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ABSTRACT 

 

Software Communications Architecture (SCA) compliant 

radios typically contain a large number of software 

components. Some software components provide access to 

hardware devices while others perform signal processing. 

By interacting with each other, the software components 

implement a radio communications standard. To interact, 

the software components use a middleware called Common 

Object Request Broker Architecture (CORBA).  

 

Using CORBA, each interaction is carried out as an 

exchange of messages between two components. CORBA 

supports two main type of messaging: one-way and two-

way. The application programming interfaces being used for 

Joint Tactical Radio System (JTRS) radios rely on two-way 

messaging. This paper explores the differences between the 

two types of messaging and provides performance metrics. 

The paper also describes design approaches that can be used 

to avoid common pitfalls associated with the use of both 

types of messaging.  

 

1. INTRODUCTION 

 
SCA waveform applications are typically composed of a 

number of software components through which voice or 

digital data samples travel. Typically the software 

components get data samples from a device, transform the 

data via signal processing, and send the modified data to 

another device. In short, SCA waveform applications are 

structured as a pipeline of components processing data 

samples. 

 

Each software component performs a specific 

transformation on the data samples it receives via an input 

port and sends the modified data to another component via 

an output port. The more software components an 

application has, the more connections between components 

will be required which will lead to more interactions via the 

middleware. CORBA offers two main types of interactions. 

This paper describes both messaging types in section 2. 

Section 3 describes the very common empty pipeline 

problem which is related to the use of two-way messaging. 

Section 4 describes how one-way messaging can address the 

empty problem issue. It also describes the drawback of one-

way messaging with respect to order of interactions. Section 

5 presents two solutions that can preserve the order of 

interaction which is important for waveform applications. 

Finally, section 6 provides performance metrics for different 

type of messaging. The conclusion of the paper is provided 

in section 7. 

 

2. CORBA MESSAGING 

 
Using CORBA, the invocation of a member function 

implemented by an object is carried out as a message sent 

from a client object to a server object. When the invocation 

of the member function produces a result, a second message 

is used to communicate the result back from the server to 

the client object. This type of interaction is called two-way 

messaging. With two-way messaging, the thread of the 

client used to make the invocation is blocked until the return 

message is delivered. This means the client’s execution 

thread is suspended while the message travels through the 

transport to the server, remains suspended while the server 

member function is invoked and the result is returned to the 

client via the transport. 

 

The second type of messaging supported by CORBA is 

called one-way messaging. It is used when the client does 

not require a result back from the server. With one-way 

messaging, the execution thread of the client resumes before 

the member function is invoked on the server side. One-way 

messaging is often mistakenly thought to be the same as an 

invocation to a C/C++ function defined as having a void 

return value. When a client invokes a C/C++ void function, 

its execution is suspended until the function is executed and 

returns. And such a behavior actually corresponds to a two-

way invocation.  

 

The CORBA specification [1, 2, 3] actually defines four 

types of one-way messaging. They differ in the level of 

synchronization for interactions between clients and servers. 

The desired level of synchronization can be selected by 
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changing a property of the Object Request Broker (ORB) 

called SyncScopePolicy to one of the following values: 

 

 SYNC_NONE: The client’s invocation thread only 

blocks until the request message is created and pushed to 

the ORB. The invocation thread resumes before the ORB 

sends the request message to the transport protocol (see 

Figure 1). The client has no guarantee the ORB has been 

successful in transferring the request to the transport 

protocol stack on the client side. 

 
Figure 1. SYNC_NONE CORBA Request. 

 SYNC_WITH_TRANSPORT: The client’s invocation 

thread blocks until the ORB request message is accepted 

by the transport protocol stack (see Figure 2). The 

invocation thread is unblocked without any guarantee the 

request message has been received by the server.  

 
Figure 2. SYNC_WITH_TRANSPORT CORBA Request. 

 SYNC_WITH_SERVER: The client’s invocation thread 

blocks until the request is accepted and validated by the 

ORB on the server side (see Figure 3). The server-side 

ORB makes sure the request is for a valid function of an 

existing object. If the request is invalid, the 

acknowledgment message sent by the server will cause an 

exception to be raised on the client-side which will 

unblock the invocation thread. 

 
Figure 3.SYNC_WITH_SERVER CORBA Request. 

