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ABSTRACT 
 

MPEG4 decoder is predominantly used in video 
broadcast applications, mobile communications, 
surveillance and security, and multimedia streaming over 
the internet. Multimedia signal processing algorithms in 
MPEG4 and H.264 video codecs are characterized by high 
computational complexity and high memory bandwidth 
requirements. The decoder uses temporal, spatial and 
variable length decoding to reconstruct the original frames 
from the compressed video. The temporal decoding is based 
on motion compensation which is block based. The block 
sizes can be 16x16 or 8x8 with half pixel resolutions. 
Spatial decoding is done using an 8x8 IDCT. Huffman and 
run-length codes are used in variable length decoding. In 
addition, MPEG4 also provides various prediction modes 
for both temporally and spatially coded frames. 
 

An MPEG4 simple profile decoder is implemented 
on Sandblaster SB3500 which is based on the Sandblaster 
2.0 architecture [1] for high resolutions like VGA 
(640x480) and D1 (720x480). The Sandblaster SB3500 is a 
compact and power-efficient system-on-chip platform 
tailored for wireless and multimedia devices. The SB3500 
provides a high level of parallelism at the instruction level 
and at the data level. Additionally the SB3500 employs 
simultaneous execution of 12 threads thereby allowing real 
time tasks to run in parallel. Multiple levels of parallelism 
have been exploited to implement an efficient high 
resolution MPEG4 decoder. The SB3500 also has facility 
for block DMAs (Direct Memory Access) as well as 
scatter/gather DMAs. The DMAs provide efficient 
movement of high bandwidth data like video reference 
frames from external memory to local memory.  
 

We provide a brief overview of the architecture of 
SB3500. After an introduction on MPEG4 simple profile 
decoder, we provide the details of the software defined 
implementation of the decoder on SB3500 with focus on 
optimizations of key video kernels for compute and 
memory. The entire software is implemented in C without 

any hardware acceleration. The decoder has been optimized 
to utilize less than 9% of the total DSP signal processing 
capacity. We also compare our implementation on SB3500 
to a similar implementation on SB3011 which incorporates 
the Sandblaster 1.0 architecture [2]. The SB3500 provides 
approximately 6 times better throughput performance, 
thereby providing the scalability to higher resolutions like 
720p and 1080i HD (High Definition). 
 

1. INTRODUCTION 
 

MPEG4 is a multimedia standard adopted by the 
Moving Pictures Experts Group (MPEG) [3]. A simple 
profile MPEG4 decoder is defined by the standard for low 
complexity coding and decoding of rectangular video 
frames. Implementing an MPEG4 decoder on embedded 
processors has always been a challenging task. Moreover, 
the computational and memory requirements for decoding 
high resolution video streams like VGA is very demanding 
and requires substantial optimization. In this paper, we 
present the implementation of a simple profile MPEG4 
decoder, executing in real time, on Sandblaster DSP for 
high resolution VGA encoded video streams. We focus on 
parallel processing; multithreading and efficient handling of 
video frames using Direct Memory Access (DMA). We also 
describe the partition of various blocks in the decoder 
across multiple threads based on their computational 
complexity and memory complexity.  

 
This paper is organized as follows. In Section 2, we 

provide an overview of a simple profile MPEG4 decoder. In 
Section 3, we discuss the Sandblaster SB3500 multithreaded 
processor. In Section 4, we describe the optimization of 
high resolution MPEG4 decoder for SB3500. In Section 5 
we compare our SB3500 implementation with the SB3011 
implementation results. Section 6 concludes this paper. 

 
2. SIMPLE PROFILE MPEG4 DECODER 
 

The block diagram of an MPEG4 decoder is shown in 
Figure 1. A typical MPEG4 decoder unit consists of a 
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Variable Length Decoder (VLD), Inverse Scanning, an 
Inverse AC/DC prediction, Inverse Quantizer and Inverse 
Transform (IDCT). In case of an inter coded block/frame, it 
is motion compensated before being sent to output. The 
reconstructed output frame is available in YUV format to be 
displayed. This procedure is applied for every macroblock 
and thus for every frame. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  MPEG4 Decoder Block 
 
 
The encoded data stream is demarcated into frames using 
start codes and end codes. Every frame is then subdivided 
into smaller units called macroblocks. Each macroblock is a 
16x16 (4 8x8) unit of luminance (intensity) data and 2 8x8 
units of chrominance (color) data. This subdivision 
facilitates in processing the video data in chunks of blocks 
rather than as an entire frame. 

