
Software Defined Implementation of MPEG4 Decoder on
Sandblaster SB3500 DSP

Vaidyanathan Ramadurai1, Mayan Moudgill2, Daniel Iancu1, Gary Nacer3, John Glossner3

1 Optimum Semiconductor Technologies Inc, 120 White Plains Road, Tarrytown, NY 10523, vramadurai@optimumsemi.com

2 Goldman Sachs, NY

3 Sandbridge Technologies Inc, 120 White Plains Road, Tarrytown, NY 10523

ABSTRACT

MPEG4 decoder is predominantly used in video
broadcast applications, mobile communications,
surveillance and security, and multimedia streaming over
the internet. Multimedia signal processing algorithms in
MPEG4 and H.264 video codecs are characterized by high
computational complexity and high memory bandwidth
requirements. The decoder uses temporal, spatial and
variable length decoding to reconstruct the original frames
from the compressed video. The temporal decoding is based
on motion compensation which is block based. The block
sizes can be 16x16 or 8x8 with half pixel resolutions.
Spatial decoding is done using an 8x8 IDCT. Huffman and
run-length codes are used in variable length decoding. In
addition, MPEG4 also provides various prediction modes
for both temporally and spatially coded frames.

An MPEG4 simple profile decoder is implemented
on Sandblaster SB3500 which is based on the Sandblaster
2.0 architecture [1] for high resolutions like VGA
(640x480) and D1 (720x480). The Sandblaster SB3500 is a
compact and power-efficient system-on-chip platform
tailored for wireless and multimedia devices. The SB3500
provides a high level of parallelism at the instruction level
and at the data level. Additionally the SB3500 employs
simultaneous execution of 12 threads thereby allowing real
time tasks to run in parallel. Multiple levels of parallelism
have been exploited to implement an efficient high
resolution MPEG4 decoder. The SB3500 also has facility
for block DMAs (Direct Memory Access) as well as
scatter/gather DMAs. The DMAs provide efficient
movement of high bandwidth data like video reference
frames from external memory to local memory.

We provide a brief overview of the architecture of
SB3500. After an introduction on MPEG4 simple profile
decoder, we provide the details of the software defined
implementation of the decoder on SB3500 with focus on
optimizations of key video kernels for compute and
memory. The entire software is implemented in C without

any hardware acceleration. The decoder has been optimized
to utilize less than 9% of the total DSP signal processing
capacity. We also compare our implementation on SB3500
to a similar implementation on SB3011 which incorporates
the Sandblaster 1.0 architecture [2]. The SB3500 provides
approximately 6 times better throughput performance,
thereby providing the scalability to higher resolutions like
720p and 1080i HD (High Definition).

1. INTRODUCTION

MPEG4 is a multimedia standard adopted by the
Moving Pictures Experts Group (MPEG) [3]. A simple
profile MPEG4 decoder is defined by the standard for low
complexity coding and decoding of rectangular video
frames. Implementing an MPEG4 decoder on embedded
processors has always been a challenging task. Moreover,
the computational and memory requirements for decoding
high resolution video streams like VGA is very demanding
and requires substantial optimization. In this paper, we
present the implementation of a simple profile MPEG4
decoder, executing in real time, on Sandblaster DSP for
high resolution VGA encoded video streams. We focus on
parallel processing; multithreading and efficient handling of
video frames using Direct Memory Access (DMA). We also
describe the partition of various blocks in the decoder
across multiple threads based on their computational
complexity and memory complexity.

This paper is organized as follows. In Section 2, we

provide an overview of a simple profile MPEG4 decoder. In
Section 3, we discuss the Sandblaster SB3500 multithreaded
processor. In Section 4, we describe the optimization of
high resolution MPEG4 decoder for SB3500. In Section 5
we compare our SB3500 implementation with the SB3011
implementation results. Section 6 concludes this paper.

2. SIMPLE PROFILE MPEG4 DECODER

The block diagram of an MPEG4 decoder is shown in
Figure 1. A typical MPEG4 decoder unit consists of a

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

SDR'10 Session 6A- 2

532

Variable Length Decoder (VLD), Inverse Scanning, an
Inverse AC/DC prediction, Inverse Quantizer and Inverse
Transform (IDCT). In case of an inter coded block/frame, it
is motion compensated before being sent to output. The
reconstructed output frame is available in YUV format to be
displayed. This procedure is applied for every macroblock
and thus for every frame.

