
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works
related to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce
their work, and to reuse material in whole or in part from their work; for derivative works, however, such authors
may not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

 DATA PACKET PROCESSOR (DPP) CORE

Manuel R. Muro, Jr. (Digital Data Innovations (DDI), Beaverton, Oregon, USA;

manny@ddi-ip.com)

ABSTRACT

This paper discusses a new approach to packet processing

with a unique hardware architecture that provides

configurability combined with the performance achieved by

dedicated hardware. This architecture can generically be

referred to as a Data Packet Processor (DPP). In the same

manner that a DSP engine focuses on the processing of

signals or a GPU (Graphics Processor Unit) focuses on

graphics processing, the DPP specializes on the domain of

packet processing. By focus on the packet processing

domain, the DPP can more efficiently carry out packet

processing operations than could be realized by a general

purpose microprocessor. At the same time the DPP

architecture is protocol agnostic to the point of enabling a

single design block to implement multiple packet protocols

in hardware, at line speeds. The DDP can also be used to

develop fully customized packet protocols that can be

changed in the field, especially in applications where the

security of a proprietary protocol has been compromised.

1. INTRODUCTION

In the more traditional sense of Software Defined Radios

(SDR) is to use software along with DSPs to replace

traditional analog design blocks such as: mixers, filters,

amplifiers, modulators/demodulators, detectors, etc. [1].

Such analog circuits exhibited temperature and

manufacturing variation issues along with the inability to

easily change the functionality of such circuits should the

system requirements change. Configurable DSPs to the

rescue! However, this is just part of the SDR system, the

part that handles how informational bits are represented over

the communication channel. When the communication

protocol’s complexity and data rates are low, a general

purpose processor can handle the workload of converting the

informational bits into larger informational quantities such

as bytes and words, which then represents data packets per a

specific digital communication protocol such as the WiFi™

standard. As the data rate and complexity of communication

protocols increase with the ever increasing demand for more

data bandwidth and overall performance (i.e. power and

speed), the use of general purpose microprocessor

architectures will no longer fill the demand for future

communication system requirements. One solution is to use

specialized hardware acceleration in conjunction with a

general purpose microprocessor which effectively causes a

break with the overall philosophy of SDR. Should the

communication protocol need to change, the hardware

acceleration logic would need to change. A change that

would only be practical if the hardware acceleration was

done in a FPGA, but not an option if done in an ASIC. But

even with the FPGA approach timing may no longer be met

with the protocol change or may become resource limited

and require a larger more costly FPGA. Just as the DSP

architecture helped to enable flexibility to solve the

baseband processing challenges of signal processing the

architecture described in the remaining sections will define a

new processor architecture, generically referred to as the

Data Packet Processor (DPP), which will focus on the

challenges of packet processing with a solution that enables

changes to be made more freely to the overall digital

communication protocol’s packet format even if the DPP

design was implemented in an ASIC. Aside from enabling

flexibility to address the challenges of packet processing, the

DDP will enable faster exploration of current protocol

standard changes and enable proprietary protocols to be

more easily deployed for niche markets or in cases where

changes are needed for security reasons.

2. WHAT CONSTITUTES THE DPP

The DSP architecture diverged from the traditional

microprocessor architectures, be they CISC/RISC or

VonNeumann/Harvard, by adding extra data access busses

(X & Y) to read the data samples and the coefficients, along

with the instruction word, in a single clock cycle while

adding the key hardware logic to support a single cycle

multiply with accumulation in order to implement the

traditional DSP algorithms, i.e. FFT, FIR, IIR, etc. The DSP

architecture typically also employs special address

generation logic to handle bit-reversed and modulo

addressing, tasks that would be too messy and time

consuming to be done in software. The manners in which the

DPP diverges from the traditional microprocessor are far

more numerous due to the additional levels of complexities

of the workload associated with packet processing.

