

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

DESIGN AND PERFORMANCE TRADEOFFS IN DIGITAL RADIO
PROCESSING ARCHITECTURES

Mujun Song, Jason R. Pennington, Mark D. Silvius, Ryan W. Thomas, Richard K. Martin

(Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH, USA,
{mujun.song.kr, jason.pennington, mark.silvius,

ryan.thomas, richard.martin}@afit.edu);
Charles W. Bostian (Center for Wireless Telecommunications, Wireless@Virginia Tech,

Blacksburg, VA, USA, bostian@vt.edu).

ABSTRACT

The level of reconfigurability in digital radios varies
significantly. At one extreme, dedicated devices, using
single-function analog components and dedicated digital
chips, operate for a specific wireless application. These
devices lack the flexibility to change or adapt to different
communication requirements, waveforms, or applications.
At the other extreme, software-defined radio platforms use
A/D converters to sample at RF or IF frequencies, allowing
reconfigurable software running on general processing
architectures to operate over a wide variety of applications.
While these devices may offer the most flexibility in terms
of reconfigurability, they can also have significant overhead
in terms of power consumption, cost, size, and performance.
Between these two extremes lie firmware defined radios, a
class of digital radio that is still highly reconfigurable, but
uses firmware and modifiable components to determine at
what point traditional software is run in the digital receive
process. This paper investigates the tradeoffs between
different processing architectures running in firmware and
software, and reviews current processing architectures and
products on the market that are using them. Next, the paper
defines a series of metrics that can be used to evaluate and
compare these architectures in a typical use case. We use
these results to show the potential advantages and
disadvantages of these processing architectures.

1. INTRODUCTION

 In the last few years, rather than settling on a standard
processing architecture, the software defined radio (SDR)
world has instead produced an ever increasing number of
variants. The SDR Forum has amalgamated all of these
under their definition of a SDR [1]:

… a collection of hardware and software technologies
where some or all of the radio’s operating functions (also
referred to as physical layer processing) are implemented
through modifiable software or firmware operating on
programmable processing technologies.

 Despite falling under a single definition, the different
processing architectures have a large tradespace in
performance, cost, power and ease of use. For a researcher
just entering into the SDR world, discerning what
technologies are appropriate can be a daunting challenge.
 Before we begin, we must define a new category of
digital radio that we term firmware defined radio (FDR).
The Institute of Electrical and Electronics Engineers (IEEE)
Standard Glossary of Software Engineering Terminology,
Std 610.12-1990, defines firmware as [2]

… the combination of a hardware device and computer
instructions and data that reside as read-only software on
that device.

 From the above definition, firmware designates not
only hardware, but also software. A key point when
defining FDR is that a digital radio should be operated and
controlled by the firmware. That is, it is firmware that
defines the operation of the digital radio. And generally,
firmware includes not only general purpose processors
(GPPs) and digital signal processors (DSPs), but also field
programmable gate arrays (FPGAs), and application
specific integrated circuits (ASICs). However, ASICs are
nearly impossible to be modified in a meaningful way once
manufactured; therefore, FDRs are largely relegated to
digital radios that are operated by FPGAs. In general, we
define a FDR as

… a digital radio in which the operation is characterized by
firmware as the primary functional actor. Firmware is
defined as user-modifiable, read-only software that controls
the hardware functionality.

 To analyze the tradeoffs of different processing
architectures in FDR and SDR systems, we utilize a
common SDR functionality related to Dynamic Spectrum
Access (DSA). Under a DSA scheme, SDRs and FDRs can
sense radio spectrum, locate spectrum whitespaces, and

