPACITY), .PTR_WIDTH(PTR_WIDTH)) fifo_module1 (fifo1_out,
fifo1_full, fifo1_empty, fifo1_in, fifo1_read, fifo1_write, clock, clock, reset);

Graph topology designed in LWDF-V (i.e., example of RPSK modulator)

Application execution driven by self-timed
scheduling strategy
 That is, an actor module fires whenever it has

sufficient tokens available on its input FIFOs

FPGA implementation based on LWDF-V
 Target FPGA device: Xilinx Virtex-4
 Resource utilizations after synthesis: 1,484 LUTs

(5% util. rate) and 1,464 CLBs (10% util. rate)

DESIGN EXAMPLE:
RECONFIGURABLE PHASE-SHIFT
KEYING

CONCLUSION AND FUTURE WORK

A lightweight dataflow programming approach
for SDR systems
 Simplified flow for design and testing
 Well-structured design templates

Retargetability: design and implementation in
C and Verilog
 Fast simulation, embedded software realization, and

FPGA mapping

Apply and experiment with various dataflow
MoCs for more SDR applications

Thank You!

