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Abstract—Software defined radio (SDR) applications in tactical
radio networks involve complex computational processing with
stringent hardware and quality-of-service (QoS) constraints.
Individual nodes in a network may not meet the high service
QoS requirements and may not be able to execute complex
tasks by themselves due to resource constraints and limited
functionality. In such scenarios, it can be advantageous to
execute computational tasks in collaboration with peer nodes
by wireless distributed computing (WDC). Such an approach
potentially offers several benefits such as efficient resource
utilization, robustness and security. However, it is bound to
impose an additional communication cost. It is important to
understand the scalability and fundamental limitations imposed
by the underlying communication system on WDC before pur-
suing further research on developing architectures, protocols
and algorithms for distributed computing in collaborative SDR
networks. This paper analyzes the conditions under which WDC
is energy efficient as compared to local on-board processing of
computational tasks. In addition, the paper discusses the effect
of channel errors on the accuracy of the distributed processing.

I. I NTRODUCTION

The computational capability of a software defined radio
(SDR) can sometimes be harnessed to execute application
signal processing software in addition to the communications
waveform software. Wireless application services offered by
modern networks such as SDR networks, tactical radio net-
works, and wireless sensor networks may require high com-
puting power in order to process complex computational tasks.
In addition, stringent quality-of-service (QoS) and security
requirements are also critical for modern radio communication.
Since it may be hard for a single radio to fulfill the re-
quirements, mainly due to resource (computing and power re-
sources) constraints or limited functionality, multiple resource-
constrained radios can form a wireless distributed computing
(WDC) network and collaborate on executing complex signal
processing tasks in a distributed manner.

WDC can potentially offer several benefits to SDR net-
works, such as improved power [1] and energy efficiency,
ability to perform complex tasks by utilizing the leveraged
computing power of several SDR nodes, robustness, and secu-
rity. WDC also enables opportunistic usage of idle computing
resources that would otherwise remain unused for processing
a variety of signal processing applications such as position
location and image processing. However, the cost of communi-
cation between the distributed processes on several radio nodes

negates the benefits achieved by distributing the computational
workload.

Although traditional wired distributed computing has been
well researched for several years [2], it cannot be directly
applied to implement WDC due to the uncertainty introduced
by the wireless channel. Therefore, completely novel tech-
niques and/or architectures are needed to implement WDC.
This work is now possible because of the availability of key
technologies needed to enable this new paradigm, such as fault
tolerant computing, distributed computing, SDR, and cognitive
radio (CR) technology. SDR provides radio flexibility and re-
configurability in order to meet computing and communication
QoS requirements and resource constraints, as illustrated for
the case of channel coding in [3]. CR technology enables a
host of advanced capabilities that provide more stable wireless
links and customization as needed by WDC.

The fundamental issues concerning WDC include, but are
not limited to, tradeoffs between local and distributed pro-
cessing of a signal processing application, errors experienced
by computation on erroneous data corrupted by the wireless
link that connects the WDC processes on the peer nodes,
and cross layer resource allocation. Allocation of power, com-
puting and communication resources involves balancing the
computational workload among the peer nodes that optimizes
cost functions such as network energy consumption, energy
consumption per node and time to complete execution of
computing application. In SDRs, where the system power
consumption is influenced by both the computational as well as
communication hardware power consumption, it is important
for WDC mechanisms to take into consideration the tradeoff
between the two power consumption components. This paper
addresses some of these fundamental issues. Specifically, first
it analyzes the conditions under which it is energy efficient
to distribute the computational workload among several radio
nodes instead of executing it on-board locally on a single node.
Second, the fundamental limitation imposed by the underlying
communication system on the SDR’s computing power is
discussed. Third, the cross layer relation between physical
layer parameters such as bit-error-rate (BER) and application
parameters such as computational accuracy is analyzed.

The remaining portion of the paper is organized as follows.
Section II presents the energy consumption models for the
computation and communication aspects of an SDR. The
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energy consumption benefits and tradeoffs of WDC are theo-
retically analyzed along with simulation results in Section III.
The effects of channel errors on computation accuracy is
analyzed in Section IV. The conclusions are presented in
Section V.