An overall objective for stating what constitutes the DPP is

to define an architecture that will enable “operations” to

move from the software realm back into hardware realm

while still being flexible enough to be easily updated at a

later stage in the product development cycle. In particularly,

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

“operations” which involve tight timing related constraints

or complexities that are best off-loaded from the main

system processor. Based on the author’s experience, the

boundary point to determine what is best moved back into

hardware and what is to remain in software is that which

involves bit manipulation and system level state decisions.

With the conclusion being to keep all bit manipulation tasks

in hardware and all system level state decision making tasks

with the software on the system’s host processor.

2.1 Just One Decision To Make

The DPP’s primary objective is to process data packets as

fast and as efficiently as possible while providing the

flexibility to change how the data packets get processed.

Such processing needs to be done at line speeds, where data

is coming so fast that there is not time for a pause and there

are no rewind options either. In such an environment there is

not a lot of time to make many decisions. However, the DPP

does have to make one decision and that decision is: What is

the Data Packet Type? That decision process is really like

deciding which train track to send a train down. Once the

train passes the switch, the decision cannot be changed.

As a result of only needing to make the determination of

what the received data packet type is, i.e. not an issue on the

transmit side, the DPP can be defined without the

complexities associated with advanced microprocessor

concepts such as branch-predicting and the associated

“scoreboarding”. This is not to say that there are not

challenges in making that decision, but making such a

decision is at a reduced level of complexity in comparison.

2.2 Bit Granularity

The traditional microprocessors were architected to handle

8-bit quantities, and multiples thereof, with data

management down to the bit-level handle by using one, two

or three of the base instructions for the base data quantity

being supported. As a result of that reality, most protocols

are defined with this base quantity in mind such that if a

protocol only needs 1 to 7 bits, or really any number of bits

that are not a nice multiple of 8, a full 8 bits, or multiple

thereof, would be reserved. In the past, this was a harmless

overhead to carry. However, in the present, the carrying of

extra “reserved” bits consume both power to transmit and

consumes transmission time on the channel, which

effectively make them overhead costs from both the power

and performance perspectives.

In even an example situation experienced by the author via a

change to the WiMedia™ UWB protocol, the payload

length field was extended from 12-bits to 16-bits with the

new 4-bits placed in “reserved” bits within the packet header

and they were not adjacently located to the original 12-bits

within the data packet sequence. Such a change to the

protocol created “headaches” for both the hardware and

software engineers. Keeping in mind that “reserved” bit(s)

still consume power and channel time. Such protocol

changes should be more manageable from the engineering

perspective than they are in practice; hence the vision for the

DPP.

So unlike the traditional microprocessor architectures, the

DPP needs to be architected in a manner that it can easily

handle data quantities with bit-level granularity in order to

be truly more efficient than a general purpose

microprocessor architecture.

2.3 Dual Control Paths With Shared Resources

Aside from applications which perform either receive (RX)

or transmit (TX) only, a bulk of SDR applications involve

both RX and TX paths. In particularly, applications that call

for reliable links will need both RX & TX even if a device is

only a sink or source for information. A key advantage to the

DPP architecture is that the overall structures of the data

packets are known a priori and follow a common format

sequence. As a result a common set of “sequences” and/or

“data structures” can be used to either analyze or generate a

data packet as defined by a given packet processing

protocol. Tasks such as zero-padding needed for the transmit

paths would be handled differently by the receive path, but

still needs to be “handled”. In other words, the same coding

sequence used to transmit can be the same code sequence

used to receive the data packets for a given protocol.

Then in the context of generating auto-response data

packets, the receive path can share packet source and

destination information with the transmit path such that the

source will become the destination and the destination will

become the source. This would occur only if the two control

paths have access to a common register set.

2.4 Programmable CRC Modules

Key to making a truly flexible and independent data packet

processor is being able to support an appropriate number of

CRC modules, as some protocols employ multiple CRC

calculations (i.e. separate header and payload CRCs, etc.),

but also the CRC module will also need to be flexible

enough to support different CRC polynomials to be a “true”

SDR system, in order to support more than one

communication protocol.