Figure 1: MPEG4 Decoder Block

The encoded data stream is demarcated into frames using
start codes and end codes. Every frame is then subdivided
into smaller units called macroblocks. Each macroblock is a
16x16 (4 8x8) unit of luminance (intensity) data and 2 8x8
units of chrominance (color) data. This subdivision
facilitates in processing the video data in chunks of blocks
rather than as an entire frame.

3. SANDBLASTER DSP

 The SB3500® features the Sandblaster® DSP for
execution of baseband in software – including physical
layer. It has a programmable RF interface, with the
capability to capture raw data at 240 mega samples per
second (MSPS). It includes interfaces to LCD, keypad,
USIM, Smartcard, Audio codec, IrDA, plus emerging
'critical' features such as add-on memory cards, camera
interface, and USB.
 Sandbridge Technologies has developed the
Sandblaster architecture [1] for convergence devices. As
handsets are converging to multimedia multi-protocol
systems, the Sandblaster architecture supports the data types
necessary for convergence devices including RISC control
code, DSP, and Java.
 Figure 2 shows the architecture design of Sandblaster.
The design includes a unique combination of modern
techniques such as a SIMD Vector/DSP unit, a parallel
reduction unit, and a RISC-based integer unit. Each
Sandblaster core provides support for concurrent execution

for up to four threads of execution. All states may be saved
from each individual thread and no special software support
is required for interrupt processing. The machine is
partitioned into a RISC-based control unit that fetches
instructions from a set-associative instruction cache.
Instruction space is conserved through the use of
compounded instructions that are grouped into packets for
execution.
 Encoded

stream

VLD

Inv
Scanning

Inv
AC/DC

Pred

Dequantize

IDCT

Motion

Compensation

Frame
Output

Figure 2 SB3500 DSP core

 The memory subsystem has been designed carefully to
minimize the power dissipation. The pipeline design in
combination with the memory design ensures that all
memories are single ported and yet the processor can sustain
nearly 16 taps per cycle for a filter (the theoretical
maximum) in every thread unit simultaneously. A RISC-
based execution unit, shown in the center of Figure 1,
assists with control processing. In the case of control code,
a 16 entry, 32-bit register file per thread unit provides for
very efficient control processing. Common integer data
types are typically stored in register files. This allows for
branch bounds to be computed and addresses to be
generated efficiently. The SIMD/Vector unit depicted on
the right side of Figure 2 performs intensive loop
processing. Each cycle, a 16x16-bit vector may be loaded
into the register file while two vectors are being multiplied,
saturated, reduced (e.g. summed), and saturated again. The
branch bound may also be computed and the instruction
looped on itself until the entire vector is processed. This
may be specified in as little as 64 bits.

 To enable multimedia processing in software, the
processor supports several levels of parallelism. Thread-
level parallelism is supported by providing hardware
support for up to 4 independent programs to be
simultaneously active on a single Sandblaster core. This

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
533

reduces the latency in physical layer processing. Since many
algorithms have stringent requirements on response time,
multithreading is an integral technique in minimizing
latencies. The data-level parallelism (SIMD) is supported
through the use of a SIMD Vector unit. Additionally, the
compound word instruction set provides instruction level
parallelism.

Function

 The SB3500 consists of 3 Sandblaster DSP cores with
an integrated ARM9 core, peripherals and external DDR
memory as shown in Figure 3. A DSP core consists of 4
threads with each thread running at a frequency of 150MHz.
Every core has its own local memory of 256Kbytes and an
instruction cache memory of 32 Kbytes.

Figure 3 SB3500 DSP core

4. OPTIMIZING MPEG4 DECODER

The decoding routines are classified into parsing
intensive functions like the VLD and compute intensive
functions like the IDCT and motion compensation. We also
subdivide the compute intensive functions into memory-
intensive and non-memory intensive functions. For e.g.
motion compensation is memory-intensive as it operates on
current frame/pixels and reference frame/pixels. IDCT and
Dequantize are non-memory intensive functions as they
operate on smaller blocks and do not require reference
pixels from memory. Memory access becomes intensive
depending on the type or level of memory being accessed.
The output frames and thus reference frames are stored in
external memory or slow memory. Hence accessing these
memory regions is extremely expensive. The next level of
memory is the local memory or fast memory.

