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ABSTRACT 

 

Cognitive radio is expected to be aware of the changing 

channel environment and adjust the services and resources 

accordingly by changing the radio's transmission parameters. 

In order to achieve automatic adaptation, the radio must 

have the ability to reason about the facts from the 

environment or from other radios/nodes, i.e. to infer implicit 

knowledge from the explicitly represented knowledge. It 

requires a proper language to represent the knowledge and 

policies and an inference engine that can process the 

knowledge and policies. However, such awareness and 

reasoning capabilities, especially combined with 

optimization and adaptation, have not been previously 

reported in the literature. Ontology-Based Radio (OBR) has 

shown its potential to fulfill the awareness and reasoning 

requirement of cognitive radio. We aim to refine the OBR 

concept and apply it to a link optimization use case. The 

general goal is to maximize the information bit rate per 

transmitter watt of power. This is attained by fine-tuning the 

parameters in the transmitter and receiver. In this paper, we 

show that using the ontology and a policy-based approach, 

two radio nodes are capable to read/modify their knobs and 

meters, and thus improve the link performance. In this 

approach, all the internal and external information of the 

radio is represented in Web Ontology Language (OWL) and 

the rules to fine-tune each parameter are written in a 

declarative form and interpreted by a reasoner. 

 

1. INTRODUCTION 

 

Cognitive radio is expected to have the capabilities to (1) 

sense the environment and collect information of the 

environment; (2) be aware of the external situation, the 

internal state and its own capabilities; (3) automatically 

adapt its parameters and optimize multiple objectives; (4) 

reason about communications situations, objectives and 

radio configurations. Some of these capabilities, such as 

spectrum sensing and opportunistic utilization, are currently 

actively pursued by various wireless research projects. 

However, the capabilities of awareness and reasoning, 

especially combined with optimization, have not been 

previously reported in the literature. 

 Awareness, including situation awareness and self-

awareness, is the ability to interpret and derive 

understanding from the input information [1,2]. More 

specifically, it refers to the perception of the elements in the 

surrounding environment, the comprehension of their 

meaning and the projection of their status in the near future 

[3]. It also refers to the understanding of its previous actions 

and results, its current performance and capabilities.  

 Real awareness can be achieved only if the agent can 

reason about the facts it gets from the environment or from 

other agents. Reasoning refers to the ability to infer implicit 

knowledge from the explicitly represented knowledge. 

Reasoning requires (1) a proper language to represent the 

knowledge and policies, and (2) a reasoning engine that can 

process the knowledge and policies. 

 Awareness and adaptation are the most critical 

requirements in cognitive radio. Due to the growing 

complexity and heterogeneity of the communication 

networks, cognitive radio needs to be aware of the changing 

context and adjust the services and resources accordingly. 

The changing context includes the spectrum environment, 

the user and demands, the network topology, etc.

 However, there are a few limits in the current radios that 

prevent them to fulfill awareness and adaptation: (1) Local 

information is stored in a data model that does not have high 

expressivity and machine understandable semantics. For 

example, in SNMP (Simple Network Management Protocol) 

or CMIP (Common Management Information Protocol), the 

information that can be got and set is limited to scalar 

variables. It is not possible to exchange complicated 

information such as the structure of a component. XML 

technology can be integrated with the existing protocols to 

provide a means to express more complicated information 

[14,15]. However, the XML-represented information cannot 

be processed by the inference engine. Therefore, the radio 

cannot reason and adapt its behavior without human 

intervention. (2)  Signaling messages are limited in the 

frame structure defined by the protocol, and therefore hinder  

the ability to achieve the vertical and horizontal mobility 

among the communication networks. 

 Therefore, a new approach is required to replace the 

current static design solution with a more flexible and 

adaptable solution, e.g., a policy based solution. Also, the 
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radios need to use a language that all of them “understand”, 

so that they are capable to exchange and process information 

about their situations, goals, components and capabilities 

[6].  

