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ABSTRACT 

 

This paper proposes a robust methodology for radio 

frequency (RF) environment modeling and channel profile 

estimation by associating three dimensional ray-tracing and 

neural networks (NN) techniques. A complete solution has 

been developed based on this model with the aim of 

improving the performance of position estimation in 

environments with strong multipath behavior such as indoor 

and disaster scenes. The effectiveness of the proposed 

solution has been successfully validated through practical 

test scenario characterized with high multipath. 

Measurement results demonstrated that the accuracy of 

position estimation has been improved by 44%. 

 

 

1. INTRODUCTION 

 

The existing emergency networks require highly accurate 

position estimation of the rescuers to properly coordinate the 

rescue operations. Such environments are characterized with 

strong multipath behavior where the multipath components 

can be more prominent than the direct path signal 

compromising the accuracy of the estimated position in 

disaster scenes. Since the multipath phenomena dominates 

most of the environment characteristics in such scenario, an 

radio frequency (RF) model is proposed to characterize the 

behavior of the channel using a combination of three 

dimensional ray-tracing (3-D RT) and neural networks (NN) 

techniques. This model is used to estimate the error due to 

multipath problem and to improve the performance of the 

position estimation. 

 In order to achieve the channel modeling task, empirical 

and deterministic methods can be used. The empirical 

techniques offer low computational cost, but also low 

accuracy; whereas, deterministic techniques, which are 

based on the calculation of electromagnetic field, offer high 

accuracy at the expense of very high computational 

complexity. Ray-tracing (RT) techniques are deterministic 

methods that provide high accuracy without excessive 

computational cost. 3-D RT algorithm is able to provide a 

very accurate multipath profile characterization of the 

channel for several points of the scenario, but for large 

scenarios with intensive ray launching and high resolution 

grid, the computational and storage burden could be 

excessive. In these cases, we propose NN to characterize the 

multipath of the channel for any point of the scenario using 

the channel profile provided by 3-D RT algorithm. It is 

shown in this work that NN was able to 1) predict the delay 

between the direct path and the most powerful multipath 

component for all possible positions in reasonable terms; 

and, 2) improve the location estimation accuracy by using 

the information on the delay profile of the multipath. 

 The rest of the paper is organized as follows. In section 

2, we present the proposed methodology for RF 

environmental modeling and explain how it can be used to 

improve the location estimation. Section 3 describes the 

hardware implementation and experimental results. The 

conclusions are presented in Section 4. 

 

2. PROPOSED METODOLOGY FOR HIGH 

ACCURACY POSITION ESTIMATION 

 

In a disaster scene, it is vital to accurately estimate the 

position of each emergency team involved in rescue 

operations. The disaster scene can exhibit strong multipath 

behavior which causes erroneous position estimation.  In this 

section, we will explain how to overcome this problem. At 

first, several position estimation techniques will be 

compared. After selecting the appropriate technique for our 

application, channel modeling with 3-D RT and NNs will be 

described. This model is used to mitigate multipath and 

improve location estimation. 
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2.1. Selection of position estimation 

 

When the rescue teams are in indoor environments, it is not 

possible to use the common geo-location methods such as 

global positioning system (GPS). There are several methods 

described in the literature that can be used to achieve the 

goal of locating rescuers in a disaster scenario [1]-[6]. The 

most prominent methods are relative signal strength (RSS), 

time of arrival (TOA) and time difference of arrival 

(TDOA). The salient features of each methodology are 

briefly summarized in Table 1. 

 In the proposed solution, we have used TDOA, as it 

does not require synchronization between the transmitters 

and the receivers. However, TDOA needs synchronization 

between transmitters which is more feasible from a practical 

point of view as compared to synchronization between 

transmitters and unknown receiver as required by TOA.  

 

Table 1: Location Estimation methods 

 
Location Estimation 

Relative Signal Strength Time of Arrival Time Difference of 

Arrival 

 Distance is calculated 

based on relative signal 

strength of each antenna to 

estimate the distance 

between the emitter and the 

receiver 

 Does not require 

synchronization between 

emitter and receiver 

 Highly prone to 

environment effects 

 Position is calculated based 

on time of arrival between 

emitter and receiver 

 

 

 

 Requires synchronization 

between emitter and receiver 

 

 Requires fewer base stations 

compared to TDoA 

 Distance is calculated 

based on time difference 

of arrival between several 

transmitters to one 

receiver 

 

 Does not require 

synchronization between 

emitter and receiver 

 Requires synchronization 

between emitters 

 

 

2.2. 3-D Ray Tracing and Neural Networks Channel 

Model 

 

The proposed channel modeling is based on a combination 

of 3-D RT and NNs that provide a very accurate full 

multipath profile characterization of the channel for any 

point in the scenario, estimating the error due to Multipath 

in TDOA location estimation. 