II. SYSTEM MODEL OF SDR-BASED WDC ENVIRONMENT

The WDC environment primarily consists ofNnodes SDR
nodes with computational capabilities and radio links that
connect them. The WDC environment can be modeled in terms
of the three main subsystems of an SDR node, namely com-
munication, computation, and power subsystem. This section
presents a high level energy consumption model of the WDC
system in terms of computation and communication subsystem
models that have been previously presented in [3].

A. Computation Subsystem

Important parameters of the computation subsystem include
the computation’s energy consumptionEcp, power consump-
tion Pcp, and latencyTcp. For our analytical convenience, we
model a complex signal processing task in terms of abstract
computational units (CUs). A computational task constitutes
NCU discrete CUs. Each CU consumesPcp watts of power,
Ncycles processor clock cycles andECU joules of energy.
The total time to process all the CUs in the computational
task is denoted byTcp, where the processing time per CU is
denoted byTCU . Thus, the energy consumed in processing a
computational task is given by

Ecp = ECU NCU = Pcp TCU NCU . (1)

When a computation subsystem processes one CU it accepts
N in

bits bits at the input and generatesNout
bits bits at the output

such thatNout
bits = γ N in

bits, where γ is a positive scaling
factor. For example, in a complex task comprising ofNCU

FFT operations, each FFT operation can be considered as one
CU with γ = 1.

B. Communication Subsystem

The communication subsystem is characterized by the com-
munication power consumptionPcm, communication latency
Tcm, and energy consumptionEcm. The total transmission
time Tcm is a function of the number of bits transmitted and
the radio transmission time per bitTbit (which is a function
of modulation constellation size and network delays).Pcm

can constitute either the transmitter power consumptionPtx,
receiver power consumptionPrx or both depending on the
radio’s functionality.

1) Transmitter Energy Consumption: The transmitter en-
ergy consumption is given by

Etx = Ptrs Ttrs + Ttx [Pamp + Ptxelec + PDAC + Pspt] ,

whereTtx =
Ntxout

Rtxout

=
(NB/Rc)

k Rs

. (2)

Ttrs andTtx are the transient time and the total transmission
time (i.e. time to transmit all the channel encoded data
bits) respectively.Ptrs is the transient power consumption

of the radio just after it is switched-on and before it is
operational [4].PDAC is the power consumed by the digital-
to-analog converter (DAC).Pamp is the power consumed
by the power amplifier (PA) in order to produce an output
power of Pt with a linear PA inefficiencyη and β is a
constant amplifier inefficiency term [4].Ptxelec is the total
power consumed by the active radio hardware components
such as the mixer, transmit filter and local oscillator, as
given by: Ptxelect = Pmixer + PLO + P t

filter. Pspt denotes
the power consumed in executing the transmitter’s waveform
and associated signal processing tasks such as transmitter
beamforming. The total number of bits transmitted is given
by Ntxout = NB/Rc, whereNB is the total number of data
bits from the source andRc represents the channel coding rate.
The net radio transmission bit rate is given byRtxout = kRs,
where k = log2M is the number of bits mapped into a
symbol at the modulator,M is the modulation index, andRs

is the radio transmission symbol rate expressed in symbols per
second.

The PA output powerPt (i.e. the antenna input power),
which is determined using the Frii’s free space path loss model
and log-normal shadowing model [5] , is given by

Pt,dBm = Prmin,dBm − 10 log10

[

GtGrλ
2

(4πdo)
2

]

+ LMdB

−Q−1(p) × σs,dB + 10 n log10

(

D

do

)

, (3)

where the minimum required received signal power (receiver
sensitivity) Prmin = SNRmin × N . In Equation 3,σs,dB

represents the shadow fading standard deviation,n is the path
loss exponent,1 − p is the channel outage probability,Gt

and Gr are the transmitter and receiver antenna gains,λ is
the signal wavelength,do is the near-field reference distance
and D is the distance between the transmitter and receiver.
The link marginLMdB accounts for the miscellaneous losses
in the system that are not explicitly modeled in Equation 3,
such as small scale fading. The minimum required receive
signal-to-noise ratioSNRmin is a function of the required
BER, transmit and receiver waveform model (modulation,
channel coding and signal processing), and the channel con-
ditions. The mean receiver noise powerN is computed as
N = kB × To × B × NF , where kB = 1.3806 × 10−23

J/K is the boltzman’s constant,To = 300 K is the ambient
temperature,B is the receiver bandwidth in Hz, andNF is
the receiver noise figure. Note that the subscriptdB indicates
that the parameter is expressed in decibels.