SDR'10 Session 4C- 2

282

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

opportunistically use these vacancies to establish radio
communication links.
 We will use the baseline functionality required to
accomplish this spectrum sensing task as a benchmark to
compare different FDR and SDR processing architectures.
Using this baseline requires taking precise digital samples
of the environment; windowing the time series data;
performing a Fast Fourier Transform (FFT); using the result
to compute the power spectral density (PSD); and then
estimating which of the frequency bins of the PSD has a
signal present using a threshold test.
 This baseline functionality occurs in several different
DSA applications. For instance, in a public safety and
disaster communications response scenario [3], cognitive
radios (CR) performing DSA, identify the presence of
existing signals in the frequency band. The CR can then
join and communicate on an existing link, or act as a
gateway to bridge multiple communications links together.
 Existing solutions have relied heavily on GPP-based
architectures. However, due to a large area form-factor, and
consumption of a significant amount of power, these
architectures could not be supported with a hand-held
battery-pack. This limited deployments to ground-stations,
or at most, vehicle-mounted applications [4]. To move
beyond a fixed ground-station, or vehicle-mounted mobile
radio design, it is clear that hardware miniaturization needs
to occur to allow for the development of a small, power-
efficient hand-held device.
 Another application that uses this baseline to conduct
spectrum sensing, is not individual radios, but a larger
sensor network. Here a collection of CRs can relay
spectrum utilization information back to central database, or
DSA Broker [5], where the data can be fused to give a more
accurate depiction of the radio environment. In addition to
identifying the presence of signals, the multiple independent
measurements allow a user to geo-locate the origin of the
signals to complement the radio environment map [6].
 For military applications, the presence, as well as the
locations of the signals, can be significant in identifying
adversaries in the band. This knowledge gives military
planners the option of either avoiding adversaries’ signals or
jamming them. This process of identification has been
demonstrated previously using a GPP-based architecture
[7].

 To develop a larger-scale sensor network, with
multiple, battery-powered, inexpensive, and potentially
disposable nodes, we would again need to focus on
miniaturization, with the goal of developing small, power-
efficient, disposable nodes.
 Thus, this paper makes the following contributions.
First, we review current processing architecture options and
the most popular products on the market which utilize them.
Next, using a set of metrics we developed, and explain in
Section 3, we evaluate the three most common of these
processing architectures, specifically focusing on the
tradeoffs between SDRs and FDRs.

2. PROCESSOR ARCHITECURES

We begin by reviewing the processor hardware available for
use in software defined radio and cognitive radios.
 The GPP is one of the foundational processor
architectures in SDRs. Its high clock rate and large on-chip
memories make GPPs appropriate for SDR. However,
because its main purpose is not only for signal processing,
but also for performing various other system operations, it is
less efficient and consumes more power than other devices.
However, since the GPP is continuously being developed
and improved, some specialty processing features are now
found on GPPs.
 A DSP is a microprocessor for digital signal processing
applications. DSPs are flexible and can be programmed
with a HLL (high level language) such as C. Through this
HLL, modifications and upgrades can be made easily. Most
DSPs execute sequential and parallel operations. Even if
the DSP has provisions for parallel execution of
instructions, such as parallel multiply and accumulate, the
size and number of units are fixed, and they may not be
optimal for a particular task. So, for high-sample rate
process, more cycles are required and the data is processed
slower. However, DSPs are comparatively cheaper than
other hardware.
 FPGAs are hardware devices that provide a matrix of
reconfigurable logic resources on a single chip, which can
be programmed to implement a user specified circuit.
FPGAs can execute parallel operations, maintaining an
optimal word size for a particular algorithm. Therefore,

Table 1. Evolution of FPGA Technology [8-11]

 LUTs
(Per a slice) Input capacity of LUT Flip-flops

(Per slice)
Slices

(per CLB) DSP Capability of multiplier
in DSP

Virtex-2 2 4-input 2 4 None None
Virtex-4 2 4-input 2 4 32-512 18X18 multiplier
Virtex-5 4 6-input / 5 input-dual output 4 2 32-512 25X18 multiplier
Virtex-6 4 6-input / 5 input-dual output 8 2 288-2016 25X18 multiplier