SYNC_WITH_TARGET: The client’s invocation thread 

blocks until the function is executed on the server side (see 

Figure 4). The sever-side ORB returns an acknowledgment 

message which contains no data if everything went well. 

The return message contains an exception otherwise. This 

level of synchronization provides a messaging semantic that 

is equivalent to two-way messaging. The difference is that 

two-way messaging can return a user-defined response or 

exception while one-way messaging cannot. 

 
Figure 4.SYNC_WITH_TARGET CORBA Request. 

Note that the default for one-way messaging is set to 

SYNC_WITH_TARGET for many ORBs. In fact, some 

ORBs don’t implement SYNC_NONE and define it to be 

the same as SYNC_WITH_TARGET [2].  Also note that 

the characteristics of a transport protocol can influence the 

synchronization scope. For instance, The Integrity® 

operating system offers an Inter-Process Communication 

(IPC) messaging framework called ―integrity connections‖ 

[4]. This IPC works in a way that the client sending a 

message is blocked until the server accepts the message. 

With such a transport, SYNC_WITH_TRANSPORT 

behaves the same way SYNC_WITH_SERVER does. 

Another example is with the use of a UDP-like transport. 

With such a transport, there might not be a significant 

difference between SYNC_NONE and 

SYNC_WITH_TRANSPORT since messages can be lost 

over the network. 

 

 

3. THE EMPTY PIPELINE PROBLEM 

 

Most SCA Applications [5, 6] are made of several software 

components. And often those components are 

interconnected in a sequence much like a pipeline where the 

output of the first SCA component is fed to the input of the 

next component and so on. Figure 5 illustrates a pipeline 

with four components named R1, R2, R3, and R4. The 

components represent the stages of the pipeline. 

 
Figure 5. Processing Pipeline. 

Figure 6 provides a sequence diagram of two-way 

interactions between the four same components processing 

two packets of data samples. Message number 1 shows that 
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component R2 receives the first data packet from R1. 

Message number 2 indicates that R2 performs a 

transformation of the input data and produces output data 

which is then sent to R3. Component R3 does the same and 

the modified data eventually reaches R4. The same 

sequence of interaction happens again starting at message 

number 10 for data packet number 2. 

 

 
Figure 6. Two-way Messaging. 

This sequence diagram clearly illustrates the pipeline of 

components is only working on 1 packet at a time. That’s 

because R1 waits for all other components to be done before 

it can push a new data packet in the pipeline. Because of the 

two-way semantic is used, R2 sits idle waiting for R3 to 

return control. And the same is true between R3 and R4. At 

any one time, only one component is processing data 

samples. This type of interaction between the components is 

called the empty pipeline problem and leads to a very 

inefficient use of the computational elements of a platform 

(GPP, DSP, FPGA). This problem is the same as with multi-

stage pipeline micro-processors; every functional unit in the 

pipeline (e.g. stage) must stay busy to maximize the usage 

of the processor.  

 

4. USING ONE-WAY MESSAGING TO AVOID THE 

EMPTY PIPE LINE PROBLEM 

 

To avoid the empty pipeline problem, each individual 

component must be able to work in parallel. In the context 

of an SCA Application, the solution is to make each 

component work on a different data packet at the same time. 

This can be achieved using a few different approaches. One 

approach consists in using one-way messaging. Figure 7 

illustrates a sequence diagram where the components are 

using one-way messaging.  

 
Figure 7. One-way Messaging. 

This sequence diagram shows that using one-way 

messaging; the different components are working in parallel 

on three different data packets. While R4 is working on 

packet number 1 (message 12), R3 is working on packet 

number 2 (message 10), and R2 is working on packet 

number 3 (message 11). This approach leads to a better 

usage of the computational elements provided by a platform. 

However, the pipeline will be fully occupied only if each 

component takes about the same time to perform its signal 

processing. If one component takes more time to process its 

input data, it becomes a bottleneck and the remaining 

components in the pipeline will spend more time waiting for 

input data. This illustrates how crucial it is to perform a 

good functional decomposition of a waveform into 

individual components.  

   

4.1 THE IMPACT OF ADDRESS SPACE 

COLLOCATION ON ONE-WAY MESSAGING 

 

It is important to note that one-way messaging can behave 

like two-messaging under special circumstances. And in 

such a case, it will lead to the empty pipeline problem.  

