
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

LEVERAGING EMBEDDED HETEROGENEOUS PROCESSORS FOR

SOFTWARE DEFINED RADIO APPLICATIONS

Almohanad S. Fayez, Qinqin Chen, Jeannette Nounagnon, Charles W. Bostian

Wireless@VT
Bradley Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, VA 24061
 (afayez, chenq, jddjig01, bostian}@vt.edu

ABSTRACT

The paper focuses on utilizing embedded processors with

integrated General Purpose Processor (GPP) and Digital

Signal Processor (DSP) cores for SDR applications. With

such processors, developers can leverage operating systems

running on GPP cores and use DSP cores to accelerate

signal processing tasks in building small form factor SDR

solutions. The SDR community realizes the importance of

heterogeneous computing; however, common software radio

development tools like GNU Radio and OSSIE do not

provide wide enough support for computing devices other

than GPPs.

 This paper discusses the toolset support for GPP/DSP

based processors, and explores how the TI OMAP3530

processor can be used to add DSP support for SDR

developments tools, specifically GNU Radio. It presents an

example where the OMAP DSP core is used for filtering in a

GNU Radio flow graph; the paper also discusses some

integration aspects of which application developers should

be aware.

1. INTRODUCTION

Looking at the diverse applications for SDR, ranging from

mobile handheld to base-station level radios, it is evident

that various classes of power utilization and computational

density are needed to cover the wide spectrum of SDR

needs. For such applications, three main computing devices

are available: General-Purpose Processors (GPPs), Digital

Signal Processors (DSPs), and Field-Programmable Gate

Arrays (FPGAs). Many existing SDR platforms

accommodate different combinations of computing devices

and allow design partitioning amongst them[1], [2], [3], and

[4]. Dealing with such computing heterogeneity is an

important aspect of system design for application

developers. It becomes important to abstract such

computing heterogeneity in SDR platforms to focus on the

overall application design without being encumbered by

low-level system design issues.

 In abstracting computing heterogeneity, the Software

Communications Architecture (SCA) has introduced the use

of CORBA as a middleware [5] between different

computing devices and applications. While it is possible to

abstract the underlying computing devices using such

techniques, middleware interfaces can incur significant

latency causing performance degradation in the overall

system [6]. Some vendors provide proprietary FPGA/DSP

interfaces and libraries for device communication such as

the Lyrtech Lyrio interface [2]. However, such proprietary

interfaces and libraries can be a hurdle for porting and

developing applications outside the realm of the vendor's

platforms and development environment.

 This paper will discuss work done on the Texas

Instruments (TI) OMAP3530 processor [7], an integrated

GPP/DSP chip targeted for embedded DSP applications,

installed on the Beagleboard [8]. The scope of the work

includes writing a library to perform the inter-process

communication between the GPP and DSP, integrating the

DSP as a coprocessor for GNU Radio, and performance

results for a DSP accelerated GNU Radio flow graph.

 The paper is organized as follows: a summary of the

hardware platform used, a description of the software

environment used, current functionality available in the

library, integration of the DSP in GNU Radio, and an

example of using the library within GNU Radio.

2. HARDWARE PLATFORM

The Beagleboard is intended as a low cost (<$150) platform

that makes the TI OMAP3530 processor accessible to the

open source community [9]. The TI OMAP3530 is intended

for mobile graphic applications [10]; it is an integrated

GPP/DSP processor combining an Arm Cortex-A8 GPP and

a C64x+ DSP core. The Cortex-A8 is composed of an

Armv7 GPP with a NEON core and a multimedia

acceleration SIMD coprocessor [11]. The C64x+ DSP is a

16-bit fixed-point VLIW DSP. The DSP contains eight

independent functional units: six ALUs and two multipliers

that support either four 16 x 16 bit multiplies or eight 8 x 8

SDR'10 Session 5G- 2

490

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

bit multiplies [10]. The Beagleboard revision used in this

work supports a host-side EHCI USB driver which is needed

to interface with first generation USRPs [12].

