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ABSTRACT 
 
Today’s Software Defined Radio’s (SDRs) make heavy use 
of GPPs, DSP, and FPGAs in order to handle the high 
processing load incurred by the reconfigurable part of the 
radio. As radios and waveforms become ever more complex 
the memory requirement reaches the orders of many 
Megabytes. 
In airborne environments such memory demands constitute a 
problem since, especially at high altitudes like. 60,000 ft 
there exists the problem of single event upset (SEU). These 
SEUs are caused by energetic neutrons hitting the surface of 
silicon devices causing transient errors due to bit flips. 
Although there exist processors and FPGAs that are taylored 
to harsh environments [1], [2] there is a great tendency to 
use COTS devices in order to save device costs. If COTS 
devices are used some kind of redundancy must compensate 
for their SEU susceptibility. Ideally this redundancy is SW 
based so that it can potentially be applied to a large variety 
of processor devices. In this paper a technique called fast 
scrubbing is introduced to mitigate the SEU problem for 
DSPs and GPPs. 
 

1. INTRODUCTION 
 
Due to the advantages of, among others, being 
reconfigurable, extensible, correctable, and portable today’s 
radios are more and more SW-defined. This implies that 
these Software Defined Radios (SDRs) contain a number of 
processing devices such as GPPs, DSPs, and FPGAs all of 
which are associated with memory. Memory constitutes an 
important flexible element in an SDR and nowadays comes 
in the orders of tens or even hundreds of Megabytes. Due to 
its advantages SDR technology is also envisaged for 
airborne applications which, however, poses a unique 
challenge to SDRs.  There exists the problem of single event 
upset (SEU) which becomes particularly severe at high 
altitudes of about 60,000 ft. where airplanes and hence 
airborne SDRs frequently move about. These SEUs are 
caused by energetic neutrons hitting the surface of silicon 
devices causing transient errors due to bit flips especially in 
DRAMs and SRAMs [3], [4], [5], [6], [7]. 
 

Airborne equipment usually has very demanding 
requirements in terms of safety. These requirements also 
apply to military equipment when used in non-military 
situations like search and rescue. For airborne radios the loss 
of communication is regarded as a major event by the FAA 
standards ARP4754 [10] and ARP4761 [11]. A major 
failure condition in turn requires design assurance level C 
(DAL C) according to the standards DO178B [8] and 
DO254 [9] which are generally applied to airborne 
equipment. According to these standards a major event may 
only occur once in 100,000 flight hours if DAL C is 
applicable.  According to [5] and [7] the FIT rate  
(FIT = failure in time, where time usually equals 109 hours) 
for a 1 Mbit (128kbyte) RAM at ground level is around 
2000. This FIT value extrapolates to 800,000 at 60,000ft 
altitude as the worst case. Modern DSPs such as the 
TMS320C6457 ® have the 16-fold internal capacity, i.e. 
2048 kByte of RAM which correspond to 1280 bit errors in 
100,000 hours. Even if only 10% of the RAM content were 
considered as sensitive with respect to the communication 
functionality the resulting error rate of 128 would still be 
two orders of magnitude larger than required to meet the 
FAA standards. This rough estimation gets even more 
disadvantageous if reduced supply voltages and footprint of 
today’s memories are taken into account [12], compared to 
the technologies investigated in [5] and [7]. 
In other words, using high end DSPs such as the 
TMS320C6457 ® in airborne radios without any further 
measures is not possible. The same holds true for GPPs in 
case they do not have any error correction capabilities built 
in. 
 

2. GENERAL MITIGATION TECHNIQUES FOR SEU 
 
All SEU mitigation techniques use some kind of redundancy 
either in space, time or both. The basic idea is to detect and 
correct errors which often is abbreviated by the acronym 
EDAC (error detection and correction) in the literature. 
Correction can be done by [13]: 
o RAMs with built-in error correcting codes (ECC) [6]  
o Selection between various outcomes (voting), a 

technique used in FPGAs  [4], [16] and VLIW DSPs 
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[17] where the existence of  HW and/or time parallelism 
is employed. 

o Reconfiguration from a secure source [16] 
o Scrubbing techniques [6], [14] 
 
In this paper the focus is on scrubbing techniques. The 
scrubbing techniques will be regarded only for the 
protection of the program memory since the program 
memory content is static and hence can be corrected in 
principle. Additionally, errors in the data memory are less 
likely to result in the inability to communicate if proper 
error handling is built into the system and unless the stack 
memory is affected. Stack memory, however, is relatively 
small compared to the overall memory size and hence has a 
reduced probability of getting hit by neutrons. 
 