Table 1 shows the computational complexity of the
simple profile MPEG4 decoder executed on a VGA
(640x480) resolution clip which was encoded at 1mbps, 25
frames per second (fps).

Table 1: MPEG4 Computational Complexity

Each of these blocks has been optimized for SB3500 to fit
in one thread running at 150MHz. Several optimization
techniques have been used including 16 way vectorization
for IDCT and motion compensation and efficient table
lookups for VLD. Memory DMAs have also been
effectively used to hide the latency of moving reference and
decoded pixels across different memory regions.

Figure 4: MPEG4 Decoder Architecture

Figure 4 shows the high level architecture for the

decoder. The input encoded streams are stored in external or
slow memory and are DMA transferred to fast memory or
the local memory in smaller chunks. This local data is then
processed by a single SB3500 DSP thread. The VLD block
performs all the parsing and bit level decoding for one
macroblock. The output from the VLD contains information

Computation (%)

Variable Length Decode 15%
Inverse Scan, Inv
AC/DC

10%

Dequantize 15%
IDCT 20%
Motion Compensation 40%

DSP 2

Local
Memory

DSP 1

Local
Memory

DSP 3

Local
Memory

Peripheral Bridge
&

Local Memory

Peripherals
&

External Memory

Application
Processor

Programmable
RF

Interface DMA engine 1

Input stream
(external memory)

Encoded data
(local memory)

Macroblock

MPEG4
decoder
thread

Reference pixels
(local memory)

Output pixels
(local memory)

DMA engine 2 DMA engine 3

Output Frames
(external memory)

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
534

to decode one macroblock, like the macroblock type, motion
vectors, coded coefficients etc. This information is then
transferred to a macroblock control block. The macroblock
control block performs all the control routines based on
information from the VLD. For example, it checks if the
macroblock to be decoded is an intra-coded or an inter-
coded macroblock and invokes the appropriate decoding
routines like inverse Scanning, Inverse AC/DC prediction,
dequantization, IDCT and motion compensation. We will
focus on IDCT, motion compensation and frame buffer
management for optimization techniques specific to
SB3500.

4.1 DISCRETE COSINE TRANSFORM

A one dimensional DCT of the real-valued input

vector is first taken. The input vector represents an 8x8
matrix that is stored sequentially one row after the other in a
64 length vector. Essentially, the 8 point 1D DCT of each
column in this matrix is taken. This is performed using
vector operations that utilize the commonality of various
arithmetic operations in the DCT process to speed things up.

1. Given an input x = [x0 x1 ... x7], the 8 point 1D DCT
then becomes:

Y0 = x0 + ... x7
Y1 = C1(X0-X7) + C3(x1-x6) + C5(x2-x5) + X7(x3-x4)
Y2 = C2(x0-x3-x4+x7) + C6(x1-x2-x5+x6)
Y3 = -C1(x2-x5) + C3(x0-x7) - C5(x3-x4) - C7(x1-x6)
Y4 = C4(x0-x1-x2+x3+x4-x5-x6+x7)
Y5 = C1(x6-x1) + C3(x3-x4) + C5(x0-x7) + C7(x2-x5)
Y6 = C2(x2-x1+x5-x6) + C6(x0-x3+x7-x4)
Y7 = C1(x4-x3) + C3(x2-x5) + C5(x6-x1) + C7(x0-x7)

Commonly used terms are computed first and then reused to
speed things up.

2. Next, the transpose of the resultant DCT matrix is taken
using SB3500 vector shuffle instructions.

3. Now, step 1 is repeated on the transposed result.

4. Finally, the result of step 3 is rescaled because the 8 point
1D DCT requires that Y0 be multiplied by sqrt(1/8) and
Y1...Y7 be multiplied by sqrt(2/8). Therefore, a combined
rescaling is performed for all of the DCT's in both steps 1
and 3. These operations are performed at once using the
SB3500 vector instructions.
5. Lastly, the transpose of the rescaled result is taken to
return the row/column ordering back to its original form.
The MPEG4 decoder utilizes Inverse Discrete Cosine
Transform (IDCT) and the above DCT optimizations
techniques are used in the IDCT as well.