2) Receiver Energy Consumption: The total receiver energy
consumption is given by

Erx = Ptrs Ttrs + Trx [Prxelec + PADC ] + Espr. (4)

Prxelect is the total power consumed by the active receiver
radio hardware components such as the low noise ampli-
fier, mixer, receive filter and local oscillator, as given by:
Prxelect = PLNA + Pmixer + PLO + P r

filter. PADC is the
power consumed by the analog-to-digital convertor (ADC) and
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Pspr is the receiver signal processing (such as decoding) power
consumption. Note that we have assumed the reception time
Trx ≈ Ttx.

3) WDC System Model: When the computational task is
executed on a single node at a clocking rate offcps, the total
energy consumed in order to processNCU CUs on a single
node constrained by the available energy supplyEsupply, is
given by

Es = Pcp(fcps) × TCUs × NCU ≤ Esupply (5)

where0 < fcps ≤ fcpmax,

andTCUs = Ncycles/fcps.

fcpmax is the maximum processor clocking rate.TCUs is the
time taken to process one CU in a single node when the
processing is performed at a clock rate offcps.

When performing the same task in a distributed manner
on a WDC network, each node consumes energy for commu-
nication processes in addition to the computation processes.
We make some assumptions in order to model the energy
consumption. We consider a homogeneous WDC environment
comprising of identical nodes operating with the same system
parameters (fixed transmission range irrespective of the actual
distances between the nodes) under identical channel condi-
tions. The total computational workload is uniformly allocated
to all the nodes. In each node, the communication processes
(such as transmission, reception, and channel estimation) and
computation processes (such as algorithm execution and mem-
ory access) occur concurrently in order to meet certain net
latency requirements and to avoid buffering of large amount of
data that flows between the computation and communication
subsystems. With these assumptions, the energy consumption
of each node in the WDC system to computationally process
NCU1 CUs and transmit or receive the data bits corresponding
to NCU2 CUs is given by

Enode = Pcp TCUd NCU1 + Ecm1

+Pcm2 Tbit Nbits NCU2 ≤ Esupply, (6)

whereTCUd = Ncycles/fcpd.

TCUd is the execution time of a CU when the node operates
at fcpd. NCU1 andNCU2 are defined based on the workload
allocation strategy employed (see Section III-C ).Ecm1 is the
energy consumption for miscellaneous processes such as tran-
sient processes (irrespective of whether the node is in transmit
or receive mode) and is given byEcm1 = Ptrs Ttrs. Pcm2 is
the power consumption during transmission or reception of
channel bits. The number of bits transmitted or received per
CU Nbits is defined asNbits = N in

bits 1/Rc when raw data
is communicated andNbits = Nout

bits 1/Rc when processed
data is communicated. If the node is required to operate for
a long duration with a finite energy supply, then the power
consumption for both computation and communication has to
be minimized, as evident from Equation 6.
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Fig. 1. SDR fundamental limitation and tradeoff between maximum available
computation power and communication range for various channel and radio
losses assumingG2 = 0.33 W andSNRmin = 10 dB.

III. B ENEFITS OFWDC OVER LOCAL PROCESSING

This section presents a tradeoff that exists between com-
putation and communication parameters in a SDR that is
fundamental to the design and analysis of WDC in SDR
networks. Next, a WDC performance metric that quantifies the
energy benefits of WDC is defined followed by a simulation
study of the same.