3. SOFTWARE TOOLS

In targeting the GPP and DSP on the Beagleboard, a number

of different software tools are used.

a- OpenEmbedded (OE) [13]: The general framework

used to target the Beagleboard. It is used to

compile the Linux kernel, Angstrom distribution,

and to generate a file system for the board. OE is

also used to compile the necessary drivers for the

board and compile the various packages needed.

b- TI DSP/BIOS Link (DSPLink) [14]: This library is

used for inter-processor communication between

the GPP and DSP on the OMAP processor. The

DSPLink library provides mechanisms for basic

processor control, data transfer, memory

sharing/synchronization, and messaging, among

other inter-process functionalities.

c- C6x Compiler [15]: The TI DSP compiler used on

a Linux machine. The TI integrated development

environment, Code Composer Studio (CCS) v3.3,

is also used to debug DSP code in combination

with a JTAG. CCS is not necessary for compiling

C64x+ DSP code since TI provides its compiler

through their website at no cost. However, CCS is

necessary to use a JTAG.

d- DSP BIOS [16]: DSP/BIOS is a lightweight real-

time library which provides basic run-time

functionalities on the DSP. Examples of such

functionalities include scheduling threads, handling

I/O, and capturing information in real-time.

e- GNU Radio [17]: GNU Radio is installed on the

Beagleboard via the OE environment. The DSP is

integrated as a functional block on a native GNU

Radio installation. Using all of the previous tools,

it is possible to target both the Arm GPP and the

C64x+ DSP on the Beagleboard through GNU

Radio.

To install the TI toolsets and build the necessary DSPLink

drivers, we followed instruction available on [18].

4. GNU RADIO DSP EXTENSION

Our goal is to extend GNU Radio to provide support for

DSP processors. While GNU Radio applications are written

in Python, the actual signal processing is implemented in

C++ and the Python/C++ interface is performed by the

software toolset SWIG (Simplified Wrapper and Interface

Generator). Using Python to construct flow graphs can be

convenient since it’s an interpreted language meaning it does

not require source code compilation such as C++. However,

compiled languages such as C++ are not encumbered by the

overhead of runtime compilation associated with interpreted

languages.

 From a high abstraction perspective, Figure 1

demonstrates how the DSP looks to an application

developer. The figure shows how the DSP can be

instantiated to perform functions within GNU Radio flow

graphs. In the figure, GNU Radio block is a generic term

referring to existing GNU Radio functions. The code

necessary to perform the inter-processor link using DSPLink

and loading the necessary DSP program is encapsulated into

a custom GNU Radio block so the underlying support code

is transparent to users. The next sections in the paper will

discuss the details of the work done to provide such

abstraction for the DSP and DSPLink interface.

5. GPP AND DSP CODE DEVELOPMENT

GPP and DSP applications are written and compiled

separately with the DSPLink library providing the necessary

constructs for inter-processor communication. To better

understand the program flow between GNU Radio and the

DSP, Figure 2 shows the interaction between the different

programming domains, with execution starting in the GNU

Radio Python block which ultimately utilizes the DSP

Program block to perform filtering. Looking at the figure,

the DSP is invoked from a python file and through SWIG,

GNU Radio invokes the necessary C++ calls; the latter

Python and C++ code enables GNU Radio to invoke the

DSP. The GPP library includes a set of functions necessary

to communicate with the DSP over DSPLink.

Figure 1. Application level abstraction of the DSP in the
OMAP processor.

GPP Library
Init DSP

Load DSP Program

Transmit Data

Receive Data

DSP Program

FIR Filtering

DSPLink

GNU Radio C++

Invoke Library calls

Library

Function

Calls

GNU Radio Python

Invoke DSP

Setup Flow Graph

SWIG

Figure 2. Interaction between the different
programming domains.

491

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

 The GPP library currently uses three components from

DSPLink:

a- PROC: the processor component.

b- POOL: the shared memory configuration and

management component.

c- CHNL: the channel component.