2.5 Security and Other Data Path Support

As the packet’s data, be it header or payload data, moves

through the DPP system’s data paths, the data needs to be

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

analyzed in a parallel but controlled fashion by different

blocks such as Security or Compression engines in tandem

with the CRC modules previously discussed, before being

sent out to data buffers. Support for such data path modules

are key to defining the DPP architecture.

2.6 Data Word And Instruction Word Breakup

Typically with most microprocessor architectures, the size of

the instruction word is closely correlated to the processing

data word size, but there are certainly exceptions. In

particularly, in the “Von-Neumann” type architectures there

is a rather close correlation as the system memory can be

used for instructions or data. However, as the demands to

process more information, and to process information faster,

the “bond” between the microprocessor’s processing data

word and instruction word size are best to be separated. For

the DPP, there does not have to be any correlation at all. The

size of the processing data word should be flexible with bit-

level granularity, TOTALLY independent of the DPP’s

instruction word size.

The instruction word size is driven by the number of base

instructions to be supported and the number of “work”

registers supported by the architecture. In the context of

packet processing, the processing data word size should be

driven by the bit rate for the protocol being supported and

the achievable speed that can be obtained using the available

technology offerings. As an example, in order to ensure the

DPP can support the line rate speeds, assuming that the

target technology process is limited to clock rates of

200MHz, in order to support a 10Gbps serial protocol the

processing data word size needs to be 50 bits as a minimum.

Should the protocol bit rate change to 80Gbps, with the

same technology constraints, the processing data word size

would need to change to a 400 bits minimum. The DPP

architecturally needs to be defined in a manner to easily

support such flexibility with allowable changes to the

processing data word width, but independent of the

instruction word size.

2.7 Flexible Single Cycle Operation(s) And Word Size

At the heart of packet processing is the effective processing

and management of fields within the protocol’s packet

format, in particularly the processing of the packet header

fields. A key operation performed by the DPP is the proper

extraction of the packet header fields, followed by the

proper handling of the payload data. With the processing

data word properly sized to the target data rate for the

protocol, the DPP will process N bits of data, i.e. the

processing data width, from the packet’s bit stream in a

single clock cycle. Depending on the overall protocol’s

packet format, the number of fields to be extracted can vary,

but at the extreme there will be “N” fields to be extracted.

So the DDP’s architecture is defined to handle a varying

number of field extraction operations with the number of

such extractions way less than “N”. The number of field

extractions supported by the DPP architecture is a key

attribute to define the DPP in much the same way that the

largest data word size defines the “class” of

microprocessors.

Aside from supporting a flexible number of field extractions,

by inference from the bit-level granularity requirement the

DPP will also need to support variable data word sizes

during each of these field extractions. In order to provide

execution gains over the general purpose microprocessor

architecture, the DPP needs to carry out the processing of a

variable number of extractions along with variable data

extraction widths in a single clock cycle as the next

processing data word will need to be processed in the next

clock cycle. The net result is that the DPP can vary both the

number and size of data extractions to be performed from

one clock cycle to the next.

2.8 Auto-Response Frames

As with most Medium Access Controller (MAC) designs,

the DPP would also need to support the generation of auto-

response frames with the added challenge of doing it in a

“generic” manner to support different communication

protocols. With the typical auto-responses being a Clear-To-

Send (CTS) in response to a Request-To-Send (RTS) or the

automatic acknowledge for a received frame. And more so,

the DPP provides the ability to introduce new auto-response

frames that were not anticipated in the initial protocol

planning, be it a “standard” or proprietary protocol.

2.9 ACK Vector Support

As the pressures to improve overall system performance,

newer communication protocols use an ACKnowledge

Vector in a single data packet to provide the status some

defined number of prior data packets, packets which require

an acknowledge in order to determine if a given packet

needs to be re-transmitted. In older protocols, the overhead

costs of sending a “single bit” of information can greatly

impact the effective utilization of a network channel, hence

protocols are moving to an ACK Vector approach. The

management of such bit manipulation of the vector is less

than desirable to done in software, but the requirement to do

such work in the DPP architecture remains, while

maintaining flexibility.