 

For a client to invoke a function implemented by a CORBA 

server, it must use the local stub that represents the remote 

server. The client invokes the function on a local stub which 

generates a request message and tells the ORB core to 

transmit the message to the targeted server using the 

appropriate transport layer. The stub is generated from the 

IDL definition of the remote function being invoked.  

 

However, real-time ORBs use several optimizations to 

accelerate interactions. One common optimization allows a 

client and a server to transparently interact with each other 

directly when they are located in the same address space. 

This means the interaction will not cause a request to be sent 

over a transport, but it will result in a direct call to the 
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function implemented by the server. The performance 

improvement with such an approach is significant [7]. In the 

context of the SCA, address space collocation can be 

achieved via the use of a ResourceFactory.  

 

The direct function call optimization is implemented in the 

stub. The stub is in a position to recognize that the remote 

object it represents is in the same address space as the client. 

When both the client and the server are in the same address 

space, the stub can perform a direction function call. This is 

thought to be transparent to the client since the client always 

uses a stub to make invocations.  

 

However, when the stub makes a direct method invocation 

instead of asking the ORB to go through the transport, it 

does so using the client’s thread. The execution of the 

client’s thread making the invocation ends up waiting until 

the function returns which is the semantic of two-way 

messaging. Since, the ORB core is by-passed with direct 

function calls, the resulting messaging semantic will always 

be two-way even if the IDL definition specifies one-way.  

 

However, in most cases, the use of a single address space 

and direct function calls will provide better performance 

than the use of multiple address spaces with function calls 

that go over a transport. That is true even if the single 

address space calls are done in a way that produces the 

empty pipeline problem. And as discussed in section 5.2, 

there is a solution to avoid the empty pipeline problem even 

with two-way messaging and it applies to the use of a single 

address space. 

 

4.2 THE PACKET REORDERING PROBLEM 

 

Using one-way messaging in a pipeline configuration can 

however lead to packet reordering. In other words, data 

packets being sent by the first component in the pipeline 

might be reordered before they reach the last component of 

the pipeline. This is not the case when the pipeline is 

implemented using two-way calls. With two-way calls, if 

component R1 sends packet number 1 before packet number 

2, component R2 will always receive the packets in that 

same order. This is very important to most waveform 

applications since they use signal processing algorithms that 

are sequential in nature. That is, the algorithms transform 

data samples using information gathered from previous data 

samples. The reordering of CORBA interactions can happen 

for a number of reasons.  

 

Transport reordering: The transport used between 

components can have an influence over packet reordering. 

Using a UDP-like transport can cause data packets to travel 

via different paths between a client and a server. But in the 

context of the SCA, embedded platforms are used. And 

transports on such platforms are usually more reliable. 

 

Client-side reordering: packet reordering is mostly due to 

multi-threading. It can be caused when a client uses multiple 

threads to invoke the same server-side function. The reason 

is that there is no guarantee the client threads will run in the 

order they have been started. Furthermore, using a multi-

core processor can actually cause reordering even with a fair 

scheduler and signal processing algorithms that use a 

constant amount of time to process data. That is because, in 

a multi-core processor, each thread can run on a different 

core and be affected by how busy each core is. Thus, once 

more, there is no guarantee client threads will run in a 

specific order. 

 

The ORB can also cause packets order to be changed if it 

uses a thread to decouple the invocation to a stub from the 

introduction of the function call request on the transport. 

This approach can be used by ORB-generated stubs to 

implement the SYNC_NONE policy. However it allows a 

client to quickly invoke the same function which will cause 

several threads to be created in the client-side ORB. And as 

explained earlier, there is no guarantee the operating system 

scheduler will preserve the order of execution of the threads. 

 

Server-side reordering: The most common problem of 

packet reordering is caused by servers that use multiple 

threads to execute the function that is invoked to transform 

data packets. As described above, the operating system 

scheduler can skew the packets order by allowing some 

threads to get more time slices than others.  