A. Limits on Computational Capability

A fundamental limitation of the computational capability of
each node in a WDC system arises as a result of the power
(or energy) constraint expressed in Equation 6. The maximum
power available to computational processes that are executed
concurrent with the transmission process in a node, is given
by

Pcp(fcp) ≤ Psupply − (G1 SNRmin Dn) − G2 (7)

whereG1 =
η kB To NF (σs)

−Q−1(p) (4π)2

Gt Gr λ2 dn−2
o

LM,

andG2 = PDAC + Pspt + Ptrs + β + Ptxelec.

The expressions forG1 and G2 have been derived in [3].
Figure 1 exhibits the non-linear tradeoff between the com-
munication range and the maximum power available for com-
putational purposes. The maximum power available for com-
putation purposes is lesser for more harsh channels. Figure 1
has been plotted with the assumption that there is sufficient
power supply available to operate the processor in a SDR node
at the maximum clock frequency.

The tradeoff between computational capability and com-
munication power consumption in the presence of a power
supply constraint, although a trivial one, serves as a foundation
for WDC system design aspects such as dynamic resource
allocation. In the presence of a dynamic channel, when power
control is exercised the dynamic variation in the amount of
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power available for computation purposes can be modeled as
a stochastic process.

B. WDC Energy Savings Metric

Consider a scenario where a node (designated as the master
node) receives a request for processing a complex signal pro-
cessing application. The master node has to make a decision
of whether to process the computational tasks locally or in
a distributed manner by shedding its workload to the peer
nodes (designated as slave nodes). This decision can be made
based on evaluating the proposed WDC performance metric
which indicates the energy consumption savings achieved by
executing a computational task in a distributed manner in
comparison to local on-board processing of the same task. The
energy savings achieved by the master node in a homogeneous
WDC environment is defined as

Enode
savings = Es − Enode = Pcp(fcps) TCUs NCU

− Pcp(fcpd) TCUd NCU1 − Ecm1

− Pcm2(D,SNRmin) Tbit Nbits NCU2. (8)

Equation 8 indicates that the savings in computational energy
consumption achieved by distributing the workload is negated
by the overhead imposed by the communication of data
between the nodes in WDC network. The savings depend on
the channel conditions, the underlying radio platform and the
network topology. A negative value of energy savings indicates
that it is energy efficient to perform the task on-board locally
as compared to distributed processing. The savings can be
expressed as a percentage as given byEnode

saving/Es × 100.

C. Simulation Results

In our simulation to compute the energy saving, we have
assumed that the master node uniformly distributes the total
workload (i.e.NCU CUs) among all the nodes in the network
including itself, such thatNCU1 = NCU/Nnodes. The total
number of CUs allocated to theNnodes − 1 slave nodes
for processing is given byNCU2 = NCU − NCU1. The
master node processes its share of tasks (i.e.NCU1 CUs) and
transmitsNbits ×NCU2 bits of data to the slave nodes. Upon
processing their respective share of the total workload, each
slave node transmits the results back to the master node. It
is assumed that the communication with the master node is
time-division multiplexed. All the nodes consume the same
amount of computational energyECU . It is also assumed that
the nodes enter a sleep state (low energy state) after completing
the allocated tasks.

The system parameters used in the simulation are listed in
Table I. The channel parameters have been chosen to simulate
a moderately harsh wireless channel. The power consumption
parameters of the radio hardware components have been cited
from [4], [6]–[9]. These values have been measured for narrow
band systems that can transmit over a bandwidth of the order
of 30 KHz at an operating frequency of 2.4 GHz. The values
of G1 andG2 have been computed from these parameters as
G1 B = 2.0182 × 10−10 W/m3 andG2 = 0.33 W.SNRmin

TABLE I
SIMULATION PARAMETERS.

Parameter Value Parameter Value

n 3 SNRmin 10 dB

η 5 Ptxelec 82.8 mW

NF 10 dB β 174 mW

p 99 % Ptrs 58.7 mW

Gt, Gr 2 dBi PDAC 15.4 mW

f 450 MHz Pstat 0.25 mW

σs 8 dB LM 15 dB

do 10 m B 30 KHz

Prxelec 102.8 mW PADC 4.6 mW

Espr 0.2 joules Ttrs 470 µ secs

has been set assuming BPSK modulation in fading channels
with no coding in order to achieve a BER of10−3. Arbitrary
values have been assumed for the remaining parameters as
follows: Tbit = 1/(32 kbps) such thatTtx = Nbits NCU2

32 kbps
,

Nbits = 512 data points× 32 bits per data point.Pcm2 is
the sum of the transmit and receive power consumption at the
master node.

