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ABSTRACT 
 
Automatic Modulation Classification (AMC) and blind 
equalization play important roles in an intelligent receiver 
when there is no information about the transmitted signal 
and channel. Apart from symbol detection, performance of 
the AMC is also affected by the presence of a multipath 
channel. In a cognitive radio (CR) set up it is preferable to 
design a blind equalizer which not only removes Inter 
Symbol Interference (ISI) but also improves the 
performance of the AMC. In this paper we propose a robust 
blind equalizer which not only eliminates ISI but also 
improves the performance of the fourth order cumulant 
based AMC. Computer simulations are given to illustrate 
the concept and yield promising results. 
 

1. INTRODUCTION 
 
One of the important aspects of cognitive radio is the ability 
to sense and characterize its RF environment and adapt 
accordingly [1], [2]. AMC is an important signal processing 
component that helps the CR in identifying the modulation 
format employed in the detected signal. AMC improves the 
spectral efficiency of a CR by adapting transmission and 
reception according to the spectral environment. The fourth 
order cumulants based AMC proposed in [3] is one of the 
widely used AMCs.  In a typical wireless communication 
environment, the transmitted signals are subjected to noise 
and multipath fading. Multipath fading not only affects the 
performance of symbol detection by causing inter symbol 
interference (ISI), but also affects the performance of the 
AMC. Blind equalizers are used to recover the transmitted 
input sequence using only the output signal with no 
knowledge of the channel and transmitted sequence. Due to 
the lack of a training sequence, blind equalization 
algorithms adapt the parameters of the blind equalizer by 
minimizing cost functions that exploit the higher order 
statistics of the received signal. These cost functions are non 
convex and hence the blind equalizer has the potential to 

converge to a local minimum. Convergence to a local 
minimum not only affects symbol detection performance but 
also affects the performance of the AMC.  
 
    The objective of a blind equalizer is to remove ISI, but its 
impact on the AMC [7] has to be evaluated as well.  In a 
cognitive radio scenario it is preferable to design a blind 
equalizer which not only removes ISI but also improves the 
performance of the AMC. Two approaches in this direction 
are found in the literature. The first method is proposed in 
[6], where performance of the cumulants based AMC is 
improved by estimating the channel using fourth order 
statistics. Also in [6], only the performance of the AMC is 
improved but there is no improvement in symbol detection. 
The other method proposed in [7] is the same as the one 
proposed in [6], except that a higher order statistics (HOS) 
based blind equalizer is added to the received signal and a 
switching mechanism is proposed based on which the AMC 
chooses between a raw signal and an equalized signal. There 
is no improvement in the performance of the AMC due to 
the switching mechanism and blind equalizer, but the 
switching mechanism makes sure that there is no 
performance degradation in the AMC due to the blind 
equalizer.   
 
    In this paper, we propose a novel cognitive receiver 
where performance of the AMC is also considered while 
designing the blind equalizer and thus eliminating the need 
for switching. The proposed system thus improves both 
signal detection and AMC performance. The proposed 
architecture is an adaptation of the blind equalizer presented 
in [9]. The reason for choosing this architecture is that it 
offers two fold diversity for AMC decision making, that is, 
the AMC makes a decision based on two estimated 
cumulant values. Because of this diversity, the performance 
of the AMC is better than those of [6] and [7]. Also, the 
proposed system is adaptive in order to accommodate time 
varying channels. 
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    Even though an AMC based on fourth order cumulants is 
considered in this paper, this concept can be generalized to 
any feature based AMC. The paper is organized as follows. 
In Section II we provide a block diagram description of the 
proposed receiver architecture and also briefly describe 
cumulant based AMC. Detailed description of the 
algorithms and fusion rule are presented in Section III. 
Simulation results are presented in Section IV, followed by 
the conclusion. 
 
Notation: T(.) denotes the usual transpose operation; *(.) or 

H(.) denotes the complex conjugate transpose; |(.)| denotes 
the absolute value of the variable; (.)E denotes the 
statistical expectation. 
 
 

  
Fig. 1. Block diagram of the proposed cognitive receiver. 

 
 

2. PROPOSED SYSTEM 
 

The overall block diagram of the proposed receiver is shown 
in Fig. 1. In this section we explain each component of the 
block diagram in detail. Let )(iw  be the transmitted symbol 
sequence. The received signal )(ix  is given by 
 

)()()()( 1 igiwzHix += −                             (1) 
 

where )(ig  is the additive white Gaussian noise and 
)( 1−zH  is the channel impulse response. )( 1−zH  is 

modeled as a FIR filter given by 
 

,1)( 1
1

1 L
K zhzhzH −−− +++= K                    (2) 

 
where  1−z is the unit delay operator, and ih  (for Li K,1= ) 
are the fading coefficients of the corresponding multipaths.  
The following assumptions are made about the channel and 
transmitted sequence. 
Assumption A1 The channel )( 1−zH  is a minimum phase 
polynomial, i.e., it has no zeros in 1|| ≥z . 