 

In fact, even with a fair scheduler from a good real-time 

operating system, the use of multiple threads can lead to 

packet reordering. For instance, packets order can be 

changed when the amount of time necessary to perform the 

signal processing is not constant. In some cases the time 

required to perform the signal processing is related to the 

input data. Some algorithms use dictionaries to compress or 

encode data and the amount of time used to perform their 

task depends on the correlation between the input data and 

the dictionary. This means that in a multithread 

environment, the threads used to encode the data that finds 

the most matches in the dictionary will finish before the 

other threads, and thus the order of packets cannot be 

preserved.  

 

Finally, it is important to note that most ORBs use multiple 

threads. CORBA objects are serviced by multiple threads 

unless explicitly configured otherwise. Different ORBs use 

different multithreading algorithms to read a message 

request and perform the requested invocation. Most ORBs 

will allow several threads to run in parallel after they have 

read a request from the transport. This allows multiple 

threads to be performing the same invocation at the same 

time which introduces the risk for threads to be reordered 

which translates to packet reordering.  
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With CORBA, it is possible to specify that an object must 

be served by only one thread at a time. This can be achieved 

using a specific threading policy [1, 2, 8]. This policy means 

the server-side ORB cannot invoke the functions of an 

object using multiple threads at the same time. It provides 

multi-thread safety for the target object. One might think 

that using the single thread policy would preserve the packet 

order by not allowing more than one thread at once to run 

the data processing function. But it is not the case. The ORB 

can still use several threads to read from the transport. The 

single thread policy only guarantees that the ORB threads 

trying to invoke the requested function will run one after the 

other.  And the operating system scheduler can still reorder 

the waiting ORB threads and cause packet reordering. 

 

 

5. AVOIDING DATA PACKET REORDERING  

 

In the end, there are solutions to preserve the order of data 

packets. First, a client needs to make sure it does not reorder 

packets right from the beginning. The easiest way to do this 

is to use a single thread to make invocations to a same 

server-side function. This solution is independent of the type 

of messaging being used. However, on the server-side, the 

solution can be more or less difficult to implement. It 

depends on the type of messaging being used. 

 

5.1 ONE-WAY MESSAGING  

Since one-way messaging can always cause packet 

reordering, the solution involves stamping each packet with 

a sequential number as they are produced and introduced 

into the pipeline of components. This must be implemented 

at the application-level. With this solution, each component 

must store the packet(s) that are out of sequence in a buffer 

and process them in order. The components also have to 

deal with the possibility of having to skip packets when they 

don’t arrive within a specific amount of time or risk 

delaying the processing for too long. Determining the 

appropriate buffer sizes and time delays is not easy and is 

platform-specific. 

 

Flow control is also very important with one-way 

messaging. The producer of data packets can outpace the 

pipeline of processing components. And since buffers 

cannot be of unlimited capacity, flow control is required. 

Flow control must provide APIs that will deal with both 

buffer overflow and buffer underflow. The APIs must allow 

a server component to tell a client component to stop 

sending data packets when the server-side buffer is near full. 

The APIs also need to allow the server to tell the client to 

resume sending packets when the buffer is near empty. 

Calibrating flow control can be difficult. It involves finding 

the appropriate low and high buffer thresholds for each 

component of the pipeline. This thresholds can change with 

different operating environments.  

Note that flow control alone generally cannot be used to 

avoid packet reordering. This is related to the fact that even 

when the flow of packets is under control, it is possible for a 

server-side ORB to use multiple threads and cause 

reordering. The only way to avoid packet reordering with 

flow control is to only allow a packet to be delivered to a 

component after it is done processing the previous packet. 

This kind of flow control would increase the amount of 

signaling required for each packet which would most 

certainly have a negative impact on performance. 

 

5.2 TWO-WAY MESSAGING WITH USER-THREAD 

Another approach to avoid packet reordering is to use two-

way messaging. But as discussed earlier, this solution can 

cause a pipeline to remain empty and lead to performance 

issues. There is however an obvious solution to empty 

pipeline problem. The solution consists in using a thread 

within each component to decouple the reception of a packet 

from the processing of a packet. That is, instead of 

processing the data packet on the ORB thread making the 

invocation, the processing can be done on a user-thread that 

will also forward the packet to the next component. This 

approach allows the pipeline to fill in with more than one 

data packet at the same time. As shown in Figure 8, this 

approach leads to a pipeline usage that is very similar to 

one-way messaging when it is synchronized with the server 

as shown in Figure 3. The main difference is that two-way 

messaging implicitly preserves the order of packets. 

