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ABSTRACT 

 

The paper focuses on utilizing embedded processors with 

integrated General Purpose Processor (GPP) and Digital 

Signal Processor (DSP) cores for SDR applications.  With 

such processors, developers can leverage operating systems 

running on GPP cores and use DSP cores to accelerate 

signal processing tasks in building small form factor SDR 

solutions.  The SDR community realizes the importance of 

heterogeneous computing; however, common software radio 

development tools like GNU Radio and OSSIE do not 

provide wide enough support for computing devices other 

than GPPs. 

 This paper discusses the toolset support for GPP/DSP 

based processors, and explores how the TI OMAP3530 

processor can be used to add DSP support for SDR 

developments tools, specifically GNU Radio.  It presents an 

example where the OMAP DSP core is used for filtering in a 

GNU Radio flow graph; the paper also discusses some 

integration aspects of which application developers should 

be aware. 

 

1. INTRODUCTION 

 

Looking at the diverse applications for SDR, ranging from 

mobile handheld to base-station level radios, it is evident 

that various classes of power utilization and computational 

density are needed to cover the wide spectrum of SDR 

needs.  For such applications, three main computing devices 

are available: General-Purpose Processors (GPPs), Digital 

Signal Processors (DSPs), and Field-Programmable Gate 

Arrays (FPGAs).   Many existing SDR platforms 

accommodate different combinations of computing devices 

and allow design partitioning amongst them[1],  [2], [3], and 

[4].  Dealing with such computing heterogeneity is an 

important aspect of system design for application 

developers.  It becomes important to abstract such 

computing heterogeneity in SDR platforms to focus on the 

overall application design without being encumbered by 

low-level system design issues.   

 In abstracting computing heterogeneity, the Software 

Communications Architecture (SCA) has introduced the use 

of CORBA as a middleware [5] between different 

computing devices and applications.  While it is possible to 

abstract the underlying computing devices using such 

techniques, middleware interfaces can incur significant 

latency causing performance degradation in the overall 

system [6].  Some vendors provide proprietary FPGA/DSP 

interfaces and libraries for device communication such as 

the Lyrtech Lyrio interface [2].  However, such proprietary 

interfaces and libraries can be a hurdle for porting and 

developing applications outside the realm of the vendor's 

platforms and development environment.   

 This paper will discuss work done on the Texas 

Instruments (TI) OMAP3530 processor [7], an integrated 

GPP/DSP chip targeted for embedded DSP applications, 

installed on the Beagleboard [8].  The scope of the work 

includes writing a library to perform the inter-process 

communication between the GPP and DSP, integrating the 

DSP as a coprocessor for GNU Radio, and performance 

results for a DSP accelerated GNU Radio flow graph.   

 The paper is organized as follows: a summary of the 

hardware platform used, a description of the software 

environment used, current functionality available in the 

library, integration of the DSP in GNU Radio, and an 

example of using  the library within GNU Radio. 

 

2. HARDWARE PLATFORM 

 

The Beagleboard is intended as a low cost (<$150) platform 

that makes the TI OMAP3530 processor accessible to the 

open source community [9].  The TI OMAP3530 is intended 

for mobile graphic applications [10]; it is an integrated 

GPP/DSP processor combining an Arm Cortex-A8 GPP and 

a C64x+ DSP core.  The Cortex-A8  is composed of an 

Armv7 GPP with a NEON core and a multimedia 

acceleration SIMD coprocessor [11].  The C64x+ DSP is a 

16-bit fixed-point VLIW DSP.  The DSP contains eight 

independent functional units: six ALUs and  two multipliers 

that support either four 16 x 16 bit multiplies or eight  8 x 8 
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bit multiplies [10].  The Beagleboard revision used in this 

work supports a host-side EHCI USB driver which is needed 

to interface with first generation USRPs [12]. 

 

3. SOFTWARE TOOLS  

 

In targeting the GPP and DSP on the Beagleboard, a number 

of different software tools are used.   

a- OpenEmbedded (OE) [13]: The general framework 

used to target the Beagleboard.  It is used to 

compile the Linux kernel, Angstrom distribution, 

and to generate a file system for the board.  OE is 

also used to compile the necessary drivers for the 

board and compile the various packages needed. 

b- TI DSP/BIOS Link (DSPLink) [14]: This library is 

used for inter-processor communication between 

the GPP and DSP on the OMAP processor.  The 

DSPLink library provides mechanisms for basic 

processor control, data transfer, memory 

sharing/synchronization, and messaging, among 

other inter-process functionalities. 