The scaling of energy savings with the complexity of the
computational task (expressed in terms ofECU ) is shown in
Figure 2. For all computational workloads, a computational
task with a high energy consumption ofECU > 0.35 joules
benefits from WDC under the given channel conditions. A
non-trivial observation can also be made that energy savings
do not scale linearly with the workload. This is because, under
a uniform load balancing scheme, higher workloads result in
delegation of an increasing percentage of the total workload
to the slave nodes. This, in turn, results in higher savings
in computational energy consumption, but at the cost of an
increasing communication overhead for the master node. It is
also observed that the savings do not scale linearly with the
energy complexity of the task.

The energy savings in the master node varies withD and
Nnodes as shown in Figure 3. The savings increase with an
increase in the number of collaborative nodes due to decreased
computational workload per node. However, for largeNnodes,
the energy savings does not increase significantly due to
increase in the number of bits transmitted out to the slave
nodes and received back from them. The master node has
to transmit more data and compute on less data thereby
expending higher transmission energy. The decrease of energy
savings with distance is attributed to the increasing transmitter
power consumption at the master node. In this scenario, it may
not be energy efficient to delegate tasks to slave nodes that are
located beyond a radius of 500 m away from the master node.
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Fig. 2. WDC fundamental limitation and tradeoff between energy saving and
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IV. RELATING COMMUNICATION OVERHEAD TO

COMPUTATION ACCURACY

While the previous section discusses the scalability of
WDC energy efficiency with various radio and computational
workload parameters, this section analyzes the impact of the
communication link on the accuracy of the computations that
will be performed by the nodes in the WDC network. We
consider a simple two-node scenario where node 1 captures
data and transmits the datax through a noisy wireless channel
to node 2. Node 2 is required to compute a function of the
dataf(x) in order to make some high level application level
decisions. Node 2 receives corrupted data and computes the
function of this corrupted data. There are two main sources
of error to the function input, namely quantization error and
channel error. Given an error, denoted by∆x, in the input to a
functionf(x+∆x), the computational error can be represented
by ∆f . In the case of a linear function,∆f = f(∆x). In

general, the computational error percentage can be defined as

Fe =

∣

∣

∣

∣

∣

f (x) − f
(

x + ∆x
)

f (x)

∣

∣

∣

∣

∣

× 100, (9)

where x refers to the vector of function inputs and∆x
represents the errors in the input vector. The relation between
the probability of bit-errorPbe andFe is derived next.

Let the number of bits in a binary word representing the
value ofx beB = ⌈log2 n⌉. The probability of word error can
be computed in terms of the number of bits flipped, as given by
Pse =

∑B
i=1

BCi P i
be(1 − Pbe)

B−i. Next, the error resulting
from flipping of bits is computed. Letb = (b0, b1, . . . , bn)
represent a binary word, whereb0 represents the MSB (most
significant bit) that has a decimal value of2n−1. The mean
word error is given by

∆xmean =
B

∑

i=1

P i
be(1 − Pbe)

B−i

BCi
∑

j=1

i
∑

k=1

(−1)
w

2r
j

k . (10)

In equation 10,BCi permutations are possible wheni bits are
flipped at a time.rj

k denotes the position of the flipped bit and
w = 2 when 0 is flipped to 1 whilew = 1 when 1 is flipped
to 0.

