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Abstract—Software-defined radios (SDR) are typically realized
as the deployment of modular digital signal processing blocks on
a variety of platforms and promise significant enhancements over
traditional radio designs in terms of component re-use and design
scalability. Despite their apparent benefits, however, software-
defined radios tend to consume more power and provide less
throughput than their hardware counterparts (e.g. application-
specific integrated circuits and field programmable gate arrays).
As a result, SDR platforms have struggled to compete with
many legacy systems, particularly as the demand for data
throughput on wireless infrastructure increases. This significant
performance gap can be mitigated, however, by exploiting the
reconfigurable nature of software itself and by compensating
for opportunistic channel conditions by pruning unnecessary
processing. Our previous work demonstrated that the receiver
could significantly reduce its computational complexity while
maintaining an equivalent error probability in Rayleigh fading
channels simply by choosing a more strategic modulation-/coding-
scheme pair at only a slight degradation to its spectral efficiency.

This paper extends our previous work by formalizing com-
putational complexity as an analytical model for monitoring the
processing load in digital hardware. This model is used to adapt
link-level parameters on reconfigurable software radio platforms
where processing bandwidth is a discerning factor for data
throughput. Furthermore, the results are extended by incorpo-
rating additional physical-layer considerations into the analysis.
Finally, the system is validated through the assessment of real-
time software simulation as well as over-the-air reconfiguration
in a controlled wireless environment.

I. INTRODUCTION

The wireless industry has an ever-growing appetite for data
throughput, and with it comes the need to adapt to quickly-
changing standards. Software radio is heralded by some in
the wireless engineering community as the future of standards
implementation, however this mentality might be somewhat
short-sighted. Reconfigurability, however advantageous in the-
ory, comes at the expense of increased power consumption
and hardware costs. Software-defined radios (SDR), despite
all their proposed benefits, consume considerably more power
than their hardware counterparts, such as application-specific
integrated circuits and field programmable gate arrays. The
energy efficiency lost through the flexibility of baseband
processing on a reconfigurable platform is a severe limitation
to its computational capacity and has considerable implications
to its physical size, weight, and battery life [1]. Furthermore,
the steady increase of hardware capabilities is easily over-
whelmed by the escalating demand for high-quality bandwidth

on mobile wireless devices. As such, the performance of
software-defined radio platforms will continue to lag behind
conventional hardware designs.1

As shown in [2], [3], real-time power monitoring can be ac-
complished by modeling processing load for streaming multi-
media systems. Furthermore, [4] demonstrated a significant
resource reduction by selectively reducing processing to meet a
specific target service quality. In our previous work we demon-
strated the strong relationship between channel conditions and
computational complexity required by the receiver, specifically
through the adaptation of forward error-correction (FEC) cod-
ing in conjunction with the scheme used to modulate the un-
derlying data [5]. While the tradeoffs between received signal
strength (relative to the noise level) to error rate performance
is well known within the wireless engineering community, its
impact on computational resources is not. This is in part due to
the complexities of modeling complex algorithms on various
hardware devices and is significantly dependent upon the
algorithm, the physical charactersitcs of the platform, and the
implementation. Professional signal processing engineers use
sophisticated benchmarking and profiling tools to eliminate
any and every unnecessary instruction in the algorithm to
ensure its performance is streamlined and as near to optimum
as possible. While a useful design approach, it is impractical
to apply it to the modern model-based software design in
which there exists a strict disconnect between the platform-
independent and platform-specific models.

In this paper we propose the use of online processor
complexity monitoring in order to specifically improve the
computational efficiency of the receiver in a dynamic wireless
environment. Section II describes the resouce management
model used in our analysis, Section III explains our exper-

1In this paper reprogrammable refers to the platform’s ability to run dif-
ferent waveform adaptations on a single piece of hardware. Reconfigurability,
however, refers to its ability to swap out components dynamically, perhaps on
a per-packet basis. In this regard, field-programmable gate arrays (FPGAs) are
indeed reprogrammable as they have the ability to be flashed with different
images, yet because they cannot be dynamically adapted while the image
is running, they are not reconfigurable. We acknowledge that a number
of research efforts have been put into studying dynamic reconfiguration of
FPGAs; at the time this paper was written, however, their reconfigurable
nature was not readily available and did not match the performance to that
of software platforms. Furthermore, while it is possible to switch between
modules on an FPGA as it is running, the modules themselves are otherwise
fixed.
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imental setup, Section IV summarizes the results found in
our study, and Section V gives our final conclusions on our
analysis.