c-  C6x Compiler [15]:  The TI DSP compiler used on 

a Linux machine.  The TI integrated development 

environment, Code Composer Studio (CCS) v3.3, 

is also used to debug DSP code in combination 

with a JTAG.  CCS is not necessary for compiling 

C64x+ DSP code since TI provides its compiler 

through their website at no cost. However, CCS is 

necessary to use a JTAG. 

d- DSP BIOS [16]:  DSP/BIOS is a lightweight real-

time library which provides basic run-time 

functionalities on the DSP.  Examples of such 

functionalities include scheduling threads, handling 

I/O, and capturing information in real-time. 

e- GNU Radio [17]: GNU Radio is installed on the 

Beagleboard via the OE environment.  The DSP is 

integrated as a functional block on a native GNU 

Radio installation.  Using all of the previous tools, 

it is possible to target both the Arm GPP and the 

C64x+ DSP on the Beagleboard through GNU 

Radio. 

To install the TI toolsets and build the necessary DSPLink 

drivers, we followed instruction available on [18]. 

 

4. GNU RADIO DSP EXTENSION 

 

Our goal is to extend GNU Radio to provide support for 

DSP processors.  While GNU Radio applications are written 

in Python, the actual signal processing is implemented in 

C++ and the Python/C++ interface is performed by the 

software toolset SWIG (Simplified Wrapper and Interface 

Generator).  Using Python to construct flow graphs can be 

convenient since it’s an interpreted language meaning it does 

not require source code compilation such as C++.  However, 

compiled languages such as C++ are not encumbered by the 

overhead of runtime compilation associated with interpreted 

languages.   

 From a high abstraction perspective, Figure 1 

demonstrates how the DSP looks to an application 

developer.  The figure shows how the DSP can be 

instantiated to perform functions within GNU Radio flow 

graphs.  In the figure, GNU Radio block is a generic term 

referring to existing GNU Radio functions.  The code 

necessary to perform the inter-processor link using DSPLink 

and loading the necessary DSP program is encapsulated into 

a custom GNU Radio block so the underlying support code 

is transparent to users.  The next sections in the paper will 

discuss the details of the work done to provide such 

abstraction for the DSP and DSPLink interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. GPP AND DSP CODE DEVELOPMENT 

 

GPP and DSP applications are written and compiled 

separately with the DSPLink library providing the necessary 

constructs for inter-processor communication.  To better 

understand the program flow between GNU Radio and the 

DSP, Figure 2 shows the interaction between the different 

programming domains, with execution starting in the GNU 

Radio Python block which ultimately utilizes the DSP 

Program block to perform filtering.  Looking at the figure, 

the DSP is invoked from a python file and through SWIG, 

GNU Radio invokes the necessary C++ calls; the latter 

Python and C++ code enables GNU Radio to invoke the 

DSP.  The GPP library includes a set of functions necessary 

to communicate with the DSP over DSPLink. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Application level abstraction of the DSP in the 
OMAP processor. 
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Figure 2.  Interaction between the different 
programming domains. 
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 The GPP library currently uses three components from 

DSPLink:  

 

a- PROC: the processor component.  

b- POOL: the shared memory configuration and 

management component.  

c- CHNL: the channel component.   

 

The PROC component is used to initialize the DSP 

processor, load DSP executables, and stop DSP execution; 

basically it is used to setup and load the DSP.  The POOL 

component is used to configure and synchronize the shared 

memory regions between the GPP and DSP necessary for 

inner-processor data transfers.  The CHNL component 

instantiates a logical data transfer link, or channel, between 

the GPP and DSP.  While the CHNL component manages 

the logical data link between the DSP and GPP, the POOL 

component manages the physical memory used for the 

CHNL component including all the necessary memory 

allocation, synchronization, and address translation between 

the GPP and DSP.  The GPP library essentially abstracts the 

DSPLink function calls necessary to initialize the DSP, 

instantiate the shared memory region, create the channel 

constructs, and the physical exchange of data back and forth 

with the DSP.    

 Data transfers types can either be real or complex (IQ) 

floating point data with all the necessary data type 

conversions, floating-point to fixed-point and vice-versa, 

taken care of by the application.  The user needs only to 

supply a scaling value that is necessary for the data type 

conversion.  Figure 3 shows an example of how the GPP 

library can perform the data type conversion between 

floating-point format on the GPP and fixed-point format on 

the DSP. The figure shows the GPP sending an array of 

three values to the DSP.  The input data from the GPP are 

normalized floating-point values; the GPP scales the data by 

a factor of 2^14 and truncates any value after the decimal 

point to generate the fixed-point values for the DSP.  For the 

purposes of this example, after receiving the GPP data the 

DSP sends the same received input back and the GPP scales 

the fixed-point values by a factor of 1/2^14 and generates 

floating-point value from the fixed point values.  As we can 

see, the GPP does not receive the original values it sent to 

the DSP because of the quantization error in the 

floating/fixed point conversion. 