Flipping of the MSB causes a high error of2n−1 and
flipping of only the MSB causes maximum error. Considering
only the error component which contributes significantly to
the mean error,∆xmean can be approximated as

∆xmean > Pbe(1 − Pbe)
B−1 2n−1. (11)

For a linear monotonically increasing function in one variable
x, the function slope is given by|∆y/∆x| = S, where
|∆y| = |f (x) − f (x + ∆x)|. Thus, the mean computation
error percentage is given by

Fe >
S

f(x)
Pbe(1 − Pbe)

B−1 2n−1 × 100. (12)

Equation 12 gives the approximate relationship between the
probability of bit error, which is a physical layer metric, to
the function error percentage which is a application layer
metric. Relating these two metrics allows for cross-layer
optimization in setting the SDR parameters such as transmit
power, modulation and coding. This relationship is discussed
next with the help of a simulation.

A. Simulation Example

We consider the case of an FFT computation as an example
signal processing application since FFT is a very widely em-
ployed signal processing algorithm that is primitive to several
complex signal processing applications. The FFT sizesNFFT

(or size of the data) and domain of the inputs (represented by
n) to the FFT algorithm are varied in the simulation. The input
vector x = {x1, x2, . . . , xNF F T

} of size NFFT is generated
by randomly choosing the vector elements with uniform prob-
ability from an alphabet of[0, 1, . . . , n − 1]. The input values
are converted to binary words and mapped to BPSK symbols
before being transmitted through an AWGN channel with
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given signal-to-noise ratio. At the receiver, the BPSK symbols
are demodulated to yield estimates of the binary words. The
estimated binary wordŝx are converted to their decimal
equivalents and applied as input to anNFFT point FFT. In
order to quantify the error performance of the FFT operation,
the function error is computed as:Fe =

∑NF F T

i=1 |yi − ŷi|,
whereyi and ŷi refer to theith element in the FFT function
output vectorsy = FFT (x) and ŷ = FFT

(

x̂
)

respectively.
The simulation is repeated for 10000 instances of the FFT

input vector and channel noise. The function error rate is
computed as an average over the 10000 instances of the
simulation. The function error and BER are plotted in Figure 4.
The plot shows how the BER is related to the function error
for a given channel SNR. Thus, we can analyze the impact of
the parameters of the computation application on the required
BER which is a QoS metric that needs to be specified by the
application. For instance, if the application requires a function
error of less than 2, then it needs to request the communication
subsystem for a BER of less than10−3.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

Wireless distributed computing (WDC) is a novel paradigm
which extends the capabilities of an individual SDR node in
collaboration with peer nodes in the network. In this manner,
a complex signal processing application that may not be
executed on a single node due to resource constraints, can be
executed in a distributed manner on a network of collaborating
SDR nodes. The breakpoint when WDC is energy efficient
compared to on-board local processing has been analyzed in
this paper with the help of fundamental power consumption
models for WDC communication and computation subsystems
and a proposed energy savings metric. The paper also analyzes
the limitations and associated tradeoffs of distributing the
computational tasks in a WDC environment. It has been shown
that the energy benefits, scalability and limitations of WDC
are significantly influenced by the communication overhead
involved in distributing the workload.

WDC is energy efficient when the communication over-
head does not dominate over the computational energy con-
sumption. From the discussion presented in this paper, it
can be inferred that under certain channel conditions it is
economical to process more CUs on-board the master node
while delegating less CUs to the slave nodes. Second, a small
sized network located within a short range yields better WDC
energy efficiency as compared to a large network located
over a wide range. The principles discussed in this paper can
also be applied in reducing the communication overhead in
wireless sensor networks. In a sensor network, each sensor
node collects measurements and is required to transmit them
to the data fusion center. Sometimes, it may be energy-efficient
to process the measurements and minimize the amount of
data transmitted. Finally, the paper presents a novel aspect
of cross layer design in WDC networks where the application
layer specifies the required BER based on the computational
accuracy that it expects.

While this paper presents a preliminary study of the funda-
mental issues of WDC, there are several aspects of the research
that are currently being undertaken. Some of them include:
(a) Experimental verification of the benefits of WDC and
feasibility of WDC on a SDR platform such as GNU radio, (b)
Extension of the analysis presented in this paper to determine
how different characteristics of the radio can affect the energy
efficiency of WDC and (c) Analysis of cross layer design
tradeoffs between communication and computation parameters
that can impact WDC performance.
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