283

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

they can achieve a much higher computational performance
than a DSP. Furthermore, they require less engineering cost
than an ASIC, because they are reconfigurable and can
leverage existing intellectual property. FPGAs are
programmed using Hardware Description Languages
(HDLs). However, since FPGAs are highly configurable,
HDLs are often considered more difficult to learn and use
than HLLs.
 Since modern FPGAs can meet many of the
performance and power consumption requirements of
ASICs, as well as the flexibility and low development costs
of GPPs and DSPs, they are increasingly being used and
improved.
 The key evolutionary trends of FPGA development are:
1.) increasing resources (termed slices), 2.) the use of
specialized embedded blocks, serving to improve delay,
power, and area if utilized by the application, but waste area
and power if unused, and 3.) device families with additional
mixes of features [12]. As an example, Table 1 summarizes
the number of look-up-tables (LUT) and flip-flops in the
Xilinx family of FPGAs. The increase in the number of
LUTs and flip-flops indicates that the computational power
of each is getting larger. In addition, there is an increase in
the input capacity of each LUT. However, since area
increases with the number of inputs, but the logic depth
decreases, the trend for larger LUTs also reflects an increase
in interconnection logic delay.
 The number of embedded DSP blocks in FPGAs
reflects that embedded blocks are becoming increasingly
common in FPGAs. For instance, the Xilinx Virtex 2
family has no embedded DSPs, but the Virtex 6 has a
maximum of 2016 embedded DSPs in the FPGA. Also, the
capability of each DSP has increased. At first, DSP had
18x18 multipliers, but now it has 25x18 multipliers, (of
course, FPGA DSPs have more capabilities than just
multipliers, such as adders and accumulators). There are
also other specialized embedded blocks, such as soft-core
and hard-core processors.
 All of these processor architectures have been utilized
in several different products, for varying market segments.
We will highlight some of the most popular products,
identify the processor architecture, and discuss some of the
tradeoffs inherent in the product.

 The Universal Software Radio Peripheral (USRP)
comes in two models: the USRPv1 and USRPv2. The first
uses an Altera Cyclone 1 FPGA; the second, uses a Xilinx
Spartan FPGA for basic, high sample-rate processing, like
digital up-and-down conversion. The GPP on the host
computer is used for the more complex, low sample-rate
processing operations. For this reason, we do not consider
the USRPv1 to really be a FDR, since the FPGA is not
directing the operation of the platform. The FPGA is just
responsible for pre-processing, and it does not have the
capability to do anything more. The USRPv2 can do more
of both the high and low sample–rate processing operations
in the FPGA, making it resemble more of a true FDR. Both
devices are low cost – $700 for the USRPv1 and $1400 for
the USRPv2 [13].
 The Small Form Factor (SFF) SDR Platform by
Lyrtech uses both a Virtex 4 SX35 FPGA and a specialized
embedded DSP called a digital media processor (DMP)
which consists of DSP and a GPP based on the ARM
architecture. This platform has an FPGA, DSP and GPP,
making it very difficult to categorize. Depending on how
its processors are utilized, the SFF platform can be more
SDR oriented or more FDR oriented. This is demonstrated
by the SFF software development kit, which allows a user
to develop C/C++ for DSP and GPP, or HDL code for
FPGA. It also allows the user to generate code for the DSP
and the FPGA using MATLAB and Simulink. It costs
$3500 for board and $8500 for kit [14].
 The wireless open access research platform (WARP)
version 2 uses Virtex 4 FX100 FPGA as its primary
processing unit. Although the radio can communicate with
a GPP-based PC, the platform is designed to perform all
radio calculation on the local FPGA. Even though it uses
same Virtex 4 family as the SFF SDR by Lytrech, the
FPGA in WARP is tweaked for high-performance logic
applications. For example, it has features such as more
logic slices (almost 3 times more slices than the SFF
Virtex4) and more RAM. On the other hand, the number of
DSP slices is almost the same as the SFF SDR. The WARP
board costs approximately $8500 for a basic single-antenna,
single radio model [15].
 Although not commercially available, Kansas
University has developed a SDR that uses Virtex 2 Pro P30

Table 2. Summary of Market Research

 USRP ½ Lyrtech RICE/WARP KUAR BEE2/BEE3 TI DSK6416
Cost $700 / $1400 $10,395 $3500 Not for sale Not figured out $495