 The DSP program connects to the GPP data channels 

through DSP BIOS specific library calls.  In this application, 

the stream I/O manager (SIO) is used to create and manage  

data streams needed to communicate with the data channels 

running on the GPP side.  The DSP receives data streams 

from the GPP which includes the length of the data streams 

being passed to the DSP.  The SIO is able to allocate data 

streams of various sizes dynamically; however, in the work 

 presented, the DSP and GPP allocate streams/channels of a 

 

 

 

 

 

 

 

 

 

 

 

static size, but they then fill the inter-processor buffers with 

as many data elements as needed by the application.  The 

GPP passes the DSP information about the number of 

elements written in the buffer so the DSP does not have to 

read more elements from the buffer than necessary.  By 

passing the buffer size with every transfer, the DSP reads 

only valid buffer elements and synchronizes the buffer 

without having the GPP clear the buffer before each transfer.  

To better understand the data buffer between the GPP and 

DSP, Figure 4 shows an example of two consecutive buffers 

being passed from the GPP to the DSP; the first buffer is of 

size 3 and the second is of size 1 while the size of the buffer 

= MAX is some larger number representing the maximum 

size, in this case 512, which is also the index of the last 

element in the buffer.  The first buffer has only  three data 

points; elements 4 through 512 (MAX) are empty while the 

second buffer has only one valid data point so elements 2 

and 3 contain stale data while the rest of the buffer elements 

are empty. 

 To abstract the above discussed function calls, a library 

is compiled with an associated header file to be used by 

application developers to access the DSP.  The primary 

library function calls include: 

a- DSP and inter-processor buffer initialization. 

b- GPP transmitting real or complex (IQ) data to the 

DSP. 

c- GPP receiving real or complex (IQ) data from the 

DSP. 

Please note that the DSP program is a separate executable 

which is loaded as part of the DSP initialization routine from 

the GPP side of the application. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. An example of floating/fixed point conversion 
where SCALE = 2^14. 

0 1 2 3 4 … 

MAX  

= 512 

len= 3 data[0] data[1] data[2] 0 0 0 

0 1 2 3 4 … 

MAX  

= 512 

len = 1 data[0] OLD  OLD  0 0 0 

Figure 4.  Two example buffers to be transferred by the GPP 
to the DSP.  The top buffer is of length = 3; the bottom is of 
length = 1, and the buffer size is a larger number = MAX in 
this case 512. 
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6. GNU RADIO DSP INTEGRATION 

 

For the work presented, the base DSP and GPP code used 

written in C++ while hooks are also supported to enable 

DSP configuration and integration in Python.  In integrating 

the DSP as a GNU Radio block, we used the GNU Radio 

template for writing a custom block “gr-howto-write-a-

block-3.2.1” from the GNU Radio repository [17] and 

installed GNU Radio 3.2.1 on the Beagleboard using OE.  

The base template was used to create a set of dsp class 

functions.  As a test of our framework, we use the TI DSP 

library “C64x+ DSP Library”.  Initially, we concentrate on 

providing filtering functionalities on the DSP; in this paper 

we characterize the performance of a complex FIR filter.  

The DSP FIR implementation is intended to replace its GNU 

Radio GPP-based counterpart (fir_filter_ccf), a FIR filter 

with complex input/output, real coefficients, and optional 

interpolation. 

 

The DSP filter implementations are instantiated in the same 

way that GPP filters are instantiated in GNU Radio.  The 

following is a sample instantiation of the gr_fir_filter_ccf on 

the DSP from a native GPP python file: 

 

fir_ccf_dsp = dsp.fir_ccf_dsp(coeff, sf, interp) 

 

Where  fir_ccf_dsp is a handler to the DSP based filter, coeff 

is the set of filter coefficients, sf is the scaling factor and 

interp is the filter interpolation factor. 

 When the filters are instantiated during a GNU Radio 

flow graph, they essentially instantiate the associated DSP 

transmit/receive function calls for real or complex data.  In 

compiling the DSP class functions for the Beagleboard, we 

use a modified OE recipe (compile instructions) provided by 

the authors of [12]. 