Assumption A2 The symbol sequence )(iw  is uniformly 
bounded and is a Martingale difference sequence, i.e., 
 

(a.s.) 0]|)1([,0]|)1([ =+=+ iIiR FiwEFiwE          (3) 
 

where  )}(,),0(),(,),0({: iwwiwwF IIRRi KK=  and 
 

(a.s.)      ]|)1()1([ 2*
wiFiwiwE σ=++                  (4) 

 
and }1),()()( −=+= jijwiwiw IR . Assumption A1 
implies that the energy in the direct component of the 
received signal is more when compared to the energy in the 
delayed multipath component. Assumption A2 implies that 
the current value of the transmitted sequence is independent 
of the past. 
 
From Fig. 1 it can be seen that the received signal )(ix  is 
branched out into two signals )(1 ix  and )(2 ix  where 
 

)()(1 ixix =   and 
).()()( 1

2 ixzBix −=                             (5) 
 

The polynomial )( 1−zB  can be any arbitrary polynomial 
such that 1))((degree 1 ≥−zB . Let the polynomial )( 1−zB be 
defined as 
 

.)( )1(
)1(

1
10

1 1
1

−−
−

−− +++= L
L zbzbbzB K          (6) 

 
The polynomial )( 1−zB  basically induces a non common 
factor in the two branches, so that the Recursive Extended 
Least Square (RELS) algorithm from [9] can be applied. 
Even though )( 1−zB  can be any arbitrary polynomial, it is a 
necessary polynomial required for the convergence of the 
RELS algorithm. The signals )(1 ix  and )(2 ix  are further 
passed through filter )( 1

1
−zF and )( 1

2
−zF  respectively, 

where 

)(
)()( 1

1
1

1 −

−
− =

zD
zRzF  and 

)(
)()( 1

1
1

2 −

−
− =

zD
zSzF .              (7) 

The filters )( 1
1

−zF  and )( 1
2

−zF  are known as prediction 
error filters, whose coefficients are adjusted by minimizing 
the following one step ahead cost function 
 

)|)1()1((| 2
11 +−+= iyixEJ ,                        (8) 

 
Where )()()()()( 2

1
21

1
1 ixzFixzFiy −− += and the prediction 

error )1( +ie provides the equalized symbol sequence for 
symbol detection. The recursive algorithm for 
estimating )( 1−zR , )( 1−zS  and )( 1−zD  is presented in the 
next section. 
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    Another important component in Fig. 1 is the AMC. As 
mentioned earlier, the fourth order cumulants [3] of a 
received signal are used for classification. For a complex-
valued random transmitted signal )(nw , second-order 
moments can be defined in two different ways as [3] 
 

)]([ 2
20 nwEC =  and ].|)([| 2

21 nwEC =                (9) 
 

Similarly, fourth order cumulants can be written in three 
ways [3] 

)](),(),(),([40 nwnwnwnwcummC =  

)](),(),(),([ *
41 nwnwnwnwcummC =             (10) 

)](),(),(),([ **
42 nwnwnwnwcummC =  

 
where 
 

).()()()(-                            
)()()(],,,[

xyEwzExzEwyE
yzEwxEwxyzEzyxwcumm

−
−=

       (11) 

 
The cumulants in (9) and (10) can be estimated from the 
sample estimates of the corresponding moments [3]. By 
assuming zero mean, we have 
 

∑
=

=
N

n
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N

C
1

2
20 )(1ˆ , 

∑
=

=
N

n

nw
N

C
1

2
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Similarly, for the fourth-order cumulants  
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The normalized value of the fourth order cumulants is 
defined by 

2,1,0       ˆ
ˆ~

2
21

4
4 == k

C
CC k

k                        (14) 

The theoretical values of cumulants for different modulation 
schemes are tabulated in [3]. In this paper we use |~| 40C  and 

|~| 42C  for classification. The normalized fourth order 
cumulant of a received signal which is subjected to 
multipath fading is given by 
 

2,1,0       ~~
44 == kCC

wx kk β                       (15) 

 
where 

wkC4
~  and 

xkC4
~ are the cumulant values of the signal 

before and after multipath fading, and 

.
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β                                    (16) 

    Since 1<β  [3], the effect of the multipath channel is to 
drive the actual cumulant value of the transmitted signal 
toward zero and hence the classifier is unable to distinguish 
the modulation schemes based on the cumulant features. 
The performance of the cumulant based AMC in the 
presence of a multipath channel can be improved by 
estimating the value of β  and multiplying the estimated 
cumulants by β1 . This approach is used in [6], where 
channel impulse response is estimated using HOS. 
 