 
 

3.  SANDBLASTER DSP 
 
 The SB3500® features the Sandblaster® DSP for 
execution of baseband in software – including physical 
layer. It has a programmable RF interface, with the 
capability to capture raw data at 240 mega samples per 
second (MSPS). It includes interfaces to LCD, keypad, 
USIM, Smartcard, Audio codec, IrDA, plus emerging 
'critical' features such as add-on memory cards, camera 
interface, and USB. 
 Sandbridge Technologies has developed the 
Sandblaster architecture [1] for convergence devices. As 
handsets are converging to multimedia multi-protocol 
systems, the Sandblaster architecture supports the data types 
necessary for convergence devices including RISC control 
code, DSP, and Java. 
       Figure 2 shows the architecture design of Sandblaster. 
The design includes a unique combination of modern 
techniques such as a SIMD Vector/DSP unit, a parallel 
reduction unit, and a RISC-based integer unit. Each 
Sandblaster core provides support for concurrent execution 

for up to four threads of execution. All states may be saved 
from each individual thread and no special software support 
is required for interrupt processing. The machine is 
partitioned into a RISC-based control unit that fetches 
instructions from a set-associative instruction cache. 
Instruction space is conserved through the use of 
compounded instructions that are grouped into packets for 
execution. 
 Encoded 

stream 
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Figure 2 SB3500 DSP core 

 
       The memory subsystem has been designed carefully to 
minimize the power dissipation. The pipeline design in 
combination with the memory design ensures that all 
memories are single ported and yet the processor can sustain 
nearly 16 taps per cycle for a filter (the theoretical 
maximum) in every thread unit simultaneously. A RISC-
based execution unit, shown in the center of Figure 1, 
assists with control processing.  In the case of control code, 
a 16 entry, 32-bit register file per thread unit provides for 
very efficient control processing.  Common integer data 
types are typically stored in register files. This allows for 
branch bounds to be computed and addresses to be 
generated efficiently.  The SIMD/Vector unit depicted on 
the right side of Figure 2 performs intensive loop 
processing.  Each cycle, a 16x16-bit vector may be loaded 
into the register file while two vectors are being multiplied, 
saturated, reduced (e.g. summed), and saturated again.  The 
branch bound may also be computed and the instruction 
looped on itself until the entire vector is processed. This 
may be specified in as little as 64 bits.   
 
       To enable multimedia processing in software, the 
processor supports several levels of parallelism.  Thread-
level parallelism is supported by providing hardware 
support for up to 4 independent programs to be 
simultaneously active on a single Sandblaster core. This 
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reduces the latency in physical layer processing. Since many 
algorithms have stringent requirements on response time, 
multithreading is an integral technique in minimizing 
latencies. The data-level parallelism (SIMD) is supported 
through the use of a SIMD Vector unit. Additionally, the 
compound word instruction set provides instruction level 
parallelism. 

 
Function 

 
 The SB3500 consists of 3 Sandblaster DSP cores with 
an integrated ARM9 core, peripherals and external DDR 
memory as shown in Figure 3. A DSP core consists of 4 
threads with each thread running at a frequency of 150MHz. 
Every core has its own local memory of 256Kbytes and an 
instruction cache memory of 32 Kbytes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 SB3500 DSP core 
 
 

4. OPTIMIZING MPEG4 DECODER 
 

The decoding routines are classified into parsing 
intensive functions like the VLD and compute intensive 
functions like the IDCT and motion compensation. We also 
subdivide the compute intensive functions into memory-
intensive and non-memory intensive functions. For e.g. 
motion compensation is memory-intensive as it operates on 
current frame/pixels and reference frame/pixels. IDCT and 
Dequantize are non-memory intensive functions as they 
operate on smaller blocks and do not require reference 
pixels from memory. Memory access becomes intensive 
depending on the type or level of memory being accessed. 
The output frames and thus reference frames are stored in 
external memory or slow memory. Hence accessing these 
memory regions is extremely expensive. The next level of 
memory is the local memory or fast memory.  

Table 1 shows the computational complexity of the 
simple profile MPEG4 decoder executed on a VGA 
(640x480) resolution clip which was encoded at 1mbps, 25 
frames per second (fps).  