The PROC component is used to initialize the DSP

processor, load DSP executables, and stop DSP execution;

basically it is used to setup and load the DSP. The POOL

component is used to configure and synchronize the shared

memory regions between the GPP and DSP necessary for

inner-processor data transfers. The CHNL component

instantiates a logical data transfer link, or channel, between

the GPP and DSP. While the CHNL component manages

the logical data link between the DSP and GPP, the POOL

component manages the physical memory used for the

CHNL component including all the necessary memory

allocation, synchronization, and address translation between

the GPP and DSP. The GPP library essentially abstracts the

DSPLink function calls necessary to initialize the DSP,

instantiate the shared memory region, create the channel

constructs, and the physical exchange of data back and forth

with the DSP.

 Data transfers types can either be real or complex (IQ)

floating point data with all the necessary data type

conversions, floating-point to fixed-point and vice-versa,

taken care of by the application. The user needs only to

supply a scaling value that is necessary for the data type

conversion. Figure 3 shows an example of how the GPP

library can perform the data type conversion between

floating-point format on the GPP and fixed-point format on

the DSP. The figure shows the GPP sending an array of

three values to the DSP. The input data from the GPP are

normalized floating-point values; the GPP scales the data by

a factor of 2^14 and truncates any value after the decimal

point to generate the fixed-point values for the DSP. For the

purposes of this example, after receiving the GPP data the

DSP sends the same received input back and the GPP scales

the fixed-point values by a factor of 1/2^14 and generates

floating-point value from the fixed point values. As we can

see, the GPP does not receive the original values it sent to

the DSP because of the quantization error in the

floating/fixed point conversion.

 The DSP program connects to the GPP data channels

through DSP BIOS specific library calls. In this application,

the stream I/O manager (SIO) is used to create and manage

data streams needed to communicate with the data channels

running on the GPP side. The DSP receives data streams

from the GPP which includes the length of the data streams

being passed to the DSP. The SIO is able to allocate data

streams of various sizes dynamically; however, in the work

 presented, the DSP and GPP allocate streams/channels of a

static size, but they then fill the inter-processor buffers with

as many data elements as needed by the application. The

GPP passes the DSP information about the number of

elements written in the buffer so the DSP does not have to

read more elements from the buffer than necessary. By

passing the buffer size with every transfer, the DSP reads

only valid buffer elements and synchronizes the buffer

without having the GPP clear the buffer before each transfer.

To better understand the data buffer between the GPP and

DSP, Figure 4 shows an example of two consecutive buffers

being passed from the GPP to the DSP; the first buffer is of

size 3 and the second is of size 1 while the size of the buffer

= MAX is some larger number representing the maximum

size, in this case 512, which is also the index of the last

element in the buffer. The first buffer has only three data

points; elements 4 through 512 (MAX) are empty while the

second buffer has only one valid data point so elements 2

and 3 contain stale data while the rest of the buffer elements

are empty.

 To abstract the above discussed function calls, a library

is compiled with an associated header file to be used by

application developers to access the DSP. The primary

library function calls include:

a- DSP and inter-processor buffer initialization.

b- GPP transmitting real or complex (IQ) data to the

DSP.

c- GPP receiving real or complex (IQ) data from the

DSP.

Please note that the DSP program is a separate executable

which is loaded as part of the DSP initialization routine from

the GPP side of the application.

Figure 3. An example of floating/fixed point conversion
where SCALE = 2^14.

0 1 2 3 4 …

MAX

= 512

len= 3 data[0] data[1] data[2] 0 0 0

0 1 2 3 4 …

MAX

= 512

len = 1 data[0] OLD OLD 0 0 0

Figure 4. Two example buffers to be transferred by the GPP
to the DSP. The top buffer is of length = 3; the bottom is of
length = 1, and the buffer size is a larger number = MAX in
this case 512.

492

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

6. GNU RADIO DSP INTEGRATION

For the work presented, the base DSP and GPP code used

written in C++ while hooks are also supported to enable

DSP configuration and integration in Python. In integrating

the DSP as a GNU Radio block, we used the GNU Radio

template for writing a custom block “gr-howto-write-a-

block-3.2.1” from the GNU Radio repository [17] and

installed GNU Radio 3.2.1 on the Beagleboard using OE.