4.2 MOTION COMPENSATION

Figure 5 shows an unoptimized code snippet for a
motion compensation block. This function interpolates the
buffer (which contains the data copied from the reference
frame) and then adds it to the differential values decoded
from the bitstream. The interpolation done here is both in
the "x" and the "y" direction i.e. both in the horizontal and
the vertical direction.

#define BLOCK_SIZE 8
#define CLIP(N,Max,Min) if((N) > (Max)) (N) =
(Max); \
else if((N) < (Min)) (N) = (Min)

void halfxhaly_mc
(

UWORD8 *ref9x9,
 UWORD8 *BlkIn,
 UWORD8 *BlkOut,
 WORD32 VopRoundingType
)
{
 WORD16 temp_res;
 WORD8 *temp_ref;
 WORD16 temp;
 WORD32 j;
 WORD32 i;

 temp_ref = ref9x9 + (BLOCK_SIZE+1);

 for(i = 0; i < BLOCK_SIZE; i++)
 {
 for(j = 0; j < BLOCK_SIZE; j++)
 {
 WORD16 temp_res1;
 WORD16 temp_res2;

 temp_res1 =
 ref9x9[i*(BLOCK_SIZE+1)+j] +
 ref9x9[i*(BLOCK_SIZE+1)+j+1];

 temp_res2 =

temp_ref9x9[i*(BLOCK_SIZE+1)+j] +
temp_ref9x9[i*(BLOCK_SIZE+1)+j+1];

 temp_res = temp_res1 + temp_res2;

 temp = (BlkIn[i*BLOCK_SIZE+j] +

 ((temp_res + 2 –
VopRoundingType)>> 2));

 BlkOut[i*BLOCK_SIZE+j] =

CLIP(temp, 0, 255);
 }
 }
}

Figure 5: Motion Compensation

The input 8x8 pixels are stored in BlkIn and the reference
9x9 pixels are stored in ref9x9. The horizontally
interpolated values of a row (row1) are stored in temp_res1
and the horizontally interpolated values of the row below
(row2) are stored in temp_res2. The vertically interpolated
values from temp_res1 and temp_res2 are stored in

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
535

temp_res. temp_res is then added to input pixels BlkIn,
rounded, clipped to an 8 bit quantity and stored into BlkOut.

The SB3500 vector instructions are utilized to
optimize this kernel in the following way. For every
BLOCK_SIZE elements, temp_res1 is computed using a
single vector add instruction. Similarly, temp_res2 and
temp_res are each computed using a single vector add
instruction. (2- VopRoundingType) is a constant that is
broadcasted and stored in a 16 element vector register. Two
vector adds and a vector shift thus computes temp. The final
clipping is done using a vector minimum and a vector
maximum instruction. Thus the inner BLOCK_SIZE loop is
executed using only 7 SB3500 vector instructions. Similar
optimizations have been used for all possible motion
compensation cases, like horizontal only and vertical only
interpolations.

4.3 FRAME BUFFER MANAGEMENT

The frame buffer management is also done by the
decoder thread. The thread checks if a single row of
macroblocks (in case of VGA, this is 40 macroblocks) has
been decoded. Once a row of macroblocks has been
decoded to local memory, the output DMA engine is started
to transfer the decoded pixels to external memory, while the
next row of macroblocks is decoded to a double buffered
local memory. In this way, the latency of transferring the
decoded pixels to external memory is very well hidden.

On the input side, the buffer management is
implemented more like a cache. For example, a slice or a
portion of the reference frame is DMA transferred from
external memory to local memory based on demand. In our
current implementation, we break the reference frame into
M equal slices, {R1, R2, R3 ...RM} of N macroblocks each.
Once the last macroblock is decoded, the first slice R1 of
the reference frame is DMA transferred from external to
local memory. The size M is calculated based on the video
resolution and local memory availability. The video
resolution is known beforehand once the header is decoded.
The DMA transfer is hidden with actual DSP processing
cycles. By the time the motion compensation stage is
reached, these reference pixels are available in local
memory. Depending on the motion vector, a check is made
if the reference pixels are in the local memory or in external
memory. If there is a hit, the pixels are taken from local
memory, otherwise from external memory. We observed
cache hit performance rate of more than 80% for most of the
teststreams that were experimented with. Also, significant
portion of cache misses were from boundary pixels that
depended on reference pixels from the next or previous
slice. This can be further improved by storing boundary
pixels from the previous and the next reference frame slices.