3. CLASSIC SCRUBBING 
 
The idea of scrubbing is to remove errors from memory 
before the functionality of the system under protection is 
compromised. This can be done in an unconditional manner 
where the memory content is periodically overwritten with 
content from an SEU-insensitive source, or it can be done 
conditionally where the memory is checked for errors first 
and overwritten only in case of errors.  Classic Scrubbing 
has been employed to avoid two-bit errors in ECC-RAMs 
[6] and is done in the background.  
 
Classic scrubbing thrives on the fact that there exists ECC 
memory which is able to correct single bit errors. The 
scrubbing mechanism analyzes the memory content in the 
background and detects corrected errors. After detection the 
codeword is replaced by its original counterpart which 
resides in an SEU-insensitive memory, e.g. a flash memory. 
This way the probability of two-bit errors, which would not 
be correctable by the ECC mechanism, is greatly reduced. 
The idea of this mechanism is visualized in Figure 1. 
 

ECC-RAM before Scrubbing
ECC-RAM after Scrubbing
and subsequently occurring error

ECC-corrected 1-bit errors
Old 1-bit error locations, totally error free by scrubbing

Scrubbing
(every x
minutes)

would have been 2-bit
error had scrubbing
not been performed
before

 
Figure 1: Mechanism of classical scrubbing. One-bit 
errors are removed before a second SEU-event can cause 
a two-bit error. 

4 FAST SCRUBBING 
 
In order to keep manufacturing costs at a reasonable level it 
is desirable to equip modern SDRs with standard COTS 
DSPs and GPPs. However, these components, not being 
originally intended to be used in airborne applications, often 
utilize external and/or internal memory which is not ECC 
protected. Examples for such components are the DSP 
TMS320C6457 ® which has no ECC support whatsoever, or 
the ARM Cortex-A8 based OMAP ® series. The cache 
controller of the latter also does not support ECC RAMs. 
Simply putting the program code into external SEU-
insensitive flash memory is not effective since the increased 
access time of flash memories would unduly slow down 
program execution. If COTS processors, as the ones 
mentioned above, shall still be employed in airborne 
applications one has to find ways to protect the inherent 
non-ECC memories from SEU events.  
 
This paper investigates whether the scrubbing method can 
be used in a foreground process to counteract 1-bit-errors in 
unprotected memories rather than to solely fulfill its 
classical purpose as a background job counteracting 2-bit 
errors for ECC-protected memories. This novel idea of using 
scrubbing as a foreground job will be referred to as “fast 
scrubbing” in the following. 
 
Fast scrubbing utilizes the idea that if scrubbing of a code 
area is performed immediately before the code portion is 
used, then the opportunity for a neutron to damage this code 
portion reduces to the time interval of code usage.  
 
Consider, for example, a simple round robin scheduling 
algorithm as depicted in Figure 2. 
 

Tx
Proc.

Rx
Proc.

Message
Handling

Tproc,1

T

Tsc,1 Tproc,2Tsc,2 Tproc,3Tsc,3

T1 T2 T3

Figure 2: Example of a simple round robin scheduling 
system.

Let us assume that all code portions for Tx processing, Rx 
processing, and message handling are scrubbed before they 
are used. In this case the probability for a detrimental SEU 
event becomes 
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where the times Ti contain both the times Tsc,i for scrubbing 
as well as the times Tproc,i for processing. For the sake of 
simplicity let us further assume that for all of the time 
intervals Ti we have Ti = T/3 and for all probabilities the 
identity P(SEUi)=p0 holds. Under these assumptions we 
obtain in the case of no scrubbing 
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i.e. we obtain a probability for a detrimental SEU event 
which is three times less than it would have been if no fast 
scrubbing had been performed.  
 
It can easily be seen that the probability for a detrimental 
SEU event decreases with the number of memory portions 
that are scrubbed before usage. In the simple example of 
Fig. 2 only three portions Tx processing, Rx processing, and 
message handling are used. It is, however, the goal to find 
more sections the memory can be divided into and which are 
used in succession. A further breakdown of memory may be, 
for example: Tx signal processing, Tx bit processing, Rx 
signal processing, Rx bit processing, configuration message 
handling, and notification message handling. Depending 
upon the architecture of the radio SW a much finer 
granularity of the code may be possible. 
 
In order to be able to use a scrubbing scheme which 
preserves the integrity of the program memory before it is 
used two prerequisites must be fulfilled: 
 
o It must be possible to detect memory errors 
o It must be possible to correct memory errors 
 
Several schemes which provide this are conceivable, two of 
which are schown below. 
 