FPGA
Cyclone 1 EP1C12 /

Xilinx Spartan 3-
2000

Virtex-4 SX35
Virtex-2 Pro P70
(V.1) / Virtex-4

FX100 (V.2)

Virtex-2 Pro
V20

Virtex-2 Pro P70/
Virtex-5 (LX/SX) •

Other elements
(signal
processing)

Host
computer(GPP)

DM6446 DMP
SoC from TI
(DSP+MPU)

• PowerPC 405

TMS320C6416

284

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

FPGA in conjunction with a 1.4 GHz Pentium M GPP. It
has an internal power supply with a battery pack, so it can
operate self-contained [16]. Since all radio functionality is
handled on the GPP, we consider it a SDR.
 The BEE2 uses 5 FPGAs (all Virtex 2 Pro P70s) [17].
The BEE3 uses 4 FPGAs (all Virtex 5s, of the
LXT/SXT/FXT varieties). This is somewhat different from
previous platforms [18], in that the original purpose of this
platform is to make a FPGA base computer system. Since it
has only FPGAs, a radio that utilizes a BEE would be
considered a FDR.
 An interesting GPP based processor architecture is
found in the TI Beagleboard. The Beagleboard has an
OMAP3530 application processor featuring the ARM
Cortex-A8. The OMAP processor contains both a GPP
(ARM) and a DSP (TI architecture). This GPP board is
much cheaper than a host PC which is generally used with
radio frontends such as the USRP. Even though the
performance of the GPP on the Beagleboard is lower than a
GPP in a laptop, the DSP can make up the deficiency. For
example, it is expected that a low cost SDR can be
developed by using the Beagleboard in place of a standard
PC [19].
 Finally, the TMS320C6416 DSP Starter Kit (DSK) is a
low-cost development platform used for the development of
high performance digital signal processing applications.
The system uses the TMS320Cx DSP chipset. The board
features USB communications for off-board connectivity.
The system is compatible with TI’s Code Composer Studio
IDE and eXpressDSP Software. The hardware board sells
for $400-500 [20].
 Table 2 summarizes these products. Note that every
platform except the TI DSK6416, whether considered to be
an FDR or SDR, uses FPGAs in some capacity.
Furthermore, some platforms use not only FPGAs, but also
GPPs and/or DSPs. The only platform that uses only
FPGAs is the WARP. Not surprisingly, FDR FPGAs have
much more capacity such as more logic slices, larger RAM,
more cores, more I/O interface, and more transceivers.

3. EXPERIMENTAL COMPARISON

This section defines the metrics that we used to characterize
and evaluate SDR and FDRs. To evaluate the relative
performance of three classes of digital radios (GPP, FPGA,

and DSP), we investigated the performance of the hardware
under various metrics. Each class of digital radio was
investigated in the context of a commercial platform that
contained a RF front end, consisting of digital and analog
components, in addition to the processor being evaluated.
 To eliminate cost disparities arising from the front end,
we investigated the price of the processing chipset
independently. Therefore, the price of hardware is defined
as the approximate retail cost of a single instance of the
processing chip in U.S. dollars.
 We defined performance in the context of the spectrum
sensing application. Performance is defined as the wall
clock time required (in seconds) to complete one sense
cycle (filter, FFT, and detect), once the A/D samples are in
local registers (and assuming the sense cycle is not
interrupted by another thread or process). In this case, a
lower clock time represented a higher level of performance.
 Working with fixed point resolution versus floating
point has issues. Each mathematical operation leads to a
loss of fidelity as rounding and truncation errors build.
Fidelity captures the issues associated with these errors. We
measured fidelity in dB lost over the SNR of floating point
operation.
 Hardware cost is not the only expense. The price of
software metric measures the approximate commercial
single seat license price in U.S. dollars of the standard
development kit for the platform. It does not take into
account support, maintenance or development hardware
costs.
 Power is measured as the number of Watts consumed
by the processing chip alone. It excludes the front end
power and support hardware power requirements.
 The amount of time required to build a standard project
on the processing platform given only a background in a
standard, functional programming language, such as C or
Java, is its development difficulty, or its learning curve. It is
qualitatively measured based on our experience in
developing systems on the platforms as low, medium, or
high.
 Figure 1 details the configuration of our experimental
comparison. We used a RF capture board to collect radio
samples of the environment. These samples were then
passed to three architectures, which executed our FFT-based
PSD sensor algorithm. These architectures were: 1.) a
Linux PC laptop which used an Intel Core2Dou GPP,