 

Under this approach, packet ordering is preserved 

independently of the characteristics of the transport being 

used. Two-way messaging makes a client wait for the 

invocation to terminate before it can make a new invocation. 

As a result, the client is not able to send a new packet to the 

server before the server actually stores the current packet in 

a buffer. There is only one packet in transit between the 

moment a client invokes a function and the moment at 

which the execution of the server function is terminated. It 

is thus not possible to cause the reordering of packets. And 

this approach is independent of the transport characteristics 

and of the ORB’s multithreading strategy. 

 

Naturally, since a buffer is used to store packets within each 

component of the pipeline, flow control is still required. 

Consequently, the server needs to be able to tell the client 

when to stop sending new packets to avoid buffer overflow. 

However, with two-way messaging, the client and the server 

are synchronized. Therefore, if the client only regains 

control when the server has room to accept a new packet, 

the client cannot cause buffer overflow. And since the 

server never tells the client to stop producing packets, there 

is no need for an API to control buffer underflow. This 

solution still requires that appropriate buffer sizes be 

determined. However, it does not require the use of explicit 

APIs for high and low watermarks.  
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Figure 8. Two-way messaging with a user-thread 

The other main difference with one-way messaging lies in 

the bundling of components into a single address space. As 

explained earlier, if components using one-way messaging 

are bundle together, the semantic of messaging changes to 

two-way messaging and leads to the empty pipeline 

problem.  That is not the case with components that use 

two-way messaging with a user-thread in each component. 

When combined together, those components will still have a 

user-thread per component to perform the packet 

processing. And that allows different packets to be 

processed in parallel by different component user-threads. 

In other words, it allows the pipeline to be filled with 

packets.  

 

 

6. METRICS 

 

This section provides metrics used to make a performance 

comparison between the different types of messaging 

semantics. All the tests have been executed pushing 1000 

packets through a pipeline of 3 SCA components. Each 

packet was made of 1024 elements of type double, which 

requires 8 bytes per element on the Intel Q9300 quad 

processor used for testing. The processor was clocked at 

2.5GHz, had 6 gigs of RAM, and ran Linux FC12. The ORB 

used was ORBexpress RT version 2.8.2 with the IIOP 

transport. In every test, all the components were hosted on 

the same processor in different address spaces. All 3 SCA 

components of the pipeline perform a certain amount of 

signal processing that takes 5 ms. The pipeline is fed by a 

fourth SCA component which is the packet producer.   

 

In theory, it should take at least 5010 ms for the 1000
th
 

packet to go through the last stage of the pipeline. It should 

take 5 ms for each packet to go through the first stage and 

the last packet should take and extra 10 ms to go through the 

last 2 stages. The assumption behind this reasoning is that 

each stage has only one thread. In other words, each stage 

only deals with one packet at a time. 

 

Of course, no increase in the throughput can be achieved by 

simply using multiple threads in a single core processor 

because the threads run in time sharing mode. However, 

according to [9], multi-threading can be used to minimize 

the waste of processing cycles in a single core when many 

requests are made to access external memory. 

 

With a pipeline, each stage must be able to perform in less 

time than it takes for the next packet to arrive. Buffers can 

be used to accommodate the potential bursty-ness of the 

traffic. Using multiple cores, different stages of a pipeline 

can run concurrently. If each stage is assigned to a different 

core, the packet budget is effectively multiplied by the 

number of cores [9].  

 

Table 1 shows metrics produced with a test where the 

packet producer was using a one-way API to send packets to 

the pipeline without waiting before sending each packet. 

During this test, the one-way messaging semantic was set to 

SYNC_WITH_TRANSPORT. The table shows how much 

time it took for the last packet (i.e. the 1000
th

 packet) to 

reach each stage of the pipeline.  