 
Table 1:  MPEG4 Computational Complexity 

 
Each of these blocks has been optimized for SB3500 to fit 
in one thread running at 150MHz. Several optimization 
techniques have been used including 16 way vectorization 
for IDCT and motion compensation and efficient table 
lookups for VLD. Memory DMAs have also been 
effectively used to hide the latency of moving reference and 
decoded pixels across different memory regions. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  MPEG4 Decoder Architecture  
 
Figure 4 shows the high level architecture for the 

decoder. The input encoded streams are stored in external or 
slow memory and are DMA transferred to fast memory or 
the local memory in smaller chunks. This local data is then 
processed by a single SB3500 DSP thread. The VLD block 
performs all the parsing and bit level decoding for one 
macroblock. The output from the VLD contains information 
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to decode one macroblock, like the macroblock type, motion 
vectors, coded coefficients etc. This information is then 
transferred to a macroblock control block. The macroblock 
control block performs all the control routines based on 
information from the VLD. For example, it checks if the 
macroblock to be decoded is an intra-coded or an inter-
coded macroblock and invokes the appropriate decoding 
routines like inverse Scanning, Inverse AC/DC prediction, 
dequantization, IDCT and motion compensation. We will 
focus on IDCT, motion compensation and frame buffer 
management for optimization techniques specific to 
SB3500. 

 
4.1 DISCRETE COSINE TRANSFORM 

 
A one dimensional DCT of the real-valued input 

vector is first taken. The input vector represents an 8x8 
matrix that is stored sequentially one row after the other in a 
64 length vector. Essentially, the 8 point 1D DCT of each 
column in this matrix is taken. This is performed using 
vector operations that utilize the commonality of various 
arithmetic operations in the DCT process to speed things up.  

 
1. Given an input x = [x0 x1 ... x7], the 8 point 1D DCT 
then becomes:  
 
Y0 = x0 + ... x7 
Y1 = C1(X0-X7) + C3(x1-x6) + C5(x2-x5) + X7(x3-x4) 
Y2 = C2(x0-x3-x4+x7) + C6(x1-x2-x5+x6) 
Y3 = -C1(x2-x5) + C3(x0-x7) - C5(x3-x4) - C7(x1-x6) 
Y4 = C4(x0-x1-x2+x3+x4-x5-x6+x7) 
Y5 = C1(x6-x1) + C3(x3-x4) + C5(x0-x7) + C7(x2-x5) 
Y6 = C2(x2-x1+x5-x6) + C6(x0-x3+x7-x4) 
Y7 = C1(x4-x3) + C3(x2-x5) + C5(x6-x1) + C7(x0-x7)  
 
Commonly used terms are computed first and then reused to 
speed things up.  
 
2. Next, the transpose of the resultant DCT matrix is taken 
using SB3500 vector shuffle instructions.  
 
3. Now, step 1 is repeated on the transposed result.  
 
4. Finally, the result of step 3 is rescaled because the 8 point 
1D DCT requires that Y0 be multiplied by sqrt(1/8) and 
Y1...Y7 be multiplied by sqrt(2/8). Therefore, a combined 
rescaling is performed for all of the DCT's in both steps 1 
and 3. These operations are performed at once using the 
SB3500 vector instructions.  
5. Lastly, the transpose of the rescaled result is taken to 
return the row/column ordering back to its original form.  
The MPEG4 decoder utilizes Inverse Discrete Cosine 
Transform (IDCT) and the above DCT optimizations 
techniques are used in the IDCT as well. 
 

4.2 MOTION COMPENSATION 
 

Figure 5 shows an unoptimized code snippet for a 
motion compensation block. This function interpolates the 
buffer (which contains the data copied from the reference 
frame) and then adds it to the differential values decoded 
from the bitstream. The interpolation done here is both in 
the "x" and the "y" direction i.e. both in the horizontal and 
the vertical direction.  

 

 
 

#define BLOCK_SIZE 8 
#define CLIP(N,Max,Min) if((N) > (Max)) (N) = 
(Max); \ 
else if((N) < (Min)) (N) = (Min) 
 
void halfxhaly_mc 
( 

UWORD8 *ref9x9, 
 UWORD8 *BlkIn, 
 UWORD8 *BlkOut, 
 WORD32 VopRoundingType 
) 
{ 
 WORD16 temp_res; 
 WORD8 *temp_ref; 
 WORD16 temp; 
 WORD32 j; 
 WORD32 i; 
 
 temp_ref = ref9x9 + (BLOCK_SIZE+1); 
 
 for(i = 0; i < BLOCK_SIZE; i++) 
 { 
   for(j = 0; j < BLOCK_SIZE; j++) 
   { 
     WORD16 temp_res1; 
     WORD16 temp_res2; 
 
     temp_res1 =   
      ref9x9[i*(BLOCK_SIZE+1)+j] +    
      ref9x9[i*(BLOCK_SIZE+1)+j+1]; 

 
     temp_res2 =        

temp_ref9x9[i*(BLOCK_SIZE+1)+j] + 
temp_ref9x9[i*(BLOCK_SIZE+1)+j+1]; 

 
     temp_res = temp_res1 + temp_res2; 

 
    temp = (BlkIn[i*BLOCK_SIZE+j] +             

     ((temp_res + 2 –  
VopRoundingType)>> 2)); 