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

2.10 Data Packet Timing

Whether the architecture is a general purpose

microprocessor or a more specialized architecture such as a

DSP or Graphics processor, the concept of time is simply

the system processor clock. Ignoring the use of Real-Time-

Clock (RTC) modules in a system, the processor clock is the

only point of reference to establish a time base. With respect

to communication protocols, the base time unit is the

protocol’s bit time. From this bit time there are other timing

constructs that the DPP needs to properly address. Such

timings are defined by the protocol and need to be met in

order to ensure the reliability of the overall communication

network. The management of the data packet timing is

traditionally handled by protocol specific hardware timing

logic, typically a protocol specific state machine, or is

managed in the software by using a system timer (or one

built into the microprocessor) which results in interrupts to

service these timing intervals. Instead of managing the

complexities in software, the DPP contains logic that can

more efficiently and more accurately manage such timing

events. With the appropriate micro-architecture defined, the

timing is managed in hardware while still providing the

flexibility that would be found in implementing such timing

controls in software. Such timing related management tasks

include:

 Is there enough time to transmit another packet?

 Was the expected packet response received in the

expected timing window?

 Send packet transmission as soon as possible

without violating the protocol’s timing rules.

Even when such timing is managed in hardware, it is

typically done with a complex state-machine which may or

may not be easy to adapt when a protocol change occurs.

The handling of such timing related tasks, i.e. non-data rate

protocol timing changes, are carried out in a manner to

maintain the overall flexibility of the DPP architecture.

2.11 Encapsulation

For protocols that want to provide a path with future growth

potential and even some legacy protocols, the DPP

architecture would be incomplete without support for

encapsulation. Since there is the overall goal of providing

flexibility throughout the DPP architecture, the approach to

address encapsulation with the DPP is to leave the bit-

granularity with the extraction logic but with the advent of

wireless protocols like LTE (Long Term Evolution), the

support needed for encapsulation is beyond the simplistic

view of Type/Length/Values (TLV) constructs. As an

example, in the case of LTE, the protocol follows a T-L-T-

L-T-L-T-L-V-V-V-V sequence, with the number of such

encapsulations being totally variable, instead of the

conventional T-L-V-T-L-V-T-L-V-T-L-V sequence.

2.12 Other DPP Options

Aside from low-level requirements mention in prior

sections, there are other system level considerations that can

be used to define or characterize the DPP architecture. Some

possibilities at the “system level” include using a single DPP

implementation to:

 Simultaneously process different protocols

 Simultaneously handle multiple data streams

 Auto Protocol Detection

 Efficient data route to minimize system bus

transactions

Without getting into the implementation details, the DPP can

be implemented to support multiple protocols and/or

channels without the DDP’s system clock running at the sum

of the frequencies needed to support the channels or

protocols as if they were implemented by an individual

instance of the DPP architecture; with such functionality

being vital to effective and efficient implementation of

communication protocols that support MIMO (Multi-

In/Multi-Out) functionality. Certainly the architecture for the

DPP can also be extended to include additional host

processor off-load tasks in much the same way that the DPP

can off-load tasks like Auto-Response Frames or the

management of the bit vector associated with the ACK

vector.

3.0 SYSTEM BENEFITS ACHIEVED WITH THE DPP

ARCHITECTURE

Aside from the “flexibility” theme repeated throughout the

prior sections to define the DPP, the DPP architecture

provides benefits that are worth repeating and some which

may not be as apparent from the discussion so far.

3.1 Reduced Memory Requirements

Since the DPP is so focused on the specific domain of

packet processing the instruction sequences used to carry out

the RX or TX processing is identical and can thus be stored

in a single dual-ported memory. That would at least halve

the memory requirements. However, there is another

memory reduction component from the instruction

perspective that exists due to the DPP’s domain focus on

packet processing, such that a single DPP instruction can

easily replace 5 to 20 general purpose processor instructions

to carry out an identical task.