Table 3. Architecture Evaluation

Evaluation

Price of
Hardware
(Dollars)

Performance
(ns)

Fidelity
(dB)

Price of
Software
(Dollars)

Power
(Watts)

Development Difficulty
(opinion)

GPP 2,000 100‐200 ‐302 2,000 20‐50 Low
DSP 231 406.111 ‐48 445 1.5 Medium
FPGA 2,188 7.4322 ‐302 4,000 1.44 High

285

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

DSPDSP

TI DSP6416 Development Board
RF Capture Board

A/D

Antenna

FPGA

WARP Development Board

GPPGPP

Linux PC Laptop

Figure 1. Experimental Setup

2.) the Texas Instruments 6416 DSP development board
with a TMS320C6416 DSP processor, and 3.) the WARP
development board with Virtex 4 FX100 FPGA.
 For each system, we evaluated our metrics and listed
our results in Table 3. Prices were based on actual
acquisition costs for the software and hardware systems.
Power statistics were computed via system specifications,
but tailored to our particular processor configuration. We
approximated performance results using software profiling
and debugging tools, which tallied the clock cycles and run
time consumed by the FFT-based sensor algorithm. We
assigned the development difficulty rating as a qualitative
judgment of the overall ease of use of the hardware and
software design flow tools.
 These numbers enumerate the strengths and weaknesses
of each processor’s architecture. For example, the GPP
system had high fidelity, high ease of development, but high
power constraints and moderately high costs. The DSP
system had lower fidelity and performance, but was
inexpensive, had low power requirements, and moderate
ease of use. The FPGA had the highest performance, nearly
highest fidelity, and low power constraints, but it had high
costs and low ease of development.

 Next, we plotted these metrics in a series of spider plots
in Figures 2-4, to visually represent the trends. Here, the
better, a more desirable metric value is represented by a
larger quantity on the plot. For example, a large acquisition
cost was a disadvantage and scored low on the plot, while a
short execution time was favorable and scored high. These
figures reveal that each processor tended to best cover their
own unique region of the metric space, and the optimum
choice for a processor may depend on the specific
application.

4. CONCLUSIONS

The results in Figures 2-4 establish how processor
architectures each have their own strengths and weaknesses,
and how the optimum choice of a processor for a system
may depend on that system’s application. For example, the
GPP architecture may be best suited for ground-based
communication and spectrum sensing applications, where
power is plentiful, and where high ease of development,
high fidelity, and moderate costs are desired. On the other
hand, in mobile or vehicle mounted devices where power is
a constraint, and high performance and fidelity is a
requirement, then FPGAs may be best suited. Or, in a
battery-powered sensor network application, where low
cost, low power is a must, at the expense of performance or
fidelity, then a DSP system may be the best choice. Better
understanding these design and performance tradeoffs will
assist the designer when selecting a processor architecture
for his/her specific system application.

5. ACKNOWLEDGEMENT

This work funded in part by the Air Force Research Labs,
Sensors Directorate and the Air Force Office of Scientific
Research. The views expressed in this paper are those of
the authors, and do not reflect the official policy or position
of the United States Air Force, Department of Defense, or
the U.S. Government.

GPP

0

5

10

15

Hardware
Affordabil ity

Peformance

Fidelity

Software
Affordabil ity

Energy Efficiency

Development Ease

DSP

0

5

10

15

Hardware
Affordability

Peformance

Fidelity

Software
Affordability

Energy Efficiency

Development Ease

FPGA

0

5

10

15

Hardware
Affordabil ity

Peformance

Fidelity

Software
Affordabil ity

Energy Efficiency

Development Ease

Figure 2-4. Experimental Results

286

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

6. REFERENCES

[1] SDR Forum, 2010. http://www.wirelessinnovation.org.
[2] Wikipedia, "Firmware," 2010.

http://en.wikipedia.org/wiki/Firmware.
[3] M. D. Silvius, F. Ge, A. Young, A. B. MacKenzie, and C.