 Various academic communities and wireless research 

projects are actively working towards such a goal. In [12], 

the authors propose the concept of Ontology-Based Radio 

(OBR). In the OBR approach, all the internal/external 

information and the signaling messages are represented in 

the Web Ontology Language (OWL). OWL is a formal 

language with high expressivity and computer processable 

semantics and therefore is capable of expressing 

complicated information and can be processed by the 

inference engine. Bearing the same concept, the Modeling 

Language for Mobility (MLM) working group in the 

Wireless Innovation Forum is leading an effort to develop a 

formal language, with computer understandable semantics, 

that could be used to describe all aspects of network 

operations and management [6][7][10][11]. Papers [5] and 

[9] discuss the language issues that arose in the process of 

developing the ontology and policies for cognitive radio. In 

[8], we use a public safety use case to demonstrate how to 

combine ontology, policy and inference engine to control the 

radio behavior. In addition, the IEEE P1900.5 working 

group is making an effort to define a policy language to 

specify interoperable control of the cognitive radio 

functionality.  
 Aligned with the above efforts, this paper aims to refine 

the OBR concept and test it on a link optimization use case. 

The contributions of this paper include that: (1) we 

developed a Cognitive Radio Ontology in OWL to represent 

the basic terms of wireless communications; (2) based on 

this ontology, we developed a set of policies and rules to 

optimize the link performance; (3) we showed that the 

ontology and policy approach can infer implicit knowledge 

and this implicit knowledge can bring benefits to the 

communication efficiency. 

 In the rest of this paper, Section 2 describes a 

refinement of the OBR architecture. Section 3 introduces the 

concepts of inference engine, policy and the ontology we 

have developed. Section 4 shows how to use OBR to solve a 

link optimization problem. Section 5 briefly discusses the 

reasoning capability of the OBR and the benefits of such an 

approach. Finally, Section 6 concludes the paper and 

outlines the future work. 

 

2.  ARCHITECTURE OF OBR 
 

In this paper, we aim to use the OBR approach to adjust 

some of the radio parameters. There are two types of 

parameters: knobs and meters. Knobs refer to the adjustable 

parameters that control the radio's operation and thereby 

affect the radio performance. Meters refer to the utility or 

cost functions that are intended to be maximized or 

minimized in order to achieve optimum radio operation.  

In order to enable two radios to negotiate about their knobs 

and meters, we propose a refined architecture of the OBR as 

shown in Figure 1. 

 Radio Platform provides the digital signal processing 

and software control, as well as the interfaces to 

communicate with the RF, sensors, information source/sink 

and the policy reasoner.  

 System Strategy Reasoner (SSR) is an internal 

component of the cognitive radio. It forms strategies to 

control the operation of the radio. The strategies reflect the 

opportunities, capabilities of the radio and waveform, and 

the needs of the network and users [17]. 

 All the incoming messages from the RF are first 

processed by the Radio Platform. Data messages are passed 

to the radio application (we call it Data Sink), whereas the 

control messages end up in the SSR. Similarly, all the 

outgoing control messages are generated by the SSR and 

then passed to a buffer. The data messages and control 

messages will be merged in the buffer and then passed to the 

Radio Platform. After being processed in the Radio 

Platform, the messages will be sent out through the RF. 

 There are different control models to describe the 

control mechanism of the OBR. Figure 2 shows an example 

of the closed loop feedback control model. SSR can be 

viewed as a controller. The controller calculates the knobs 

as a function of the goal and the observed meters. Then, the 

plant (Radio Platform), being the actual operational part of 

the radio, collects the knobs, the meters and other sensed 

information from the environment and computes the Quality 

of Service metric (QoS). The QoS reflects the overall 

performance of system. The QoS is sent to the controller 

(SSR) as a feedback. The controller then evaluates whether 

the goal is achieved. If not, then the controller changes its 

input to the plant (knobs) as to achieve the control goal [18]. 

 
Figure 1 A Refined Architecture of Ontology-Based 

Radio 
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 As shown in Figure 3, the control messages can be 

added to an extensible payload field as needed, rather than 

embedded in the predefined protocol-dependent header or 

trailer. This mechanism not only adds signaling flexibility to 

the existing protocols, but also makes it possible to add the 

inference capability to a radio without much change of the 

lower layer architecture. 

3. ONTOLOGY AND POLICY 

 

 The SSR provides an inference capability to OBR. As 

shown in Figure 1, SSR consists of an inference engine, an 

ontology and a set of policies. When the radio starts 

functioning, the ontology, the policies and the dynamic facts 

generated by the radio are loaded into the inference engine. 