The base template was used to create a set of dsp class

functions. As a test of our framework, we use the TI DSP

library “C64x+ DSP Library”. Initially, we concentrate on

providing filtering functionalities on the DSP; in this paper

we characterize the performance of a complex FIR filter.

The DSP FIR implementation is intended to replace its GNU

Radio GPP-based counterpart (fir_filter_ccf), a FIR filter

with complex input/output, real coefficients, and optional

interpolation.

The DSP filter implementations are instantiated in the same

way that GPP filters are instantiated in GNU Radio. The

following is a sample instantiation of the gr_fir_filter_ccf on

the DSP from a native GPP python file:

fir_ccf_dsp = dsp.fir_ccf_dsp(coeff, sf, interp)

Where fir_ccf_dsp is a handler to the DSP based filter, coeff

is the set of filter coefficients, sf is the scaling factor and

interp is the filter interpolation factor.

 When the filters are instantiated during a GNU Radio

flow graph, they essentially instantiate the associated DSP

transmit/receive function calls for real or complex data. In

compiling the DSP class functions for the Beagleboard, we

use a modified OE recipe (compile instructions) provided by

the authors of [12].

7. GNU RADIO TESTING

 To compare the performance of a DSP based filter with

its GPP based counterpart, we set up a GNU Radio flow

graph comprised of a 300 tap complex filter with input data

being read from an input file, fed to the complex filter, and

the results saved to another file. Figure 5 displays the base

flow graph used for both the GPP and DSP based filters.

However, when the DSP filter is used, input data needs to be

scaled, if the input data is in floating-point versus fixed-

point format , and the data also needs to be physically

transferred from the associated buffers on the GPP to the

DSP and back to the GPP. Figure 6 demonstrates the DSP

flow graph with the necessary extra processing overhead.

 The taps and input data are normalized fixed point

random data which are generated in Matlab with the input

data sets ranging from 1600 IQ samples to 16*10^6 IQ

samples. Flow graph execution time is measured for five

different scenarios:

1- GPP based FIR implementation:

Measures execution time for GPP based FIR filter.

2- DSP based FIR implementation:

Measures execution time for DSP based FIR filter.

3- Reading IQ input from file and IQ output sinking:

Measures time needed to read input data from file

and sinking, saving, it to file. This represents the

setup time for both FIR implementations, flow

graph setup, and data input/output.

4- DSP loopback without data format conversion:

Measures the time needed to copy fixed-point data

from the GPP to the DSP.

5- DSP loopback with data format conversion:

Measures the time needed to copy floating-point

data from the GPP to the DSP.

The GPP core clock frequency is 500 MHz and the DSP

clock frequency is 360 MHz. The Linux time command is

used in measuring the performance of each flow graph. We

use the time utility output of total execution time instead of

CPU execution time since it accounts for memory transfer

time and DSP execution time versus CPU execution time

which only measures execution while the GPP is utilized.

We collect ten execution time measurements for the above

scenarios and we use their average as the runtime for a

specific input size. Table 1 summarizes the time

measurements for the GPP/DSP based FIR filters and the

DSP speedup factors and Table 2 summarizes the following:

- Time measurements for IQ data input/output, which

is an overhead shared by both the GPP and DSP

based flow graphs.

- DSP loopback without floating-point/fixed-point

conversion.

- DSP loopback with floating-point/fixed-point

conversion.

Figure 5. Base GNU Radio Flowgraph

Figure 6. DSP FIR Flowgraph

493

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Looking at Table 1, we can see that the speed up factor

increases as the input data size increases, basically the DSP

Table 1. Summary of GPP/DSP based FIR filter execution

times and DSP implementation speedup factor.

Table 2. Summary of IQ data overhead in the flow graphs

and DSP overhead for buffer copies and data format

conversion.

implementation overhead consumes less time in comparison

to the computation time necessary for the GPP

implementation. When we observe the results in Table 2,

we see that in the DSP-based filter flow graph, reading and

saving IQ data into files consumes the majority of execution

time, while for the GPP based solution the filter execution

time consumes the majority of the execution time. Looking

at Table 2 we can also note that the transfer between the

GPP/DSP and data format conversion consumes a

considerable amount of time.