 

2.2.1. Ray-Launching and Tracing 

 

As it is illustrated in Figure 1, ray-launching techniques [7] 

[8] are based on identifying a single point on the wave front 

of the radiated wave with a ray that propagates along the 

space following a combination of optic and electromagnetic 

theories. 

 Each ray propagates in the space as a single optic ray, 

with its associated electric field provided by: 
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where ( , )t t tD    is the directivity of the transmitter antenna 

in the direction of the outgoing ray, Prad is the radiated 

power, η is the impedance of the propagation medium, r is 

the distance from the transmitter antenna, and γ is the 

complex propagation constant in the material given by: 

 

                   (1 tan )ej j j                           (3) 

When this ray finds an object in its path, two new rays are 

created: a reflected ray and a transmitted ray. According to 

optical theory these new angles can be calculated by Snell‟s 

law. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 1: Wave front propagation with rays associated with 

single wave front points. 

 

Figure 2 shows the scenario which is actually a part of the 

third floor of the University of Calgary information and 

communication technologies (ICT) building. There are many 

big objects such as walls and furniture that are responsible 

for strong multipath scenario based on their electromagnetic 

properties such as permittivity, permeability, and shape of 

the object. Based on the interaction of these objects with 

electromagnetic rays, there are several ways to improve the 

accuracy of the ray-launching predictions. A better 

environment characterization with more realistic 3-D object 

shapes and a more precise characterization of the 

electromagnetic properties of these objects will improve the 

accuracy of the ray-launching predictions without an 

increment of the computational and memory burden. 

Moreover, it is also possible to improve the accuracy by 

launching more rays, or, increasing the resolution of the grid 

at the expense of more computational complexity and 

memory requirements.  
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Figure 2: Map of the modeled scenario. 

 

 

2.2.2. Neural Networks 

 

The 3D ray launching technique relies on modeling the 

scene under consideration and launching rays in every 

direction to model the RF environment. Therefore, the 

increase in the number of rays causes an increase in the 

computational burden. Moreover, even with denser ray 

launch (rays transmitted in every direction) it is not possible 

to capture the profiles at every point in space. Considering 

these aspects, we need a device to store and to predict 

positions in the space that are not provided by the 3D ray-

tracing method. We propose neural networks as the most 

suitable candidate for this pattern recognition problem [9]-

[11]. We have selected the feed forward NN for pattern 

recognition as shown in Figure 3, for its lower complexity 

and better accuracy compared with other NNs, such as 

Elman, Hopfield, recurrent and radial basis function NNs. 

All the NN structures are developed and compared in 

MATLAB 2008, using advanced NN functional settings. 

The NN has two hidden layers and one linear output layer. 

The first hidden layer has 4 neurons with a „logsig‟ 

activation function given by 1/ (1 )xf e   while the 

second hidden layer has 17 neurons with a „tansig‟ 

activation function given by ( ) / ( )x x x xf e e e e    . 

 The learning procedure is accomplished according to 

back propagation [11] based on the Levenberg Marquardt 

trust region [12] search method to minimize the mean 

squared error for the training data. The working of a feed 

forward NN can be found in detail in [10-13]. The NN is 

trained with the inputs as x, y and z coordinates of the 

position in the space and output as delay between the direct 

ray and the most prominent multipath ray that is responsible 

for the error in the time difference of arrival.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Feedforward neural network for pattern recognition and 

prediction for delay error. 

  

First of all the whole scene was divided in coarse grid and 

ray-tracing has been completed as discussed in previous 

section. This data is used to train the neural network. Once  

NN is trained; it becomes a black box containing 

information of delay due to multipath at various points of the 

scene. In this simplistic form it encodes the essential 

information (error in delay estimation) due to RF 

environment. This NN now can interpolate for the points 

which have not been considered for the original ray-tracing, 

hence working as storage device for infinite data points in 

space. Normalized mean square error (NMSE) of 0.018nS is 

achieved while trained network is used with another set of 

data from the same scenario, where maximum error is of 

0.02nS.This prediction has been able to significantly reduce 

the error in position estimation as discussed in section 3.1. 

 

2.3. Integration of the position estimation solution for 

error minimization in TDoA 

 

To minimize the error in location estimation due to the 

strong multipath we propose the following algorithm for the 

rescuer node (RN) and central node (CN): 

1. The RN calculates its location with the TDOA method 

and sends its estimated location to the CN. 