II. RESOURCE MANAGEMENT IN SDR
Radios in general require a variety of resources in order

to operate, such as power, energy, and spectrum. Software-
defined radios in particular require not only more resources
than their hardware-defined counterparts, but a different set
of resources altogether. Specifically, computational bandwidth
and flash memory are precious commodities for SDR. Power
consumption on a software-defined receiver is typically higher
due to its more demanding processing requirements. As we
have demonstrated in [5] through extensive base-band simu-
lation, receivers need to work harder to recover signals which
are weaker, noisier, and in general more corrupted. Traditional
radio designs implement standards in hardware; the physical
layer is designed to operate under the predicted worst-case
scenarios and has little flexibility for on-the-fly modification
to adapt to changing wireless conditions aside from switch-
ing between modulation and forward error-correction coding
schemes. While these adaptations play a signficant role in
link throughput, data reliability, and energy consumption, other
common physical-layer parameters such as filter length, num-
ber of equalizer taps, rake fingers, and image-rejection filter
length are often left untouched by the receiver and viewed as
pre-specified. Neglecting these dimensions of communications
signal processing during the design process results in an
acutely sub-optimal solution. Just as any embedded software
development must consider resource consumption on its host
platform, so must SDR in this regard.

A. Performance Metrics
Understanding the dynamics behind algorithms and the re-

sources they consume is necessary in gaining back what SDR
loses through flexilibity. We propose the use of computational
channel complexity, K, as a performance metric for comparing
receiver designs. Computational channel complexity is simply
the number of clock cycles at the receiver which are required
to properly synchronize and decode a single bit of information
over a communications link. It is therefore necessary to
monitor waveform complexity at the receiver in order to gain
insight as to how well the receiver structure performs. We
model the processor’s clock cycles as a scarce commodity
and limited resource for facilitating communications. K has
units clock cycles per bit and can be measured several ways.
For most platforms, processor usage can be easily measured on
certain running processes as a strict percentage of its maximum
load. As such, a processor with a master clock frequency of Fp
cycles/second operating at rp percent of its maximum while
running a receiver capable of decoding η bits per second per
Hz has a processing complexity of

K = Fprp/η (1)

While this quantity gives an indication of peak computational
complexity, it does not thoroughly describe the actual through-
put of the link given its channel quality. As demonstrated in

our previous work, channel quality has significant implications
on the workload required by the receiver. Throughput, in this
case, is a measure of properly-received data (often referred to
as goodput), and is computed as

ζ(γ) = η
(

1− Pe(γ)
)

(2)

where again η, is the theoretical spectral efficiency of the
transmission scheme (e.g. modulation/coding scheme pair with
framing overhead) and Pe is the packet error rate at the
receiver under an instantaneous signal-to-noise ratio (SNR),
γ. Both η and Pe are strongly affected by the choice of radio
transmission scheme, as is the resulting receiver complexity.
This normalized quantity describes the actual amount of data
being conveyed over the wireless channel. The quantity in (2)
is theoretically bounded by γ and is well-known in information
theory. Typically channel capacity is referenced not in terms
of the ratio of signal energy to noise (Es/N0), but of bit
energy to noise (Eb/N0). The use of Eb/N0 is viewed as
a fair comparison of different transmission schemes as it
incorporates the rate of the transmission into its analysis of
signal strength. However we use Es/N0 because the receiver’s
signal-to-noise ratio incorporates its ability to synchronize the
entire physical-layer frame, including detection, acquisition,
and tracking. The ratio Eb/N0 is really only useful once
the receiver has synchronized, ignoring a very important and
practical component of wireless communication.

For a fair comparison of transmission schemes, the com-
plexity of the receiver must be normalized to the actual
throughput. Incorporating (1) and (2) gives

K̄(γ) = K/ζ(γ) (3)

which can be undersood as the average number of clock cycles
to decode a single bit of data through a communications link,
while accounting for erroneous data.

B. Measurement and Framework

It is fairly straightforward to benchmark and profile signal
processing algorithms running on a general purpose proces-
sor, and the open-source software community has provided
a number of tools to accomplish these tasks. In regards
to processor usage, POSIX kernels offer several possibili-
ties for real-time monitoring of CPU and memory usage
and provide a programming interface through the rusage
structure in the standard sys/resource.h library header.
The getrusage() method reports resource usage for a
specific process running on the system, having the capability
to estimate not only the amount of time in which the processor
has spent executing instructions but other useful metrics such
as memory footprint and number of page faults. This interface
provides an invaluable window into the processor’s core,
granting the radio access to information which it can use to
improve system performance.