Then the inference engine infers new facts and generates 

control messages such as a command to change the 

parameter values.  

 An ontology is a formal, explicit specification of a set 

of concepts in a specific domain and the relationships 

between these concepts. The term “formal” means that the 

ontology is machine processable for the purpose of 

knowledge reuse and sharing [16]. We developed a 

Cognitive Radio Ontology to cover the basic terms of 

wireless communications from the PHY and MAC layer. 

This ontology is written in OWL and has 230 classes and 

188 properties. The documentation of Cognitive Radio 

Ontology is published in [11] and [9]. Using the classes and 

properties defined in this ontology, we can develop policies 

to control the behavior of the radio. 

 A policy is a set of rules written in a policy language. In 

our implementation, we use BaseVISor as the inference 

engine. BaseVISor is a forward-chaining rule engine 

optimized for handling facts in the form of RDF triples. The 

engine also supports XML Schema Data Types. An RDF 

triple consists of a subject, a predicate and an object. The 

subject and the object denote resources (things in the 

domain of discourse), and the predicate denotes a 

relationship between the subject and the object.  

 The following is an example of a rule in RDF triples 

form: 

 
<rule name="checkPerformance"> 

 <body> 

   <triple> 

    <subject variable="X" /> 

    <predicate resource="rdf:type" /> 

    <object resource="rad:SignalDetector" /> 

   </triple> 

   <triple> 

     <subject variable="X" /> 

     <predicate resource="rad:signalToNoiseRatio"      

/> 

     <object variable="SNR" /> 

</triple> 

   <lessThan> 

     <param variable="SNR" /> 

     <param rdf:datatype="xsd:float">15</param> 

   </lessThan> 

   <greaterThan> 

     <param variable="SNR" /> 

     <param rdf:datatype="xsd:float">10</param> 

   </greaterThan> 

 </body> 

 <head> 

   <assert> 

     <triple> 

       <subject variable="X" /> 

       <predicate resource="rad:performance" /> 

       <object 

rdf:datatype="xsd:string">acceptable</object> 

     </triple> 

   </assert> 

 </head> 

</rule> 

  

 This rule states that if the SNR is smaller than 15 and 

larger than 10, then the performance is acceptable.  In the 

BaseVISor syntax, the subject, predicate and object element 

can be a resource, a XML data type or a variable. If an 

element is a resource, e.g. SignalDetector, then this element 

is defined in the ontology.  

 As is the case with some inference engines, it is possible 

to extend the BaseVISor functionality by adding new 

functions. These are called procedural attachments or 

functions.  

 The following is an example of computing the objective 

function in Section 3. 

 
<bind> 

<param variable=”objFunc_PowdB”/> 

<computeObjFunc> 

<param variable=”PowdB_new”/> 

<param variable=”trainPeriod”/> 

<param variable=”m”/> 

<param variable=”v”/> 

</computeObjFunc> 

</bind> 

 

 
Figure 2 Example Control Model of Ontology-Based 

Radio 

 
 

 

 
Figure 3 Extensible Payload Field 
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In the above example, <computeObjFunc> is a user-defined 

procedural attachment. This function has four arguments and 

returns the value of the objective function. The return value 

is bind to variable objFunc_PowdB. 

 

4. AN EXAMPLE: LINK OPTIMIZATION 

 

In this paper, we use a link optimization use case to show 

how OBR can be used to achieve automatic adaptation in 

cognitive radio.  

 In the link optimization use case, there is a transmitter-

receiver pair. The general goal of link optimization is to 

maximize the information bit rate per transmitted watt of 

power, subject to a set of constraints. This is attained by 

fine-tuning the parameters in the transmitter and the 

receiver. Here, the OBR provides a means to exchange the 

control messages between the transmitter and the receiver. 

 The tunable parameters (knobs) and the observable 

parameters (meters) of the transmitter and receiver are 

shown in Table 1.  

4.1. Objective Function 

 

The goal is to maximize the information bit rate per 

transmitted watt of power: 

The transmission energy (Unit: Joules) equals to: 

The total number of symbols in the packet is: 

 

Assume that



payloadsize128 , 



SampleRate 1000 , and 



fracSpacing  2 are fixed. Then the goal is to minimize the 

following objective function: 

 

4.2. Constraints 

 

 (1) The reported equalizer 



mSNR  must be between 



10dB  and 



15dB . Intuitively, a value greater than 



10dB  

yields good detection performance, but a value greater than 



15dB indicates that the data rate could be increased, or the 

transmit power should be decreased. Hence, the constraint 

for 



mSNR is:



10dBmSNR15dB. 