 

7. GNU RADIO TESTING 

 

 To compare the performance of a DSP based filter with 

its GPP based counterpart, we set up a GNU Radio flow 

graph comprised of a 300 tap complex filter with input data 

being read from an input file, fed to the complex filter, and 

the results saved to another file.  Figure 5 displays the base 

flow graph used for both the GPP and DSP based filters.  

However, when the DSP filter is used, input data needs to be 

scaled, if the input data is in floating-point versus fixed-

point format , and the data also needs to be physically 

transferred from the associated buffers on the GPP to the 

DSP and back to the GPP.  Figure 6 demonstrates the DSP 

flow graph with the necessary extra processing overhead. 

 The taps and input data are normalized fixed point 

random data which are generated in Matlab with the input 

data sets ranging from 1600 IQ samples to 16*10^6 IQ 

samples. Flow graph execution time is measured for five 

 

 

 

 

 

 

 

 

 

 

 

 

different scenarios: 

 

1- GPP based FIR implementation: 

Measures execution time for GPP based FIR filter. 

2- DSP based FIR implementation: 

Measures execution time for DSP based FIR filter. 

3- Reading IQ input from file and IQ output sinking: 

Measures time needed to read input data from file 

and sinking, saving, it to file.  This represents the 

setup time for both FIR implementations, flow 

graph setup, and data input/output. 

4- DSP loopback without data format conversion: 

Measures the time needed to copy fixed-point data 

from the GPP to the DSP. 

5- DSP loopback with data format conversion: 

Measures the time needed to copy floating-point 

data from the GPP to the DSP. 

 

The GPP core clock frequency is 500 MHz and the DSP 

clock frequency is 360 MHz.  The Linux time command is 

used in measuring the performance of each flow graph.  We 

use the time utility output of total execution time instead of 

CPU execution time since it accounts for memory transfer 

time and DSP execution time versus CPU execution time 

which only measures execution while the GPP is utilized.  

We collect ten execution time measurements for the above 

scenarios and we use their average as the runtime for a 

specific input size.  Table 1 summarizes the time 

measurements for the GPP/DSP based FIR filters and the 

DSP speedup factors and Table 2 summarizes the following: 

 

- Time measurements for IQ data input/output, which 

is an overhead shared by both the GPP and DSP 

based flow graphs. 

-  DSP loopback without floating-point/fixed-point 

conversion. 

- DSP loopback with floating-point/fixed-point 

conversion. 

 

 
Figure 5. Base GNU Radio Flowgraph 

 
Figure 6. DSP FIR Flowgraph 
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Looking at Table 1, we can see that the speed up factor 

increases as the input data size increases, basically the DSP 

Table 1. Summary of GPP/DSP based FIR filter execution 

times and DSP implementation speedup factor. 

 

Table 2. Summary of IQ data overhead in the flow graphs 

and DSP overhead for buffer copies and data format 

conversion. 

 

implementation overhead consumes less time in comparison 

to the computation time necessary for the GPP 

implementation.  When we observe the results in Table 2, 

we see that in the DSP-based filter flow graph, reading and 

saving IQ data into files consumes the majority of execution 

time, while for the GPP based solution the filter execution 

time consumes the majority of the execution time.  Looking 

at Table 2 we can also note that the transfer between the 

GPP/DSP and data format conversion consumes a 

considerable amount of time.  

 We can see from the results, that DSP processors can 

accelerate the performance of SDR implementation in 

embedded platforms.  In terms of overhead, buffer transfer 

between processors is an expensive operation execution-

wise; therefore SDR implementations with multiple 

GPP/DSP transfers can offset the performance gain of using 

a DSP by long delays caused by memory transfers. 

 

8. FUTURE WORK 

 

We plan on supporting GPP/DSP buffer allocation so buffer 

pointers can be shared between GNU Radio and the DSP, 

essentially to pass pointers between them instead of direct 

memory copies.  We also plan to perform over-the-air 

testing for transmitters and receivers utilizing DSP based 

filters and we will supplement the functionalities made 

available by the DSP to GNU Radio.   

 

9. CONCLUSION 

 

This paper presents work done to access and abstract the 

DSP processor on the Beagleboard.  The paper describes the 

low level work done using DSPLink to support inter-

processor communication between the GPP and DSP for the 

TI OMAP3530 processor and it also describes work done to 

support DSP side functionality using the TI DSP/BIOS real-

time library.  Testing for a mixed GPP/DSP computing 

scenario was done by linking the library to a GNU Radio 

install on a Beagleboard.  The use of the DSP was 

demonstrated by allowing an existing GNU Radio flow 

graph to instantiate a DSP based filter versus the existing 

GPP based implementation and data was runtime 

measurements were collected to compare between the GPP 

and DSP based filter implementations. 
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