While this interface provides us the ability to monitor
several resource metrics, we only consider computational
complexity of running the algorithm on the processor of
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interest. This choice was made out of simplicity, leaving future
development efforts to investigate the effects of considering
additional resources. The complexity of the algorithm is di-
rectly proportional to the processor load rp, which is simply
the relative time the processor spent running the algorithm
(Ta) divided by the total amount of time it spent in execution
(Te), viz

rp = Tp/Te (4)

The quantities Tp and Te are relatively easy to compute, and
emperical evidence on our target platform shows that these
resource usage measurements are both accurate and consistent.
Furthermore, invoking these interfaces adds minimal if not
negligible overhead to the radio’s performance during its oper-
ation. This implies that a performance monitor can periodically
probe the state of the radio platform and continually observe
its resource usage. Figure 1 depicts the proposed real-time
resource management framework for monitoring performance
of the system on a software platform. The parameterized
resources {R0, R1, . . . , RN−1} are adjusted by the Radio
Control module which provides an interface for setting the ra-
dio’s physical layer parameters (filter parameters, modulation
scheme, transmit power, etc.) while the Performance Monitor
evaluates the online system performance. The purpose of the
Policy Module is to ensure that the parameterized solution set
is valid for the regulated protocol. As the Performance Monitor
can observe the resource usage of the system as it runs, the
radio can operate in a mode appropriate to the conditions of
the channel: running in an enhanced mode when conditions
are poor, and scaling back when conditions are good.

III. EXPERIMENTATION

Consider a scenario in which two software radios need to
establish a communications link in a wireless network. These
nodes need to negotiate a protocol which achieves the highest
data rate possible without exceeding the capabilities of either
node. For most protocols, the burden of computation is much
higher at the receiving end of the link and is therefore the lim-
iting factor. Furthermore heterogenous networks are likely to

contain nodes of vastly different capabilities; some with higher
computational bandwidth than others. Should they just select
one of a pre-determined set of protocols, it is likely that if their
capabilities overlap, their solution will be sub-optimal, and the
performance poor. In our previous work, we demonstrated that
simply choosing an appropriate set of modulation and FEC
coding scheme pairs can result in a significant performance
improvement. Here, we validate these results through over-the-
air data transfer in a packet radio network. While a number of
other radio parameters significantly affects the computational
complexity of the receiver, we limit our analysis to simply
modulation and coding schemes as to be consistent with our
previous analysis, and leave other parameters–e.g. number of
equalizer taps, filter length–to another paper.

A. Framing structure

In order to validate the results of our previous work, a sim-
ple physical-layer wireless protocol was developed in which
narrowband packets were transmitted between two software-
defined radio platforms. The structure for framing the packets
was designed to be as versatile as possible, allowing for
fast acquisition, reliable detection, variable payload lengths,
coherent demodulation of any number of modulation schemes,
and decoding of layered, interleaved FEC schemes.

The framing structure consists of six basic components,
as depicted by Figure 2. The ramp up, phasing pattern,
and P/N sequence are together known as the physical layer
convergence procedure and are used for fast acquisition of
the frame at the receiver through packet detection, automatic
gain control (AGC) lock, carrier phase-locked loop (PLL) lock,
and symbol timing PLL lock. The ramp up and preabmle
phasing sequences are a BPSK pattern which flips phase for
each transmitted symbol (+1,-1,+1,-1,. . .). This sequence
serves several purposes but primarily to help the receiver’s
symbol synchronization control loop lock onto the proper
timing phase. The ramping nature of the beginning of the
frame gracefully increases the output signal level to avoid
“key clicking” and reduce spectral side-lobes in the transmitted
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Fig. 2. Framing structure used in over-the-air experimentation. The payload length is variable and is typically much longer than the preamble.