 (2) 



PowdB  is the transmission power in 



dBm . Here, 

we set the upper bound of 



PowdB as: 



PowdB 0dB . Since 

both 



PowdB and 



mSNR are in 



dB, a drop of 



mSNR results 

in an equal drop in 



mSNR. Thus, 



PowdB mSNR . 

 (3) 



m  controls the coding overhead of 



(2m 1,2m 1m)  Hamming code. 



m  does not affect the 



mSNR. 



m has natural lower bound of 3 and has no natural 

upper bound. Here, we set the constraint of 



m as: 



3m 7. 

 (4) 



v  controls the size of the QAM modulation. The 

natural lower bound of 



v  is: 



v 1.   Increasing 



v  by one 

unit drops the 



mSNR  by approximately 



6dB . Thus, 



v  mSNR /6. 

 (5) 



trainPeriod  affects the 



mSNR in a less clear way. 

If 



trainPeriod is less than 



5 (M N1N2) , then the 

equalizer does not fully converge, thus 



mSNR  will be 

decreased. If 



trainPeriod  is greater than 



5 (M N1N2) , 

then it will have little effect on 



mSNR, but will work against 

the minimization of the metric. Hence, the constraint of 



trainPeriod is : 



5 (M N1N2)  trainPeriod 10  (M N1N2). 

 (6) 



M , 



N1, 



N2 have a threshold influence on 



mSNR: 

the 



mSNR  will increase with 



M , 



N1 , 



N2 , until a 

sufficiently large equalizer for the multipath is achieved. 

After that point, increasing the equalizer dimensions will 

have no effect, except to increase the shortest possible 

training sequence. 

 

4.3. Policy  

 

4.3.1. Policies to establish the communications link 



objFunc 10

PowdB

10 [

528  (1
m

2m m1
)

v
 trainPeriod]  



InformationBitRatePerTxPower


BitsOfPayload /Time

TxEnergy /Time

BitsOfPayload

TxEnergy

payload 8

TxEnergy

 



TxEnergy TxPower Time


10

PowdB

10

1000

TotalNumberOfSymbol  fracSpacing

SampleRate

 



TotalNumberOfSymbol 

[(328  payload)  (1
m

(2m m1)
) 
1

2v
 trainPeriod]

 

Table 1 Parameters of Transmitter and Receiver 
Tx PowdB Transmission Power (Unit:dBm) Knob 

trainPeriod Length of training sequence  

(Unit: channel symbol) 

Knob 

m Index of (2^m-1, 2^m-1-m)  

Hamming Code 

Knob 

v Integer of QAM modulation, 4^v 

is the size of QAM constellation 

Knob 

Payload Size of payload field. Set 

payload=128 bytes 

Fixed 

fracSpacing Number of samples per symbol. 

Set fracSpacing=2 

Fixed  

sampleRate Number of samples per second. 

Set sampleRate=1000 

Fixed 

Rx M Number of feedback taps Knob 

N1 Number of precursor feedforward 

taps 

Knob 

N2 Number of postcursor 

feedforward taps 

Knob 

mSNR Mean Signal-to-Noise Ratio Meter 
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The link optimization is accomplished by five transmissions, 

shown in Figure 4.  

 Suppose we initialize radio A as the transmitter and 

radio B as the receiver. Then after radio A sends a data 

message to radio B, radio B will check the performance by 

measuring the



mSNR. If the 



mSNR is within an acceptable 

range, then radio B will start to minimize the objective 

function. Radio B will first send a “query” message to radio 

A, asking for the current values of its parameters. When 

radio A receives this query, it will infer the answer and send 

the answer back to radio B. After radio B receives the 

answer, it will trigger the policy to compute the new values 

of its local parameters and the parameters of radio A. Then 

radio B will set its local parameters to the new values and 

generate a command to radio A. The “command” message 

contains the new values of radio A’s parameters. After radio 

A receives the command, it will execute the command and 

set its parameters accordingly. A “confirm” message is then 

sent to radio B. 