 

 Stage 1 Stage 2 Stage 3 

Time of last Pkt 

arrival  

4463.20ms 4508.41ms 4513.61ms 

# of Pkt reordered 315 520 612 

Table 1: One-way messaging with a no wait producer 

Interestingly enough, all 1000 packets have been processed 

in less than the theoretical 5010 ms for a multi-core 

processor hosting each stage on a different core. In fact, the 

last packet left the first stage after only 4463.20 ms which is 

before the expected 5000 ms. That is because the test allows 

packets to be sent faster than they can be processed and as a 

result, the ORB within the first stage component uses more 

than one thread to invoke the processing function. What 

happened is the core that hosted the packet producer was 
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periodically idle and the 3 stages where able to share the 4th 

core to run some extra threads concurrently. On a single 

core processor, this could not happen. 

 

This first test has also demonstrated that one-way messaging 

coupled with the use of multiple threads at the server-side 

ORB has caused a significant amount of packets to be 

reordered.  Table 1, provides the average number of packets 

that were received out-of-sequence in each stage of the 

pipeline. At the last stage of the pipeline, out of 1000 

packets, over 612 packets had been reordered.  

 

What Table 1 does not show is that the packet producer (i.e. 

the first component) was actually being paced by the 

transport. Even if the producer did not sleep before sending 

each packet, it periodically was blocked by the transport. 

Every time the transport buffers became full, the transport 

blocked the producer to prevent overflow. To be more 

precise, the stub used by the producer waited after the ORB 

to push the packets to the transport which was periodically 

blocking. The producer was blocked until the transport 

buffers had enough space to accept a new message. During 

our tests, the default buffer size for the TCP/IP stack was 

difficult to determine because the stack used buffer auto-

tuning. This means the buffers increased in size as needed. 

Nevertheless, the test caused the TCP/IP stack to reach a 

maximum buffer size. Figure 9 shows how much time it 

took for the producer to send a packet to the first stage of 

the pipeline. When the transport buffers were not full, the 

producer was able to send packets in as little as 9 usec. In 

fact, most packets were sent in less than 16 usec. But the 

transport buffers reached full capacity quite often because 

the producer was very aggressive. Therefore, the producer 

periodically had to wait for approximately 44 ms. 

 

Table 2 shows the same metrics but for a test that used one-

way messaging with a packet producer that waited 5 ms 

between each packet being sent to the pipeline. The first 

thing to notice is that it took more than 5000 ms for the last 

packet to exit of stage 1. That is because the producer was 

not introducing packets faster than the pipeline stages could 

handle. As a result, there were fewer threads created by the 

server-side ORB of the stage 1 component. The different 

cores where not solicited enough and did not run different 

threads of a same stage in parallel. But as stated earlier, to 

some waveform applications, even a small quantity of 

reordering can cause serious problems.  

 

 Stage 1 Stage 2 Stage 3 

Time of last Pkt 

arrival  

5416.57ms 5421.74ms 5426.90ms 

# of Pkt reordered 95 216 349 

Table 2. One-way messaging with a 5ms wait producer 

Table 3 shows metrics for a test that used two-way 

messaging with a packet producer that did not wait between 

each packet it sent. With this test, the function invoked on 

each stage did the signal processing for 5 ms and then 

invoked the processing function of the next component in 

the pipeline. This caused the empty-pipeline problem as 

described in section 3 and illustrated in Figure 6.  

 

The first thing to note about this test is that each packet 

went through the pipeline alone. The packets had to wait at 

least 5 ms at each of the three stages which adds up to 

15,000 ms for 1000 packets. And since the test recorded the 

time at which each packet left the stages and that each stage 

waited after the next stage to complete, the timings are in 

reverse order compared to the previous tables. It took more 

time to finish stage 1 than it took to finish stage 2. And the 

same is true regarding between stages 2 and 3. 

 

It is important to highlight that this two-way test did not 

cause any packet reordering. But it was done at the cost of a 

much lower throughput. Figure 10 shows how much time it 

took for the producer to send packets through the pipeline 

stages. The figure also shows the producer did not get 

blocked by the transport as often as for the one-way test 

(Figure 9). For the two-way test, in most cases, the producer 

waited for an average of 15.68 ms between packets with a 

couple cases were it waited more than 40 ms with one 

extreme case at around 85 ms. 