     Since )( 1−zB  is an arbitrary polynomial, we adapt it in 
such a way that the performance of the AMC is improved. 
For the AMC based on fourth order cumulants, we adapt 

)( 1−zB  by minimizing the following cost function 
 

       .||
242 xCJ −=                           (17) 

 
The above cost function maximizes the cumulant value 
of )(2 ix  and hence the classifier will be able to distinguish 
the modulation schemes.  For a different feature based 
AMC, an appropriate cost function must be chosen 
accordingly. From the figure it can seen that the AMC 
makes decisions by fusing 1p  and 2p , which are functions 
of 

140xC  and 
240xC respectively. Appropriate functions for 

1p  and 2p  and the fusion rule are derived in the following 
section. 
 

3. RECURSIVE ALGORITHM 
 

In this section, we provide a detailed description of 
algorithms used to update the polynomials. Also, we 
develop fusion rules for AMC decision making. 
 
3.1. Estimation of )( 1−zS , )( 1−zR  and )( 1−zD . 
 
As mentioned in the previous section, the 
polynomials )( 1−zS , )( 1−zR  and )( 1−zD  are adapted by 
minimizing (8). From Fig. 1 it can be seen that 
 

)()()()( 11
2 iwzBzHix −−=                         (18) 

             )()()( 1
1 iwzHix −= .                       (19) 
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The recursive algorithm for updating )( 1−zB  is discussed in 

the next subsection. In this subsection we consider  )( 1−zB  
to be an arbitrary polynomial with the condition 

1))((degree 1 ≥−zB . Now  
 

)(
)(

)()()(                  .
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)()()1(
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111
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zHzBzS
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−
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               (20)      

and 
   
           )()]1)(([)1()1( 1

1 iwzHziwix −++=+ − .           (21)    
 

It can shown from (20) and (21) that   
 

)1()()1()1(1 ++=+−+ iwiQiyix              (22) 
where 

).()]1)((                                   .
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         (23) 

 
From (22) and (23) it can be seen that the cost function (17) 
is minimum when 0)( =iQ . Therefore setting (23) to zero 
we get 

)()( 11 −− = zHzD                            (24) 
and 

)1)(())()()(( 1111 −=+ −−−− zHzzBzSzR          (25) 
 
Note:  It should be noted that the channel impulse response 
can be estimated from (24) . This information can be used to 
calculate  β  (refer to (16)). 

    Since the polynomial )( 1−zH  is not known, it is not 
possible to solve the above equations. For 

1))((degree 1 ≥−zB , the whole system can be viewed as a 
special case of the SIMO blind equalizer in [8]. Hence we 
can modify the recursive algorithm in [8] for estimating the 
unknown polynomials. Let 
 

.)( 1
1

1
10

1 N
N zrzrrzR −−− +++= K  

.)( 2
2

1
10

1 N
N zszsszS −−− +++= K            (26) 

where ),1max(, 21 LLNN ≥ . Define 
 

LNNiyiyNix
ixNixixi T

≥−−−−
−=

3)],3(,),(),2(
,),(),1(,),([)(
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211

K

KKφ                 (27) 

and 
 

,0]0,                                                            

,,,,,,,,,,,,[ 001010 21

K

KKK LNN hhrsssrrr=θ
         (28) 

where the number of zeros at the end is the difference 
between the chosen 3N and the unknown L . From (27) and 
(28) we have 
 

).()1( iiy Hφθ=+                               (29) 
 

The value of θ  is estimated using the following Recursive 
Extended Least Squares (RELS) algorithm: 
 

*)1()()()(ˆ)1(ˆ ++=+ ieiipii φθθ                     (30) 
 

)()()1()1( iiixie Hφθ−+=+                        (31) 
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             (33) 

 
        0,)0( 00 >= pIpp       

Since the above algorithm is a special case of the algorithm 
in [8], the convergence property derived in [8] applies here. 
One of the important properties is that for 1=λ under 
assumption A1 and A2 and 1))((degree 1 ≥−zB  the 
a'posteriori prediction error converges to a scalar version of 
the symbol sequence, i.e., 
 

.0)]1()1()1([1lim
1

2
1 =+−+−+∑

=
∞→

n

i
n

iwiyix
n

                (33) 

The above equation indicates that the prediction error 
)1( +ie (refer to Fig. 1) provides good  symbol detection 

performance. 
 