 The following is an example rule of reacting to the 

received message:  

 
Rule “checkPerformance”:   

If the radio receives a data message, then (1) 

check mSNR; (2) generate a query message with 

content “?PowdB, ?trainPeriod, ?m, ?v”; (3) 

send the query to the originating radio. 

 

4.3.2. Policies to do the link optimization 

 

The goal of link optimization is to minimize 



objFunc . 

However, the decrease of 



objFunc  will worsen the 

performance and decrease the 



mSNR. In other word, there is 

a tradeoff between the decrease of 



objFunc  and the 

improvement of 



mSNR.  

 We implemented three sets of policies with different 

preferences. Policy1 decreases the 



objFunc  as much as 

possible while not guaranteeing 



mSNR  within the 

acceptable range. Policy2 decreases 



objFunc  to an 

intermediate level while maintain 



mSNR  in the acceptable 

range as possible. Policy3 decreases 



objFunc  while 

guaranteeing the 



mSNR within the acceptable range.  

 The following shows the description of Policy3; it 

contains 4 rules: 

                                                                                  
Rule 1:   

If mSNR > 15, then tune M, N1, N2 as follows: 

     ΔM = -2, ΔN1 = -2, ΔN2 = -2. 

 

Rule 2:   

If mSNR > 12.5, then tune one of these 

parameters: PowdB, trainPeriod, m or v. 

 

(1) Compute the following: 

PowdB_new= min((12.5 – mSNR + PowdB), 0) 

trainPeriod_new = min (7.5 *(M+N1+N2), 

trainPeriod)  

m_new = 7 

v_new= max (v, floor ((mSNR – 12.5)/6)+v)  

 

(2) Compute the following objective function: 

     objFunc (PowdB_new, trainPeriod, m, v) 

     objFunc (PowdB, trainPeriod_new, m, v) 

     objFunc (PowdB, trainPeriod, m_new, v) 

     objFunc (PowdB, trainPeriod, m, v_new) 

 

(3) Choose the smallest objective function 

from (2) and tune the corresponding parameter 

to the new value. 

 

Rule 3:   

If mSNR <= 12.5, then tune one of these 

parameters: PowdB, trainPeriod, m or v. 

 

(1) Compute the following:  

     PowdB_new= min((15 - mSNR+PowdB), 0)  

     trainPeriod_new = min (10 *(M+N1+N2), 

trainPeriod)  

     m_new = 0 

     v_new= max ( v, floor ((mSNR-15)/6)+v)  

 

(2) Compute the following objective function: 

objFunc (PowdB_new, trainPeriod, m, v) 

objFunc (PowdB, trainPeriod_new, m, v) 

objFunc (PowdB, trainPeriod, m_new, v) 

objFunc (PowdB, trainPeriod, m, v_new) 

 

(3) Choose the smallest objective function 

from (2) and tune the corresponding parameter 

to the new value. 

 

Rule 4:   

If mSNR < 10, then tune M, N1, N2 as follows: 

     ΔM = +2, ΔN1 = +2, ΔN2 = +2. 

 

 All the above policies are written in the BaseVISor 

syntax. 

 In our implementation, we use MATLAB to emulate a 

Rayleigh multipath channel between two radios. Each radio 

is connected to BaseVISor. When a new message comes in, 

BaseVIsor will be invoked to do the reasoning. The outputs 

of BaseVISor include new values of the parameters for the 

next transmission. 

 
Figure 4 Sequence Diagram of Link Optimization 
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 In order to evaluate whether the policy is able to adapt 

to the change of the channel environment, we linearly 

increase the number of multipath from 2 to 16. Assume the 

radios are operating in half-duplex mode.  The default 

parameter values are: 