 
 Stage 1 Stage 2 Stage 3 

Time of last 

Pkt arrival  

15,684.19ms 15,684.06ms 15,683.93ms 

# of Pkt 

reordered 

0 0 0 

Table 3. Two-way messaging with a no wait producer 

Table 4 shows the result of a test that used two-way 

messaging with a user-thread in each stage to decouple the 

reception of a packet from the processing and forwarding of 

the packet to the next stage. That test was executed with a 

producer that did not wait between the sending of each 

packet. Upon the reception of a new packet, instead of 

processing the packet before returning control to the client, 

each stage stores the packet in a buffer, notifies a user-

thread, and returns. The user-thread wakes up when notified 

and takes the oldest packet from the buffer, transforms it, 

and sends it to the next stage.  

 

Since the component sending the packet is blocked on the 

two-way call until the packet is accepted and stored in a 

buffer, there is never two packets in transit at the same time 

between two stages.  This means none of the components 

have more than one server-side ORB thread waiting to 

invoke the processing function. This prevents packets from 

being reordered. For as long as the user-thread processes the 

packets in order, no reordering is caused.  
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This approach effectively preserves the order of packets and 

keeps the pipeline busy with different packets. It provides 

much better performance than the simple two-way approach 

with suffers from the empty-pipeline problem. In fact, the 

performances are slightly better than those of the one-way 

messaging approach with a time-based paced producer 

(Table 2). That is because using two-way messaging with a 

user-thread, each stage can introduce a new packet as soon 

as the next stage unblocks. The time between packets can be 

smaller than 5 ms when the stages benefit from multi-core 

processing. 

 

Figure 11 shows that the use of a user thread with two-way 

messaging led to an average wait per packet of around 5.38 

ms. It also produced fewer long waits than for the two other 

methods. Only a few packets took more than 20 ms to be 

transmitted with the extreme cases of around 60 ms. 

 

 Stage 1 Stage 2 Stage 3 

Time of last Pkt 

arrival  

5286.22ms 5267.73ms 5297.16ms 

# of Pkt reordered 0 0 0 

Table 4. Two-way messaging with a no wait producer and a 

user-thread per stage 

 
7. CONCLUSION 

 

CORBA offers two types of messaging semantics: one-way 

and two-way. The main difference between the two resides 

in the level of synchronization between a client and a server 

which has an impact on the speed of interactions. One-way 

messaging is often considered a better approach than two-

way messaging from a throughput perspective. However, 

one-way messaging cannot preserve the order of interactions 

between components which translates into the reordering of 

data packets as they flow through a pipeline of components. 

The ordering of packets is very important for the type of 

signal processing performed by waveform applications. On 

the other hand, two-way messaging preserves the order of 

interactions but leads less than optimum throughput.  

 

Different approaches can be used to preserve the order of 

packets. If one-way messaging is used, the components of 

an application must implement extra functionality to 

preserve the packet order and to perform flow control. Each 

component must be prepared to receive packets out of order 

and to reorder them before performing the signal processing. 

Each component must also provide buffers to hold packets 

and implement mechanism to pace the producer to avoid 

buffer underflow as well as buffer overflow. This requires 

the use of low and high watermarks that must be tuned for 

every different platform the waveform is be ported to. But 

this solution provides much better performance than the 

plain two-way messaging. 

 

Another approach is to use two-way messaging with a user-

thread to decouple the reception of a packet from its 

processing and forwarding. The advantage of this approach 

is that it preserves the order of packets without stamping 

each packet with a number and without having to put the 

packets back in order after their reception. And according to 

preliminary tests performed, this approach is very similar 

with the theoretical best performance possible in a multi-

core environment with as many cores as there are stages in 

the application. It’s also very close in performance to plain 

one-way messaging which has the disadvantage of causing a 

large amount of packet reordering. Also, using this approach 

during testing, the metrics show that components were well 

synchronized with each other regarding the throughput of 

the data flow.  

 

In conclusion, there are a number of things that can be done 

to improve the throughput of interactions between SCA 

components. Using a ResourceFactory to provide a single 

address space to host several components can provide 

tremendous improvements. The type of messaging used can 

also provide serious improvements. And, as discussed in 

this paper, one-way messaging is not necessarily a superior 

solution.  
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Figure 9. Time it took for the no-wait producer to send each packet using one-way messaging 

 

 

 

 

 

 

 
Figure 10. Time it took for the no-wait producer to send each packet using two-way messaging 
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Figure 11. Time it took for the no-wait producer to send each packet using two-way messaging with a user-thread 
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