signal. Furthermore, it allows the receiver’s automatic gain
control unit to lock on to the incoming signal, preventing
sharp amplitude variations in its output. The P/N sequence
is a 63-bit m-sequence (maximal length) exhibiting good
auto- and cross-correlation properties. This sequence aligns
the synchronizers to the remainder of the frame, indicating
when to start receiving and decoding the frame header, as
well as indicating the coherent phase of the received signal.
At this point it is assumed that the receiver’s AGC, carrier
PLL, and timing PLL all have locked to the signal at which
time the bandwidths of each are reduced to a suitable tracking
mode. The header consists of a several data bytes describing
to the receiver how to decode the payload. It adds a minimal
amount of overhead to the frame as a whole and permits
the receiver to reconfigure itself on-the-fly for each packet
it detects. It includes a 32-bit cyclic redundancy check to
validate data integrity and is encoded using a simple 2/3-rate
Hamming(12,8) block code and modulated using BPSK. The
payload is the core of the frame, containing the raw data to
be transferred across the link. Its length is variable depending
upon the number of raw payload bits, forward error-correction
used (if any), and modulation scheme used. Before any error-
correction encoding is applied, a 32-bit cyclic redundancy
check is appended to the raw data to validate that the frame
was properly received. Finally, the ramp down sequence serves
to gracefully lower the transmitted power of the signal.

B. Transceiver description

A fully-reconfigurable software transceiver was imple-
mented in the C programming language capable of syn-
chronizing to packets transmitted over a wireless channel.
The receiver consists of the following modules: automatic
gain control with squelch to disable unnecessary processing
when the signal strength is low, received signal strength
and signal-to-noise radio estimation, numerically-controlled
oscillator and second-order PLL for carrier synchronization,
multirate decimator for symbol timing recovery [6], frame lock
detection, variable-level demodulation, block de-interleaver,
forward error-correction decoder, and cyclic redundancy check
validator.

C. Experimental Setup

The goal of the experiment was to achieve a maximum
throughput (ζ) given an instantaneous signal-to-noise ratio (γ)
by switching between available modulation and forward error-
correction schemes from within a set. Two different sets were
chosen: one on the basis of maximizing spectral efficiency, and
the other on the basis of minimizing computational complexity.
The first set, Sη (designed to maximize spectrum efficiency),
contains typical r = 1/2 and r = 1/3 convolutional codes
with a constraint length K = 9 and punctured at rates ranging
from 2/3 to 7/8. The second set, SK (designed to minimize
computational complexity), uses either no error-correction
(uncoded) or only a computationally efficient Hamming(12, 8)
2/3-rate block code. The two sets are depicted in Table I
along with their average computational loads measured in the
number of processor clock cycles (in thousands) required to
decode a single bit of data through the entire receiver chain.
Notice that their spectral efficiencies have nearly the same
range (from 0.6667 b/s/Hz at a minimum to about 5 b/s/Hz at
a maximum), yet have starkly different receiver complexities.

Frames were transmitted over a wireless link in a labora-
tory environment with varying transmit powers such that the
receiver’s signal-to-noise ratio deviated from approximately -2
dB to 23 dB. The transmitter and receivers ran on independent
Intel Pentium processors, each connected to a USRP [7] and
operating at a symbol rate of 225 kHz with a payload of
1024 bits (128 bytes). The receiver made an estimate γ̂ of
each frame’s signal-to-noise ratio using a combination of
the received signal strength relative to its pre-characterized
noise level and the variance of its demodulator error vector
magnitude. Statistics were gathered for the data throughput
and computational complexity under each modulation and
coding scheme pair from each of the two sets depicted in
Table I. These complexity measurements were conducted by
invoking getrusage() as described in Section II-B and
using (1) and (4). It is important to recognize that the clock
cycle measurements in Table I incorporate the entire receiver
including filtering, gain control, frame detection, carrier fre-
quency/phase recovery, symbol timing synchronization, deci-
mation, demodulation, and forward error-correction decoding,
while our previous work only incorporated the demodulator
and FEC decoder.
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TABLE I
AVAILABLE MODULATION/FEC SCHEME PAIRS, BROKEN INTO 2 SETS, Sη AND SK

Modulation scheme FEC scheme η, [b/s/Hz] K, [k-cycles/bit]

Sη , spectrum efficiency-driven set

QPSK conv. r = 1/3, K = 9 0.667 12.512
QPSK conv. r = 2/3, K = 9 1.333 8.135
QPSK conv. r = 3/4, K = 9 1.500 7.568
QPSK conv. r = 7/8, K = 9 1.750 7.064
16-QAM conv. r = 2/3, K = 9 2.667 6.138
16-QAM conv. r = 3/4, K = 9 3.000 5.733
16-QAM conv. r = 4/5, K = 9 3.200 5.753
16-QAM conv. r = 7/8, K = 9 3.500 5.281
64-QAM conv. r = 2/3, K = 9 4.000 5.254
64-QAM conv. r = 3/4, K = 9 4.500 4.975
64-QAM conv. r = 4/5, K = 9 4.800 4.840
64-QAM conv. r = 7/8, K = 9 5.250 4.831