2. The BS estimates the error due to multipath for that 

location and sent back this estimated error to the rescue 

team. 

3. The RN re-calculates its position estimation considering 

the error in TDOA. 

 This error is evaluated for the points in the range given 

by the initial TDOA estimation and synthesized in the 

orthogonal frequency division multiplexing based waveform 

to be sent to any rescuer. Figure 4 shows the original TDOA 

calculation achieved by cross-correlation of the waveforms. 

The actual TDOA is predicted by error estimation using 

aforementioned 3-D RT and NN for the rescuer‟s position. 

The rescuer can use this information to remove errors from 
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the TDOA parameters achieved from each base station and 

to calculate its actual position using the TDOA method. In 

this way, the wireless position estimation can be done in 

three simple steps. 

 The advantage of the proposed solution is that it doesn‟t 

need a hardware upgrade in the network or in the rescue 

team device. It only needs a software upgrade of the device. 

 In the case of a mobile phone, the algorithm can be 

directly applied where base stations are continuously 

emitting synchronized signal. As these signals are captured 

with mobile phone, first location estimation is achieved with 

the calculated TDOA parameters. This initial position is not 

rigorously accurate due to multipath; therefore mobile 

station sends the located position to the base station. The 

base station estimates the error due to multipath and sends 

back the estimated error due to multipath to the mobile 

phone. Using this information, the mobile phone user refines 

the estimation of its location. With every such iteration, 

position estimation keeps on converging towards the true 

value. 

 

3. IMPLENTATION AND EXPERIMENTAL 

RESULTS 

 

To validate the proposed solution, we have implemented the 

full system to perform the measurements and simulations in 

the third floor of the ICT building at University of Calgary.  

 

3.1. Measurement set-up                                                                                        

 

Figure 5 depicts the experimental setup that we implemented 

for the position estimation validation test. This setup 

included nine omnidirectional antenna operating in the 

frequency range of of 2.4-2.5 GHz, which acted as base 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Hardware setup for position finding. 

 

 stations. The mobile node included the MAX2830 full 

Tx/Rx transceiver from Maxim along with Agilent VXI 

main frame with baseband ADC (Analog to Digital 

Convertor) modules which is used for baseband signal 

processing. The central node consisted of the E4440A 

Agilent vector spectrum analyzer (VSA) software used to 

capture the received TDOA signal in one fixed 1 ms 

window, and two synchronized E4438C vector signal 

generators (VSGs) from Agilent. The base stations were 

realized by the two VSGs. 

 Due to the limited number of available signal 

generators, we time-multiplexed the signals between two 

synchronized signal generators. 

 The TDOA signals were encoded using the downlink of 

the WiMax standard (signal with 5 MHz bandwidth). The 

first signal (reference) was transmitted through the central 

node and the others were transmitted through the rest of the 

base stations with modulation implemented in the second 

signal generator one by one. 

 At the mobile node terminal, the VSA operated in 

intermediate frequency (IF) trigger mode and does not 

require any synchronization with the transmitters. The 

receiver capturing window stores two consecutive frames 

multiplexed in time calculating the TDOA information of 

the base station with respect to the reference node. 

 To model the channel each of the antennas launched 

one ray each 2 degrees of θ and φ, and the grid is defined to 

be cubes of λ⁄10. After the simulation, delay error at the 

estimated positions of the receivers was calculated using 

NNs and these values were sent to the receivers. 

 

3.2. Experimental Results 

 

TDOA based position estimation is mostly successful when 

receiver is near the centre and multipath effect is minimal.  
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Figure 4: Estimation of delay error for synchronized 

transmitters. 
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Table 2: Error in Location Estimation. 

 

 Error before 

multipath 

correction 

Error after multipath 

correction 

Error 

reduction 

RX1 0.8201 m 0.6017 m 26.63 % 

RX2 2.6416 m 2.6063 m 1.34% 

RX3 2.5846 m 1.4440 m 44.13% 

 

Therefore, to include the worst case scenario three different 

positions of receivers have been observed.  In the scenario 

of figure (2), receiver1 (Rx1) is near the geometric centre 

while Rx2 is the near to the periphery. Rx3 is near a joint of 

two walls and expected to be highly susceptible to multipath 

which is also confirmed with measurement results. The 

experiment results are shown in table 2. It can be seen that 

the error reduced to 0.2184 meters for receiver 1, 0.0353 

meters for receiver 2, and 1.1406 meters for receiver 3. It 

can be noticed that Rx3 have the highest error reduction 

after implementing the proposed multipath corrections. 