3.2. Adapting )( 1−zB . 
 
As mentioned earlier, )( 1−zB  is adapted by minimizing 
(17). It can be seen that (17) is non quadratic and we use a 
gradient search method to find the coefficients of )( 1−zB . 

Let T
LbbbW ][

110 +++= K  be the vector of coefficients of 

)( 1−zB . The gradient search algorithm [5] for updating 
W is stated as follows. Let kW  denote the coefficient vector 
during the iteration K,2,1=k . 
 

• For 0=k initialize 0W  to a random value. 
• For K,2,1=k  calculate the output of the equalizer 
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• Update the coefficient vector using the following 
equation 

1

1
1

−
∂
∂

−= −
kW

kk W
JWW μ                (35) 

where  μ  is the step size. 

• If  ζ<
−

−

−

)(
|)()(|

11

111

k

kk

WJ
WJWJ terminate the iteration 

and go to step 5. If not, repeat step 2, whereζ   is 
chosen to be a small number less than one. 
 

• Calculate the equalized output using kW . 
 
The equalized signal )(2 nx  has a higher cumulant value but 
does not guarantee good signal to interference noise ratio 
(SINR). The reason is that the cost function 1J  is non 
quadratic and the gradient decent algorithm converges to a 
local minimum [5]. The low SINR of )(2 nx  is not a 
concern because )(2 nx is used only for the AMC and not for 

symbol detection. The coefficients of )( 1−zB  are updated 
for every batch of data, whereas the other polynomials are 
updated for every sample. The forgetting factor in the 
recursion (30)-(33) is used to track the slowly varying 

)( 1−zB  polynomial. 
 
3.3. AMC decision making. 
 
The decision about the modulation scheme is made by 
fusing the cumulant value calculated from two sources. 
From equations (24) and (28) it can be seen that the channel 
impulse response can be estimated using the recursion (30)-
(32) apart from achieving equalization. From the estimated 
impulse response )( 1−zD , the value of β  can be estimated 

using (16). Let β̂   be the estimated value of β , then 
 

.2,0     |,|ˆ
1

141 == kCp kx
β

                     (36) 

.2,0     .||
142 == kCp kx                      (37) 

 
Since the channel tends to drive the cumulant value of a 
transmitted signal to zero, the natural choice for the fusion 
rule is 

),max( 21 ppp f = .                            (38) 
 
 
 

4. SIMULATIONS 
 
In this section, the performance of both the AMC and 
symbol detection is examined. In order to analyze the 
performance of the AMC, the following AMC four class 
problem is considered 
 

)}.8(),16(,,{ PSKQAMQPSKBPSK=Ω           (39) 
 

The channel considered was a 4-tap FIR filter with AWGN. 
1000 Monte Carlo trails were performed with a sample size 
of 500=N  for cumulant estimation. The probability of 
correct classification is used as a measure to analyze the 
performance of the AMC.  Fig. 2 shows the probability of 
correct classification versus signal-to-noise ratio. In Fig. 2 

1Pcc is the performance of the AMC in the presence of an 
AWGN channel. 3Pcc  is the performance of the proposed 
system and 2Pcc is the performance of the AMC when 
perfect knowledge about the channel is known. 4Pcc is the 
performance of the AMC in the presence of a multipath 
channel with no channel estimation or equalization.  It can 
be seen from Fig. 2 that the proposed system shows 
improved performance when compared to 2Pcc . The 
reasons for this improvement are, a higher cumulant value 
of 2x  and the fusion of two cumulant values. 
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Fig. 2. Performance of the AMC 

 
4.1. Symbol detection performance. 
 
For analyzing the performance of symbol detection, the 
same 4-tap FIR channel was considered. The scatter plot of 
the received signal and equalized signal when using the 
PSK(8) modulation scheme for transmission is shown in 
Fig. 3 and Fig. 4. Symbol error rates (SER) before and after 
equalization are presented in Fig. 4. Simulation results 
illustrate that equalization is achieved using the proposed 
system. Also from the simulation results it can be seen that 
the performance of symbol detection and AMC are 
simultaneously improved. 
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Fig. 3. Scatter plot of the received signal 
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Fig. 4. Scatter plot of the signal after equalization 
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Fig. 5. Symbol error rate (SER) vs SNR (BPSK) 

 
5. CONCLUSION 

 
A novel receiver for cognitive radio is proposed. The 
proposed system enhances the performance of both the 
AMC and symbol detection. Simulation results also show 
good performance. Future work is to extend this concept to 
other feature based AMCs especially cyclostationarity and 
cyclic cumulants based AMC. Future work also includes 
extending this concept to MIMO communication systems 
and non minimum phase channels. 
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