5. COMPARISON RESULTS WITH SB3011

In [12], we had presented a similar implementation

on Sandblaster SB3011. The SB3011 implementation
utilized 12 threads, each running at 75MHz and 3 levels of
local memory, external, L2 and L1.

Device MHz Threads Local memory utilization
(Kbytes)

SB3011 900 12 640

SB3500 150 1 256

Table 2. SB3500 - SB3011 MPEG4 (VGA @ 30fps)

comparison

In summary, SB3500 provides approximately 6x

performance improvement with less than 50% less memory
requirement over Sandblaster 1.0 SB3011 device.

6. CONCLUSION

In this paper, we have described the optimization of a
simple profile MPEG4 decoder on Sandblaster SB3500 DSP
for high resolution video streams like VGA. By exploiting
SB3500 vector instructions and using memory management
techniques like DMA for frame buffer handling, we achieve
real time performance requirements. The SB3500
implementation utilizes less than 9% of the total DSP signal
processing capacity with the capability to scale to higher
resolutions like D1 and 720p.

6. REFERENCES

[1] M. Moudgill, J. Glossner, S. Agrawal, and G. Nacer, “The
Sandblaster 2.0 Architecture and SB3500 Implementation”, in
Proceedings of the Software Defined Radio Technical Forum (SDR
Forum '08), Washington DC, October, 2008

[2] J. Glossner and D. Iancu, “The Sandbridge SB3011 SDR
Platform” Symposium on Trends in Communications
(SympoTIC’06), Invited keynote, Bratislava, Slovakia, June 24-26,
2006.

[3] ISO/IEC 14496-2:199/ Amd 1:2000, "Coding of Audio-Visual
Objects - Part 2: Visual, Amendement 1: Visual Extensions",
Maui, December 1999.

[4] P. Li, B. Veeravalli, and A. Kassim, “Design and
Implementation of Parallel Video Encoding Strategies Using
Divisible Load Analysis," in IEEE Transactions on Circuits and
Systems for Video Technology, No. 9, Vol.15, pp. 1098{1112,
September 2005.

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
536

[5] John Glossner et al, “Sandblaster low power DSP”, IEEE 2004
Custom Integrated Circuits Conference, 2004, pp 575-581.

[6] S. Jinturkar, J. Glossner, M. Moudgill, E. Hokenek,
“Programming the Sandblaster Multithreaded Processor”, in
Proceedings of GSPx 2003.

[7] Milan Pastrnak, Peter H. N. de With, Sander Stuijk, Jef van
Meerbergen Parallel implementation of arbitrary-shaped MPEG-4
decoder for multiprocessor systems in Visual Communications and
Image Processing 2006 (VCIP 2006) , vol. 6077 p. 60771I-1 ...
60771I-10, January 2006, San Jose, California, USA

[8] V. Ramadurai, S. Jinturkar, J. Glossner, M. Moudgill,
“Implementation of H.264 decoder on Sandblaster DSP”, IEEE
International Conference on Multimedia and Expo, July 2005.

[9] Iain E.G. Richardson, “H.264 and MPEG-4 video
compression”, Wiley 2003.

[10] S. Agrawal, S. Jinturkar, V. Ramadurai, M. Moudgill, and J.
Glossner, “Multithreading MPEG4 Encoder on Sandblaster DSP”,
Proceedings at the 2005 Global Signal Processing Expo (GSPx)
and International Signal Processing Conference (ISPC), Santa
Clara, California, October 24-27, 2005.

[11] V. Ramadurai, S. Jinturkar, M. Moudgill, and J. Glossner,
“Multithreading H.264 Decoder on Sandblaster DSP”,
Proceedings at the 2005 Global Signal Processing Expo (GSPx)
and International Signal Processing Conference (ISPC), Santa
Clara, California, October 24-27, 2005.

[12] V. Ramadurai, S. Jinturkar, J. Glossner, M. Moudgill, “Design
and Implementation of a high resolution MPEG4 decoder on
Sandblaster DSP”, Proceedings at the Embedded Systems for Real-
Time Multimedia, ESTIMedia 2007.

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved
537

	ABSTRACT