SK, computational complexity-driven set

BPSK Hamming (12, 8) 0.667 7.874
QPSK Hamming (12, 8) 1.333 3.239
QPSK uncoded 2.000 3.013
8-PSK uncoded 3.000 2.264
16-QAM uncoded 4.000 1.938
32-QAM uncoded 5.000 1.474

IV. RESULTS

Figure 3 depicts the measured throughputs for the two
modulation/coding scheme sets measured over the air in a
laboratory environment, computed using (2). As the received
signal level degrades, the packet error rate approaches unity,
and therefore the throughput approaches zero. As expected,
this transition occurs sharply with γ such that an SNR
threshold is required to achieve any suitable throughput. This
threshold varies for each modulation/coding scheme pair, as
does the actual peak throughput.

In an adaptively switching protocol, the radios choose the
pair with the highest throughput for a given γ in order to
maximize the total throughput for the link. To compare, the
peak throughput for each set–the value riding along the crest
of Figures 3(a) and 3(b)–is plotted in Figure 4. This shows the
maximum throughput possible for the system given a specific
channel condition. Finally, Figure 5 shows the computational
complexity K̄ of the two sets, as computed by (3).

As expected, Sη has typically a higher spectrum efficiency
than SK, however for certain values of γ it is actually slightly
lower. This is demonstrated in Figure 4 near γ = 6dB and
again near γ = 10dB where the computational complexity-
driven set exhibits a slightly higher throughput than that of
Sη . This discrepancy can be attributed to the synchronizer’s
inability to lock onto signals with moderate carrier phase
and frequency offsets as well as timing phase offsets. While
simulation suggests that the packet error rate should be lower
for certain modulation schemes, the receiver is unable to
extract an adequate channel phase estimate due to noise and

therefore cannot establish a carrier lock. This results in a
constellation with a gross carrier phase offset and thus a
higher bit error-rate than theory under ideal carrier recovery
assumptions. In a practical sense, the limiting factor of the
physical layer is the distance between signal points as they
are responsible for proper demodulation and proper carrier
recovery. As a result, the errors introduced by increasing
the modulation scheme cannot easily be recovered by using
forward error correction.

Clearly the introduction of convolutional decoding increases
the number of computations required at the receiver. This is
a well-known phenomenon and makes a significant impact on
the receiver’s computational complexity. Not only does using
a stronger forward error-correction scheme typically increase
computational requirements of the reciever by running the
algorithm alone, but decreasing the rate of the code also
increases the length of the frame. This, in turn, requires
the receiver to run more filtering and gain operations which
directly impact its computational complexity. The processing
complexity of set Sη is roughly three times higher than that of
set SK at the highest signal-to-noise ratio; this suggests that
the receiver could actually increase its spectrum bandwidth
running at several times its nominal speed, increasing its data
rate. Alternatively, the same receiver could be deployed on
a more primitive piece of hardware, allowing for nearly the
same throughput to be achieved on nodes without higher capa-
bilities. In any case, it suggests a higher available bandwidth
or lower energy consumption at the receiver.

For very low signal-to-noise ratios (less than 3dB) the
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Fig. 3. Performance of adaptive switched modulation/coding scheme
sets, average throughput, ζ(γ), measured in an over-the-air, laboratory test
environment
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Fig. 5. Computational complexity, K, vs. signal to noise ratio, γ

spectrum efficiency-driven set actually out-performs the com-
putational complexity-driven set; this is because the receiver’s
throughput is so low that the denominator in (3) approaches
zero causing K̄ to explode. However, this is only an issue
for low values of γ in which both sets suffer significantly to
channel degradations.

V. CONCLUSIONS

In this paper we have demonstrated the advantages of
monitoring resource consumption of software-defined radio
platforms. Our results from [5] have been confirmed with an
over-the-air implementation of an adaptive radio capable of
switching modulation and coding schemes, saving the host
receiver valuable computational bandwidth while sacrificing
only a moderate spectral efficiency. We expect to see an even
greater performance increase by extending the analysis to
encompass the full receiver architecture, and allowing the radio
to adjust nearly all aspects of its receiver.
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