 We can see from the results, that DSP processors can

accelerate the performance of SDR implementation in

embedded platforms. In terms of overhead, buffer transfer

between processors is an expensive operation execution-

wise; therefore SDR implementations with multiple

GPP/DSP transfers can offset the performance gain of using

a DSP by long delays caused by memory transfers.

8. FUTURE WORK

We plan on supporting GPP/DSP buffer allocation so buffer

pointers can be shared between GNU Radio and the DSP,

essentially to pass pointers between them instead of direct

memory copies. We also plan to perform over-the-air

testing for transmitters and receivers utilizing DSP based

filters and we will supplement the functionalities made

available by the DSP to GNU Radio.

9. CONCLUSION

This paper presents work done to access and abstract the

DSP processor on the Beagleboard. The paper describes the

low level work done using DSPLink to support inter-

processor communication between the GPP and DSP for the

TI OMAP3530 processor and it also describes work done to

support DSP side functionality using the TI DSP/BIOS real-

time library. Testing for a mixed GPP/DSP computing

scenario was done by linking the library to a GNU Radio

install on a Beagleboard. The use of the DSP was

demonstrated by allowing an existing GNU Radio flow

graph to instantiate a DSP based filter versus the existing

GPP based implementation and data was runtime

measurements were collected to compare between the GPP

and DSP based filter implementations.

10. ACKNOWLEDGMENT

This project is supported by Award 2009-SQ-B9-K011

awarded by the National Institute of Justice, Office of

Justice Programs, U.S. Department of Justice. The opinions,

findings, and conclusions or recommendations expressed are

those of the authors and do not necessarily reflect the views

of the Department of Justice.

10. REFERENCES

[1] [Online]: http://warp.rice.edu/trac/.

[2] [Online]: http://www.lyrtech.com/.

[3] [Online]: www.sundance.com.

[4] [Online]: http://www.ettus.com/.

[5] JTRS,"Specialized Hardware Supplement to the

Software Communication Architecture (SCA)

Specification".

[6] M. Carrick, S. Sayed, C. Dietrick, and J. Reed,

"Integration of FPGAs into SDR Via Memory-

Mapped I/O," in SDR Technical Conference and

Product Exposition Washington, D.C., 2009.

[7] [Online]: http://www.ti.com.

[8] [Online]: http://beagleboard.org/.

[9] "Beagleboard System Reference Manual Rev C4,"

2009.

[10] Texas Instruments,"OMAP3530/25 Applications

Processors".

[11] [Online]:

http://www.arm.com/products/processors/cortex-

a/cortex-a8.php.

[12] C. R. Anderson, G. Schaertl, and P. Balister, "A Low-

Cost Embedded SDR Solution for Prototyping and

Input
(IQ pairs)

GPP
Execution
(seconds)

DSP Execution
(seconds)

Speedup
factor

1.6*10^3 1.916 2.109 0.91

16*10^3 3.63 2.19 1.66

160*10^3 20.519 2.494 8.23

1.6*10^6 189.308 6.237 30.35

16*10^6 1876.937 46.837 40.07

Input
(IQ pairs)

Flowgraph
setup

IQ data I/O
(seconds)

Loopback
without

conversion
(seconds)

Loopback
with

Conversion
(seconds)

1.6*10^3 1.718 2.11 2.128

16*10^3 1.713 2.153 2.151

160*10^3 1.782 2.361 2.487

1.6*10^6 3.159 5.085 5.735

16*10^6 22.987 37.919 42.11

494

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Experimentation," in SDR Technical Conference

and Product Exposition Washington, D.C., 2009.

[13] [Online]:

http://wiki.openembedded.net/index.php/Main_Pag

e.

[14] Texas Instruments,"DSP/BIOS Link User Guide".

[15] Texas Instruments,"C6000 Code Generation Tools".

[16] Texas Instruments,"TMS320C6000 DSP/BIOS User's

Guide".

[17] [Online]: http://gnuradio.org/redmine/wiki/gnuradio.

[18] [Online]:

http://ossie.wireless.vt.edu/trac/wiki/BeagleBoard.

495