PowdB 0 , 



m  3 , 



v 1 , 



trainPeriod 100 , 



M1 2 , 



N1 2 , 



N2 2. First, we set 

the number of multipath to 2. Then radio A sends the 1
st
 data 

message to radio B. When radio B receives the 1
st
 data 

message, it measures 



mSNR  and 



objFunc . Based on the 

current values of 



mSNR and 



objFunc , the two nodes will 

follow the steps described in Figure 4 to negotiate the 

parameters for the 2
nd

 data message and then set their 

parameters to the new values. Then we change the channel 

environment by setting the number of multipath to 4. After 

that, radio A sends the 2
nd

 data message to radio B and 

repeats the above steps. In total, radio A sends 8 data 

messages to radio B. The simulation results and the 

comparison of these three policies are shown in Figure 5. It 

can be seen that without link optimization, 



objFunc  remains 

at the same value and 



mSNR  fluctuates as the number of 

multipath changes. With link optimization, 



objFunc  is 

significantly decreased. Policy1 decreases 



objFunc  by 66% 

at the price of decreasing 



mSNR  by 1.83dB. Policy2 

decreases 



objFunc  by 55% at the price of decreasing 



mSNR  by 0.83dB. Policy 3 decreases 



objFunc  by 36% 

while increasing 



mSNR by 0.09dB. 

 

5.  INFERENCE IN OBR 

 

One of the advantages of the OBR approach is that it can 

infer implicit knowledge. In this section, we use the link 

optimization use case to show what benefits this implicit 

knowledge can bring to the communications. 

 In the case of link optimization, the radios need to 

exchange information about their knobs and meters. So 

theoretically, radios might need to send values of 3,000 of 

such parameters. This would impose a lot of 

communications burden leading to a high need for spectrum. 

However, not all the 3,000 parameters are needed in the link 

optimization. Generally, in each transmission, these 3,000 

parameters can be divided into 3 groups: (1) parameters that 

need to change; (2) parameters that are fixed; (3) parameters 

that we don’t care. For example, in our use case, we only 

care about 7 parameters:



PowdB, 



trainPeriod , 



m , 



v , 



M , 



N1 , 



N2 . Suppose radio B needs to send a command to 

radio A, requesting it to change the values of 



PowdB to -5.5 

and keep



trainPeriod , 



m , 



v  unchanged.  To address this 

scenario, we can extend the ontology developed so far to 

include the class Configuration. The Configuration class 

will include all the 3,000 parameters as its properties. Then 

any combination of these 3,000 parameters can be viewed as 

the super-classes of Configuration. For instance, as shown in 

Figure 6, class Config1 includes property PowdB; class 

Config2 includes properties trainPeriod, m and v. Config1 

and Config2 are the super-classes of Configuration. 

 
Figure 5 Comparisons of Policy 1, Policy 2 and Policy 3 
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Assume that radio A and B 

already share a common 

ontology as shown in 6.  

Then in order to request 

radio A to change the 

values of 



PowdB  to -5.5 

and keep



trainPeriod , 



m , 



v  unchanged, radio B only 

needs to send a command 

message to radio A 

containing the following 

information: (1) the name of 

class Config2; (2) an 

instance of class Config1 

that includes the new value 

of 



PowdB.  

 The OWL representation of the instance of class 

Config1 is shown below: 

 
<Config1 rdf:ID="Config1_instance"> 

  <PowdB> 

    <Power rdf:ID="Power_instance"> 

      <hasValue> 

        <FloatValue rdf:ID="FloatValue_instance"> 

          <hasFloat rdf:datatype="xsd:float" 

          >-5.5</hasFloat> 

        </FloatValue> 

      </hasValue> 

      <hasUnitOfMeasure> 

        <UnitOfMeasure rdf:ID="dBm"/> 

      </hasUnitOfMeasure> 

    </Power> 

  </PowdB> 

</Config1> 

 

When radio A gets this command, it is able to infer that 

radio B commands it to change 



PowdB  to -5.5 and keep 



trainPeriod , 



m, 



v  unchanged. This simple example shows 

that if the radios have this kind of information encoded in 

their ontologies or rules, they do not need to send all the 

information, but instead may infer the rest of the values 

locally.  

 

6. CONCLUSIONS AND FUTURE WORK 

 

In this paper, we refine the OBR concept and use a link 

optimization example to show how to use the ontology and 

policy approach to optimize the performance of a 

communication link. Using our proposed architecture and 

the ontology and rules we developed, the two radios are 

capable of negotiating their knobs and meters, and thus 

improve the link performance. Also, we presented a simple 

example to show that the ontology and policy approach has 

the potential to achieve some degrees of awareness and 

reasoning, and thus brings improvement to the 

communications, such as lightening the communication 

burdens. 

 In the future, we will implement the link optimization 

on GNU radio and further investigate the control overhead 

and the time efficiency of the OBR. 
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