W. Bostian, "Smart Radio: Spectrum Access for First
Responders," in Society of Optical Engineering (SPIE):
Wireless Sensing and Processing III, Orlando, FL, 2008.

[4] R. Rangnekar, F. Ge, A. Young, M. D. Silvius, A. Fayez,
and C. W. Bostian, "A Remote Control and Service Access
Scheme for a Vehicular Public Safety Cognitive Radio," in
IEEE 70th Vehicular Technology Conference (VTC),
Anchorage, AK, 2009.

[5] F. Ge, R. Rangnekar, A. Radhakrishnan, S. Nair, Q. Chen,
A. Fayez, W. Ying, and C. W. Bostian, "A Cooperative
Sensing Based Spectrum Broker for Dynamic Spectrum
Access," in Military Communications Conference
(MILCOM), Boston, MA, 2009, pp. 1-7.

[6] R. K. Martin and R. Thomas, "Algorithms and Bounds for
Estimating Location, Directionality, and Environmental
Parameters of Primary Spectrum Users," IEEE Transactions
on Wireless Communications, vol. 8, pp. 5692-5701, 2009.

[7] A. A. Honore, R. W. Thomas, R. K. Martin, and S. H.
Kurkowski, "Implementation of Collaborative RF
Localization Using a Software-Defined Radio Network," in
Military Communications Conference (MILCOM), Boston,
MA, 2009, pp. 1-7.

[8] Xilinx, "Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheet," November 5, 2007.
http://www.xilinx.com/support/documentation/data_sheets/d
s083.pdf.

[9] Xilinx, "Virtex-4 Family Overview," September 28, 2007.
http://www.xilinx.com/support/documentation/data_sheets/d
s112.pdf.

[10] Xilinx, "Virtex-5 Family Overview," February 6, 2009.
http://www.xilinx.com/support/documentation/data_sheets/d
s100.pdf.

[11] Xilinx, "Virtex-6 Family Overview," January 28, 2010.
http://www.xilinx.com/support/documentation/data_sheets/d
s150.pdf.

[12] P. H. W. Leong, "Recent Trends in FPGA Architectures and
Applications," in 4th IEEE International Symposium on
Electronic Design, Test and Applications (DELTA), Hong
Kong, China, January 23-25, 2008, pp. 137-141.

[13] Ettus Research LLC, June 11, 2010. http://www.ettus.com/.
[14] Lyrtech, "Small Form Factor SDR Development Platforms,"

2010.
http://www.lyrtech.com/Documents/product_sheets/Referen
ce%20sheet%20-%20SFF%20SDR%20DP%20(hi_res).pdf.

[15] "WARP FPGA Board Overview," 2010.
http://warp.rice.edu/trac/wiki/HardwareUsersGuides/FPGA
Board_v2.2.

[16] G. J. Minden and the University of Kansas/ITTC, July 18,
2004.
http://www.csg.ethz.ch/education/lectures/sdrn/KURadio_O
verview_A50718.pdf.

[17] Berkeley Wireless Research Center, University of
California, Berkeley, "Berkeley Emulation Engine," 2007.
http://bee2.eecs.berkeley.edu/.

[18] BEEcube Inc, "BEEcube," 2010. http://www.beecube.com/.

[19] C. R. Anderson, G. Schaertl, and P. Balister, "A Low-Cost
Embedded SDR Solution for Prototyping and
Experimentation," in Software Defined Radio (SDR)
Technical Conference, Washington, DC, 2009.

[20] Texas Instruments, "TMS320C6416 DSP Starter Kit
(DSK)," 2010.
http://focus.ti.com/docs/toolsw/folders/print/tmdsdsk6416.ht
ml.

287