      It is worth to add that for calculating delay error the 

difference of line of sight component and most prominent 

multipath component is considered here for the simplicity, 

although for more accuracy vector sum of all multipath 

components should be included. This fact and slight error in 

delay estimation by NN is responsible for the error after 

multipath correction, which can be further reduced by 

considering most of the multipath components. As can be 

seen from Table 2, after multipath correction with our 

simplified assumption that most prominent multipath 

component is mostly responsible for error in delay, the total 

error reduction ranges from 1.34% to 44.13% with an 

average error reduction of 24.03%. 

 

4. CONCLUSION 

 

In this paper a method to improve the accuracy and 

performance of a ray-tracing algorithm using feed forward 

neural networks has been developed. The proposed 

algorithm is used to improve the position estimation using 

TDOA. With the measurements performed in the 3rd floor 

of the ICT building, University of Calgary, it has been 

shown that with this method an error reduction up to 44.14% 

is achieved.  With these results, we propose this method as 

an inexpensive solution to improve the location estimation 

of TDOA based algorithms for environments characterized 

such as emergency scenes and indoor environment. Due to 

the fact that the proposed method only needs a software 

upgrade in the device, and it is a simpler and faster approach 

that only requires on site beforehand measurements. 

 

 

5. REFERENCES 

 
[1] P. Pawelczak, R. V. Prasad, L. Xia, Ignas G.M.M 

Niemegeers, “Cognitive radio emergency networks - 
requirements and design,” First IEEE International 
Symposium on New Frontiers in Dynamic Spectrum Access 
Networks, pp. 601-606, 2005. 

[2] A.H. Sayed, A. Tarighat, N. Khajehnouri, “Network-based 
wireless location: challenges faced in developing techniques 
for accurate wireless location information‖,” IEEE Signal 
Processing Magazine, vol. 22, issue 4, pp. 24-40, 2005. 

[3] G. Sun, J. Chen, W. Guo, K.J.R Liu, “Signal processing 
techniques in network-aided positioning: a survey of state-of-
the-art positioning designs,” IEEE Signal Processing 
Magazine, vol. 22, issue 4, pp. 12-23, 2005. 

[4] N. Patwari, J.N. Ash, S. Kyperountas, A.O. Hero III, R.L. 
Moses, N.S. Correal, “Locating the nodes: cooperative 
localization in wireless sensor networks,” IEEE Signal 
Processing Magazine, vol. 22, issue 4, pp. 54-69, 2005. 

[5] M. Mauve, A. Widmer, H. Hartenstein, “A survey on 
position-based routing in mobile ad hoc networks,” IEEE 
Network, vol. 15 , issue 6, pp. 30-39, 2001. 

[6] C. Savarese, J.M. Rabaey, J. Beutel, “Locationing in 
distributed ad-hoc wireless sensor networks,” IEEE 
International Conference on Acoustics, Speech and Signal 
Processing - Proceedings, ICASSP, vol. 4, pp. 2037-2040, 
2001. 

[7] F. Esparza, V. Torres, M. Beruete, A. Lopez, F. Falcone, 
“Simulation of indoor LTE behavior,” EUCAP 2010. 

[8] V. Torres, F. Esparza, M. Navarro-Cia, M. Beruete, F.J. 
Falcone, “Parameter Analysis in Indoor Wireless 
Radiopropagation Simulation Environments,” PIERS, 
Cambridge, 2010. 

[9] Y. Bengio. “Neural Networks for Speech and Sequence 
Recognition,” New York: ITC Press, 1995. 

[10] M. Rawat, K. Rawat and F.M. Ghannouchi, “Adaptive Digital 
Predistortion of Wireless Power Amplifiers/Transmitters 
Using Dynamic Real-Valued Focused Time-Delay Line 
Neural Networks,” IEEE Trans. Microwave Theory and 
Techniques,  vol. 58, no. 1, pp. 95-104, Jan. 2010. 

[11] S. Haykin. Neural Networks: A Comprehensive Foundation, 
Upper Saddle River, NJ: Prentice-Hall, 1999. 

[12] R. Hecht-Nielsen, “Theory of the back propagation neural 
network,” in Proc. Int. Joint Conf. Neural Networks, Jun. 
1989, pp. I-593-60. 

[13] M.T. Hagan, M.B. Menhai, “Training feedforward network 
with the Marquardt algorithm,” IEEE Trans. on Neural Net., 
vol. 5, no. 6, 1994, pp. 989-993. 

 
 
 

86


