
Spectrum Sniffer Software
Implementation for ISM Bands

SDR`10
30 November 3 December, 2010 Washington, DC

E. Picco

Advanced System Technologies

STMicroelectronics, Agrate Brianza, Italy

Outline

 Scenario: ISM Band devices indoor

 Background: cyclostationary signals

 Cyclostationary based Spectrum Sensing

 The Spectrum Sniffer Architecture

 Results

2/xx

Scenario

 Home scenario
 IEEE 802.11a/b/g/n

devices operating in the
2.4GHz – 5GHz, typically
PCs, modem-routers,
mobiles

 Bluetooth devices
operating in the 2.4GHz

 DECT devices

 Microwave devices

3/xx

Scenario model

Stochastic model switching received signals between typical IEEE 802.11a and

Bluetooth transmission or Additive White Gaussian Noise

Cyclostationary Signals

 For the considered scenario

 Received signal is
where x(t) is a periodic signal

 Channel autocorrelation is

 Transmitted signal autocorrelation function is

 So received signal Autocorrelation function is

5/xx

 dtxthty ;

 tththEtAn ;;; *

 detRAdtettytyE
T

tR j
xh

tj
T

TT
y

2*2
2

2

* ;
1

lim

 detxxE
T

tR j
T

TT
x

2
2

2

*1
lim

 fj
y eRfS 2,Cyclic

Spectral Density

 Cyclostationary algorithm applies to signals with periodic symbol structure that

include all the typical signals present in the ISM Band (802.11n, Bluetooth,…)

 Based on the Cyclic Autocorrelation Function computed to obtain the Cyclic

Spectral Density as a reliable and consistent estimate of the Power Spectral

Density

 Cyclic Autocorrelation Function tends to zero if AWGN only is present

 Setting the bandwidth limits and the sweeping step, CSD information for the whole

band can be obtained to be passed to the CRM

AWGN

802.11a/g/n sniffed packet

Cyclic

Autocorrelation

Function

Cyclostationary based Spectrum Sensing

The Spectrum Sniffer Architecture

 Based on USRP2 (Universal Software Radio Peripheral
2) SoC

 Embedding a programmable proprietary ST Core
subsystem dedicated to Spectrum Sniffing routines

 As for the SDR philosophy, a totally programmable
general purpose architecture has been adopted, no
need for dedicated HW

7/xx

Timer

FIFO

Pool

Status

FIFO

Pool

SPIC
AEMB

Core

RST

RAM

Loader

m0

s1s5

GPIO

s4

SPI

s2

s8 s9

i2c

s3

ETH

s6s7

Sys

RAM

s0

Time

Sync

s12

SD

SPI

s13

Ext

Mem

s14

Settings

Bus

Rx DSP

Core

Rx FE

SerDes
Rx

CTRL

Tx DSP

Core

Tx FE

Tx

CTRL

Tx/Rx

Switch

CTRL
s11

UART

s10

WishBone Bus

USRP2

s15

8/xx

Universal Software Radio Peripheral 2

RF Daughterboard

Embedded Spectrum Sniffer Architecture

USRP2 Basic SoC Architecture

Spectrum Sniffer Embedded Subsystem

 Based on a

STMicroelectronics

proprietary core

 Local Tightly Coupled

Program and Data

memory to speed up

computation reducing

instuction and data

fetching time

 Configurable via aeMB

core and via host

 Embedded in the

USRP2 SoC via

Wishbone Bus Lane

 Peripherals sharing via

bus arbitration

Spectrum Sniffer

Subsystem

9/xx

WishBone Bus

Timer

FIFO

Pool

Status

FIFO

Pool

SPIC
AEMB

Core

RST

RAM

Loader

m0

s1s5

GPIO

s4

SPI

s2

s8 s9

i2c

s3

ETH

s6s7

Sys

RAM

s0

Time

Sync

s12

SD

SPI

s13

Ext

Mem

s14

Settings

Bus

SerDes
Rx

CTRL

Tx DSP

Core

Tx

CTRL

WB-ST

Bridge

Tx/Rx

Switch

CTRL

s11

UART

s10

WishBone Bus

Rx DSP

Core

Tx FERx FE

s15 m0

ST Bus

DMem

PMem

Sniffer Core

ST

Core

m0 s0

RF Daughterboard

Spectrum Sniffer Software Architecture

WishBone Bus

Timer

FIFO

Pool

Status

FIFO

Pool

SPIC
AEMB

Core

RST

RAM

Loader

m0

s1s5

GPIO

s4

SPI

s2

s8 s9

i2c

s3

ETH

s6s7

Sys

RAM

s0

Time

Sync

s12

SD

SPI

s13

Ext

Mem

s14

Settings

Bus

SerDes
Rx

CTRL

Tx DSP

Core

Tx FE

Tx

CTRL

WB-ST

Bridge

Tx/Rx

Switch

CTRL

s11

UART

s10

WishBone Bus

Rx DSP

Core

Rx FE

s15 m0

ST Bus

DMem

PMem

Sniffer Core

ST

Core

m0 s0

USRP2 Basic SoC Architecture

Spectrum Sniffer Embedded Subsystem

 Modified USRP2

Firmware is loaded on

boot-strap and initializes

peripherals and Sniffer

subsystem

 Spectrum Sniffer APIs

allow to configure the

Spectrum Sniffer

subsystem, run the

sniffing routines and

getting the results from

the externam memory

 Spectrum Sniffer

Firmware performs the

sniffing routines

according to the

configuration

parameters passed by

the host or the aeMB

core and stores the

results in the external

memory.

Spectrum Sniffer

Software

10/xx

Spectrum

Sniffer

routines

Modified

USRP2 FW

Spectrum

Sniffer APIs
HOST

Software Partitioning

11/xx

Spectrum Sniffer Firmware

 Low level interface

 Takes the spectrum sniffing

sweep parameters from the

SoC main core or from the

host processor

 Performs the spectrum

sensing cyclostationary

algorithm accessing data

from the peripherals

 Stores the results into the

external memory location

according to the

configuration parameters

USRP2 Firmware

 Low lever interface

 Performs the board’s boot

procedure

 Initializes the peripherals

configuration registers

 Initializes the Spectrum

Sniffer subsystem

Spectrum Sniffer APIs

 Higher level interface

 Configure the Spectrum

Sniffer subsystem

 Starts a single frequency

sniffing as well as a

complete sweep over a

given frequency band

 Get the results from the

external memory to the

host memory

Spectrum Sniffer Mapping on FPGA

Xilinx Spartan3 XC3S2000 Modified USRP2 SoC

Resource Usage %

Registers 12808 31%

Single Port RAM RAM16X1S 16

Double Port RAM RAM16X1D 4336

Single Port RAM RAM64X1S 108

ROM ROM128X1 10

Block RAM 40 100%

Block MULT 8 20%

Clock Buffers 6 75%

Kgates equivalent 1740 87%

 Block RAMs are the main

bottleneck for the mapped

design since aeMB core

and ST proprietary core

have their own tightly

coupled memories. Also a

memory buffer pool is

shared among the

peripherals.

 Minimize the firmware size

for the two cores

 Buffer pool resize

 Clock frequency is another

critical point to be matched

in the Place&Route

Critical issues

Results

 Demonstrator implementing a full Software Spectrum Sniffer
for ISM Bands as a main part of a Cognitive Radio Physical
Layer

 Fully reconfigurable, programmable multicore SoC embedding
a Spectrum Sniffer subsystem

Thank you!

14/xx