 
     BlkOut[i*BLOCK_SIZE+j] =  

CLIP(temp, 0, 255); 
   } 
 } 
} 

Figure 5:  Motion Compensation 
 
The input 8x8 pixels are stored in BlkIn and the reference 
9x9 pixels are stored in ref9x9. The horizontally 
interpolated values of a row (row1) are stored in temp_res1 
and the horizontally interpolated values of the row below 
(row2) are stored in temp_res2. The vertically interpolated 
values from temp_res1 and temp_res2 are stored in 
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temp_res. temp_res is then added to input pixels BlkIn, 
rounded, clipped to an 8 bit quantity and stored into BlkOut.  
 

The SB3500 vector instructions are utilized to 
optimize this kernel in the following way. For every 
BLOCK_SIZE elements, temp_res1 is computed using a 
single vector add instruction. Similarly, temp_res2 and 
temp_res are each computed using a single vector add 
instruction. (2- VopRoundingType) is a constant that is 
broadcasted and stored in a 16 element vector register. Two 
vector adds and a vector shift thus computes temp. The final 
clipping is done using a vector minimum and a vector 
maximum instruction. Thus the inner BLOCK_SIZE loop is 
executed using only 7 SB3500 vector instructions. Similar 
optimizations have been used for all possible motion 
compensation cases, like horizontal only and vertical only 
interpolations. 
 
  

4.3 FRAME BUFFER MANAGEMENT 
 

The frame buffer management is also done by the 
decoder thread. The thread checks if a single row of 
macroblocks (in case of VGA, this is 40 macroblocks) has 
been decoded. Once a row of macroblocks has been 
decoded to local memory, the output DMA engine is started 
to transfer the decoded pixels to external memory, while the 
next row of macroblocks is decoded to a double buffered 
local memory. In this way, the latency of transferring the 
decoded pixels to external memory is very well hidden. 
 

On the input side, the buffer management is 
implemented more like a cache. For example, a slice or a 
portion of the reference frame is DMA transferred from 
external memory to local memory based on demand. In our 
current implementation, we break the reference frame into 
M equal slices, {R1, R2, R3 ...RM} of N macroblocks each. 
Once the last macroblock is decoded, the first slice R1 of 
the reference frame is DMA transferred from external to 
local memory. The size M is calculated based on the video 
resolution and local memory availability. The video 
resolution is known beforehand once the header is decoded. 
The DMA transfer is hidden with actual DSP processing 
cycles. By the time the motion compensation stage is 
reached, these reference pixels are available in local 
memory. Depending on the motion vector, a check is made 
if the reference pixels are in the local memory or in external 
memory. If there is a hit, the pixels are taken from local 
memory, otherwise from external memory. We observed 
cache hit performance rate of more than 80% for most of the 
teststreams that were experimented with. Also, significant 
portion of cache misses were from boundary pixels that 
depended on reference pixels from the next or previous 
slice. This can be further improved by storing boundary 
pixels from the previous and the next reference frame slices. 

 
5. COMPARISON RESULTS WITH SB3011 

 
In [12], we had presented a similar implementation 

on Sandblaster SB3011. The SB3011 implementation 
utilized 12 threads, each running at 75MHz and 3 levels of 
local memory, external, L2 and L1.  

 
 

Device MHz Threads Local memory utilization 
(Kbytes) 

SB3011 900 12 640 

SB3500 150 1 256 

 
Table 2. SB3500 - SB3011 MPEG4 (VGA @ 30fps) 

comparison 
 
In summary, SB3500 provides approximately 6x 

performance improvement with less than 50% less memory 
requirement over Sandblaster 1.0 SB3011 device. 

 
6. CONCLUSION 

 
In this paper, we have described the optimization of a 
simple profile MPEG4 decoder on Sandblaster SB3500 DSP 
for high resolution video streams like VGA. By exploiting 
SB3500 vector instructions and using memory management 
techniques like DMA for frame buffer handling, we achieve 
real time performance requirements. The SB3500 
implementation utilizes less than 9% of the total DSP signal 
processing capacity with the capability to scale to higher 
resolutions like D1 and 720p. 
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