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Then from the overall system perspective, especially those

that involve more than one communication protocol, the RX

and TX data FIFOs along with the Register Files can be

“recycled” for use in carrying out the system’s other

communication protocols, be they a standard and/or

proprietary protocol, due to the DPP’s protocol agnostic

nature.

 Aside from reducing the system’s areas costs, a secondary

benefit is power reduction due to shorter routes and a

reduction in the overall system’s “idle” memory resources.

3.2 Reduced Resource Requirements

Aside from the shared memory resources, for systems that

need to support multiple protocols, the following modules

can be “recycled”: CRC, Hashing, Security (i.e. DES, AES,

etc.) and Compression/Decompression. Since each system

typically has a processor along with some hardware

acceleration to implement the different protocols, the

number of processors in the system can be reduced, i.e. start-

up and static power savings can be realized along with area

saving! Then from the system level perspective, a single

DMA channel can also be shared.

3.3 Efficient Clock Utilization

With the definition outlined in this paper for the DPP

architecture, the DPP can more efficiently utilize each

system clock when compared to how a general purpose

microprocessor clock cycle can be utilized to achieve the

amount of work. Aside from the DPP carrying out more

work per clock cycle, the DPP can minimize the overall

systems bus transactions via a lower need for instruction and

data system bus transactions. The reduction in system bus

transactions helps to reduce the overall system power

consumption, aside from the power savings which is

achieved by using a lower clock frequency; hence more

efficient clock utilization can be achieved.

3.4 Reduced Software Complexity

In many areas of technology there is a big push to move

more and more functionality into software due to the

flexibility that doing so provides. However, such a move,

from an engineering effort perspective, is certainly from

being a free cost. Surprisingly, due to the complexity of

some software solutions, things have reached a point where

the software royalties have surpassed the hardware royalties.

One of the driving forces used to define the DPP

architecture was to reduce the software complexity while

maintaining the flexibility of software along with achieve

packet processing performance levels that were simply

unachievable with predominately software based

approaches.

4.0 THE DDP’S ROLE IN SDR AND LIMITATIONS

After the baseband processing operations of the SDR, i.e.

the digital “radio” operations have completed their signal

processing, the DPP can effectively be viewed as being

responsible for the processing of the digital data stream of

ones and zeroes into manageable quantities of information

that define the packets as defined by the appropriate digital

communication protocol.

Since the DPP should be viewed a peripheral module in a

communication system, the DPP still needs some kind of

host processor and ideally an appropriate memory sub-

system with DMA and appropriate memory control support.

However, this host processor does not need to be a 32 or 64

bit processor instead it can easily be an 8 or 16 bit

microprocessor.

Although the DPP provides a great deal of flexibility from

the packet processing perspective, there are limits to the

DPP’s flexibility in much the same way that if a solution

initially needed less than 32K bytes of program memory and

the system only has 32K bytes of program memory, but a

change to the system’s firmware is needed and the change

now requires 36K bytes, the system’s flexibility is “broken”.

The DPP has similar such constraints with respect to the

number of field extractions to be performed or the maximum

number of bits that get processed in a single clock cycle.

However, the “cost” to add some cushion to the

implementation of a DPP based solution is both flexible and

manageable. For example to meet the target data rate, let’s

say only 80 bits needed to be processed per clock cycle to

achieve the target data rate, the number of bits could easily

be set to say 96 bits or simply to 90 bits due to the bit-

granularity requirement. However, such a “cushion” comes

with the added benefit of reducing the initial clock

frequency for the DPP. The concepts of “cushion” in this

context is the same as adding extra gates or flops to system,

just in case, but with the difference being that the “extras”

added at a higher system conceptual level.