4.1 SOFTWARE-BASED ECC 
 
The notion of software-based ECC is depicted in Fig. 3 in a 
simplified manner. The basic idea is to use systematic codes 
to represent the program memory content, i.e. the executable 
code is placed in a cleartext section of the memory and the 
redundant information is placed in the parity section. Prior 
to execution of, say, the Tx part the pertinent code memory 

partition is checked whether errors have occurred. If errors 
have occurred they will be repaired due to the capability of 
the error correcting code. Two assumptions are made here: 
 
o The checking of the code is done often enough so that, 

with sufficient probability, occuring errors are just one-
bit errors. 

o The time for code checking and repairing is small 
compared to the time for code execution. Since it is also 
assumed that errors are a rare event the number of code 
words that can be corrected in the allocated time Tsc,i is 
much smaller than the number n of codewords.  

 

Tx Processing

Memory Map

Parity Info Tx Proc.

Rx Processing

Message Handling

cleartext portion of k-byte codeword n

Parity Info Rx Proc.

Parity Info Msg. Hndl.

1 2 3 4

n

1 2 3 n

parity portion of k-byte codeword n

Figure 3: For SW-based ECC the memory is partitioned 
in a cleartext section and a parity section.

As will be discussed later this SW-based scheme is 
impractical in most cases due to the large amount of 
processing power needed for the error correction. 
 

4.2 CODE RECOVERY FROM A SECURE SOURCE 
 
The second scheme for fast scrubbing also divides the 
program memory into a cleartext section and a parity 
section. In contrast to the previous scheme the parity section 
only serves as a means to detect errors rather than correct 
them which allows for simpler codes. If errors are detected 
the codeword under test is replaced by its original 
counterpart which is taken from an SEU protected memory 
like a flash memory. In contrast to the previous scheme the 
error correction is not performed by using error syndrome 
analysis but simply by copying the corresponding memory 
partition from a secure source, i.e. memory expense is traded 
against processing power. 
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Figure 4: Fast Scrubbing by restoring data content from 
an SEU-safe RAM. 
 

4.3 OPTIMUM CODEWORD SIZE 
 
Assuming that a fast scrubbing method shall be used for 
SEU protection improvement the most efficient codeword 
size for the memory portion to be checked needs to be 
determined. To this end the following quantities are defined: 
o A memory partition M to be checked consists of N 

codewords having a size of k bytes, i.e.  
kNM ⋅= (2) 

o The time tdetect needed to detect an error in a codeword is 
assumed to be proportional to k according to 

kctt constect ⋅+= 1det_det  (3) 

The time tdet_const is a processor dependent quantity which 
accounts for the initialization of the error detection 
mechanism. 

o The time tcorrect needed to correct an error is modeled by 
kctt constcorrcorrect ⋅+= 2_ (4) 

All times shall be measured in processor cycles. 
 
The total time T for fast scrubbing, assuming that there is 
only one error in the code memory portion since SEUs are 
rare events, may be computed according to: 

kctkcNtN

ttNT

constcorrconst

correctect

⋅++⋅⋅+⋅=

+⋅=

2_1det_

det  

By substituting N with M/k we get 

( ) kctkct
k
MT constcorrconst ⋅++⋅+= 2_1det_

 (5) 

It can be seen that the smaller the codeword size k the 
smaller the time to correct an error will be. On the other 
hand the overhead to restart the error detection increases 
with decreasing k, so in order to find the minimum 
scrubbing time T one has to compute 

( ) 02det_2 =+−= ct
k
M

k
T

constδ
δ

Employing standard calculus it can be computed that the 
optimum codeword size is 

( )constopt t
c
Mk det_

2

= (6) 

so the optimum codeword size k is proportional to the 
square root of the memory partition size M. Since N=M/k 
also the optimum number of codewords Nopt is proportional 
to the square root of M. 
 
4.3.1 EXAMPLE OF 3 PARTITIONS OF SIZE 100KB 

 
In a simplified example we assume a total program memory 
size PM of 300kByte which is partitioned into p = 3 
independent partitions of size M = 100kbyte. The 3 
partitions may resemble Tx processing, Rx processing, and 
message handling as described in chapter 4. 
 
In order to obtain realistic constants of the detection and 
correction times a DSP running at 400MHz clock and a 4-
Byte read time of 70ns from a secure flash memory (needed 
for the method described in chapter 4.2) are assumed. In this 
case we get 
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For the current example the total scrubbing time would be 

( ) 5753645374535.014226min =⋅+⋅+⋅=
cycles
T

which, for a DSP running at 400MHz clock speed, amounts 
to roughly 145µs. 
 