Then there are the standards limitations to be considered, as

with any solution, such as latency and providing enough

system bus bandwidth to move the volumes of data

appropriately.

5.0 DDP’S APPLICATION SPACE

The typical SDR systems involve data rates which are slow

enough that a general purpose can keep up. However, as the

system performance requirements increase due to the data

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

rate increases and the need to support MIMO concepts the

traditional approaches will no longer suffice.

5.1 High Performance Protocols

Although, the DPP can easily implement protocols such as

BlueTooth™ and ZigBee™ the performance of a DPP

solution would be overkill for these specific protocols.

When the communication system engineer hits a HARD

performance wall, a DPP approach should be considered.

5.2 Multiple Protocols

As alluded to in prior sections, another key application

space for the DPP architecture is in systems that need to

support multiple protocols. Such applications include the

bridging of legacy systems to newer systems or simply

systems that need to exist in environments that involve

multiple protocols pathways, i.e. the modern smart phones

support at three wireless protocols with more to be added in

the future.

5.3 Proprietary And Emerging Protocols

Another application space for the DPP, which is the original

genesis for the DPP vision, is proprietary protocols systems.

Although using standard protocols has advantages for most

applications, a generalized standard cannot in all practicality

solve all communication system needs. There are

opportunities or problems that a company may choose to

pursue such that a standard protocol may not fill the target

product’s need, in which case they may need to develop a

custom or proprietary communication protocol. There is also

the case when a “new” standard is being defined which is

not proprietary, but is rather an emerging protocol. Then

there is the situation when multiple “standards” for a given

problem space is coming out, which does a company bet on?

With a DPP architecture approach, such risks can be

significantly mitigated if not eliminated altogether.

5.4 Overall Protocol Security

Then there is the aspect of security, be it business or

government related, such that the desired solution needs to

be flexible enough to change the communication protocol

for the entire system when the system is already deployed in

the field and the security of the protocol has been

compromised. The DPP architecture for packet processing

provides the pathway to address this challenge.

As with any new technological concepts there are

applications for the DPP architecture that are beyond the

imagination of the author.

6.0 SUMMARY AND CONCLUSION

The DPP architecture provides the foundation for a

framework to more efficiently address the domain of packet

processing in much the same way that a DSP addresses the

domain of signal processing or a GPU addresses the domain

of graphics processing, while still providing the flexibility to

change the manner in which such processing is done. There

are many dimensions to defining the DPP architecture, an

architecture that provides a new perspective on how packet

processing can be performed for achieving both greater

efficiency and increased system performance.

The flexibility provided by the DPP architecture enables the

development of newer and better communication protocols

while still providing a platform to bridge with legacy

protocols, thus allowing faster deployment of new

communication technologies from the packet processing

perspective. The DPP architecture is the final component to

defining a truly complete Software Defined Radio system

solution.

7. REFERENCES

[1] http://en.wikipedia.org/wiki/Software-defined_radio

[2] “Processor Description Languages”, Prabhat Mishra &

Nikil Dutt, 2008, ISBN: 978-0-12-374287-2

[3] “Network Processors: Architecture, Programming &

Implementation”, Ran Giladi, 2008, ISBN: 978-0-12-
370891-5

[4] “Wireless Communications and Networking”, Vijay K.

Garg, 2007, ISBN: 978-0-12-373580-5

[5] “TCP/IP Illustrated, Volume1: The Protocols”, W.

Richard Stevens, 1994, ISBN: 0-201-63346-9

[6] “Digital And Analog Communication systems, 6

th

Edition”, Leon W. Couch, II, ISBN: 0-13-081223-4.

[7] “Computer Architecture: A Quantitative Approach”,

John L. Hennessy & David A. Patterson, 2003, ISBN:
1-55860-596-7.

[8] “Embedded DSP Processor Design: Application Specific

Instruction Set Processors”, Dake Liu, ISBN: 978-0-12-
374123-3.

http://en.wikipedia.org/wiki/Software-defined_radio

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