If it is further assumed that the other portions for Rx 
processing and control contribute the same scrubbing delay 
there would be a total scrubbing time of 435 µs. If it is 
further assumed that the total processing delay of a 
waveform must be smaller or equal to 3ms then the fast 
scrubbing would consume about 14% of this maximum 
delay which appears to be tolerable.  
Note that in this example the number of cycles for codeword 
correction is 6328,  a value which is orders of magnitude 
lower than what would be required by a SW-based RS 
decoding solution [18]. Hence the scrubbing method of 
chapter 4.1 doesn’t appear to be promising in this scenario. 
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4.3.2. SCRUBBING DELAY EXPENSE  
 
The example above for p=3 reduces the SEU probability by 
a factor of three which may not be enough depending on the 
total program memory size PM and the design assurance 
level (DAL) of the software. So it is crucial to investigate 
the scrubbing delay expense as a function of PM and the 
number p of independently scrubbable memory partitions M. 
This is because the larger PM the more code can be stored, 
and the larger p the lower the probability will be that an 
SEU event affects the system performance. Fig 5 displays 
the aforementioned analysis which is based on eqs. (5) and 
(6). 
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Figure 5: Scrubbing delay expense over PM and p.

It can be seen that the total scrubbing delay expense is only 
weakly dependent on the number p of partitions. So the 
increase of  p comes at a comparatively low cost with 
respect to delay.  
 
In chapter 1 the example for the TMS320C6457 ® revealed 
the need for a two orders of magnitude improvement in error 
rate to meet the FAA requirements provided that the entire 
internal memory of 2048kByte is used. If this improvement 
must be achieved by fast scrubbing alone eq. 1 suggests that 
roughly p=100 memory partitions need to be identified. 
Besides being a special challenge to find this many 
functionally separate partitions the partitioning itself has a 
major impact on SW architecture the consequences of which 
have yet to be investigated. 
 
The total program memory size PM has a large impact on 
the scrubbing delay. The scrubbing scheme may become 
disadvantageous for a value of PM greater than 500kByte, 
since above this memory size roughly 25% of the system 
delay are attributed to scrubbing. On the one hand this 
reduces the number p, on the other hand much of the internal 

memory in the above example would need to remain unused. 
This calls for alternatives to relieve the scrubbing delay 
penalty. 
 

5. PARALLELIZED SCRUBBING 
 
Many modern DSPs use several parallel processing units, 
e.g. the TMS320C64x+™series, employing the third-
generation high-performance, advanced VelociTI™ very-
long-instruction-word (VLIW) architecture developed by 
Texas Instruments (TI). The C64x+ DSP core employs eight 
functional units, two register files, and two data paths, A and 
B.  
A potential way to reduce the scrubbing delay is to dedicate 
one of the data paths, say data path B, for scrubbing while 
the other path A is used for regular processing.  Of course 
data path B can also be used for regular processing 
whenever scrubbing allows to do so. The scheme is 
indicated in Fig. 6 showing the simple example from  
chapter 4. 
 

Tx
Proc.

Rx
Proc.

Message
Handling

Tproc,1

T

Tsc,1

Tproc,2

Tsc,2

Tproc,3

Tsc,3

 
Figure 6: Scrubbing example from chapter 4 where 
scrubbing is done in parallel with regular processing.

As all SEU mitigation methods this parallelization of 
scrubbing comes at a price. In this case the price is a 
reduction of available computing power for SDR 
functionality. On the other hand, this scrubbing scheme can 
be put into effect using cost-efficient COTS processors. 
 

6. RESULTS AND FUTURE WORK 
 
It has been shown that scrubbing has more to offer than to 
just serve as a slowly-running background job which 
minimizes the probability of two-bit errors in ECC 
memories. The novel approach of “fast scrubbing” has been 
analyzed where scrubbing is executed in the foreground and 
removes SEU-based bit-flips in unprotected memory by 
repairing memory content right before its use. Fast 
scrubbing is especially interesting if modern COTS 
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processors shall be employed since these often have large 
internal memories which are not ECC protected.  
 
Two versions of fast scrubbing have been discussed, a SW-
based scrubbing scheme based on error correction codes, 
and a flash-based code recovery scheme which checks the 
memory for errors and replaces erroneous memory partitions 
with the original ones from a flash memory.  
 
An analysis revealed that the SW-based scheme appears 
infeasible due to the large computational requirements for 
executing error correcting codes like Reed-Solomon, 
especially if the codewords need to be large. The code 
recovery scheme has been shown to be attractive if the 
memory size to be protected is moderate and the minimum 
system delay of the SDR is in the millisecond range. The 
computational delay of the scrubbing schemes may be 
reduced further by doing the scrubbing in parallel to the 
regular processing. Parallelization can be achieved by 
utilizing the availability of multiple computational units and 
data paths in modern processors. 
 
The odds are that fast scrubbing alone cannot fully 
compensate for the lack of ECC memory, either because the 
required number of memory partitions becomes prohibitive 
rendering too many restrictions concerning the SW 
architecture, or because the scrubbing delay becomes too 
high. Hence fast scrubbing probably but must be supported 
by other means such as code sensitivity analysis or SW-
based voting mechanisms. These findings advise a more 
detailed analysis of various processor types and the impact 
of fast scrubbing on SW architecture. 
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