

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

A PATH TOWARD COST-EFFECTIVE SCA COMPLIANCE TESTING

James Ezick (Reservoir Labs, New York, NY 10012; ezick@reservoir.com)

Jonathan Springer (Reservoir Labs, New York, NY 10012; springer@reservoir.com)

Vassily Litvinov (Reservoir Labs, New York, NY 10012; vass@reservoir.com)

David Wohlford (Reservoir Labs, New York, NY 10012; wohlford@reservoir.com)

ABSTRACT

We present R-Check™, a versatile architecture used to

develop R-Check SCA, an SCA-specific static-analysis-

based compliance testing tool for software radio waveforms.

R-Check SCA was developed for JTEL and is intended to

provide a cost-effective replacement for several of their

search-and-inspect-based compliance testing procedures.

The R-Check architecture makes uses of several off-the-

shelf components and open standards and is specifically

engineered to integrate into the widest possible range of

vendor development environments, an essential feature for

addressing a modest but heterogeneous market space such

as software radio. R-Check is capable of functioning over

both complete and incomplete code bases and is efficient

enough to run as part of the everyday edit-recompile-test

cycle. In testing at JTEL, R-Check has demonstrated

potential as a powerful, but low-cost platform on which to

build additional test capability. For requirements related to

restrictions to core POSIX
®
 and Minimum CORBA

®

interfaces, R-Check produces reports in minutes that

currently require hours or days of JTEL code inspection. We

discuss the R-Check architecture, R-Check SCA, and design

choices that allowed us to make the business case for

addressing the SCA market.

1. INTRODUCTION

The Software Communications Architecture (SCA) is an

open architecture framework that governs the structure and

operation of the US Military's Joint Tactical Radio System

(JTRS) and is gaining momentum in the private and

international government sectors as a guiding path for

software radio development. As an evolving specification

for waveform development, the SCA references the IEEE

POSIX
®
 and OMG CORBA

®
 standards, placing restrictions

on the use of POSIX operations and the structure, definition,

and operation of CORBA components. For the US Military,

the JTRS Test & Evaluation Lab (JTEL) [1] acts as the test

authority for compliance testing of the SCA and is charged

with developing and maintaining that test capability. Other

organizations and individual vendors have expressed

interest in using JTEL tools and procedures as a starting

point for their own respective formal evaluation processes.

 Certifying compliance with the SCA is a difficult and

time-consuming task. The SCA references both structural

and runtime behaviors, and places cross-referencing

requirements on source code, XML configuration, and

CORBA Interface Description Language (IDL) files. As an

open architecture framework, SCA guidelines apply not

only across platforms, but also across Operating

Environments (OEs) and CORBA implementations, often

with subtle differences in tool and supporting library

structure. While several general-purpose analysis tools exist,

few, if any, provide a cost-effective foundation for SCA

compliance testing. Because they were not engineered

specifically for the SCA, most commercial products are

either deficient in dealing with one or more aspects of the

SCA's scope, or else offer a range of features that make

them prohibitively expensive for the front-line development

process. In some cases, general-purpose tools also prove to

be a poor fit with the specialized development

environments, compilers, and operating systems pervasive

in the software radio community. For vendors, the length of

the certification process can exceed the interval of their

upgrade-release cycle [2]. The lack of test tools targeted to

the SCA represents a critical gap in the lifecycle process

that is a limiting factor in the deployment of new

capabilities and threatens the acceptance of the SCA as a

viable commercial development specification.

 The scope and complexity of the SCA requires test and

evaluation tools that can draw upon and synthesize several

types of analysis. The nature of the commercial SCA

market, which is highly heterogeneous but still relatively

modest, coupled with the existence of general-purpose tool

solutions, however imperfect, place severe development

cost restrictions on prospective tool vendors. The evolving

nature of the SCA, which imposes an unpredictable

maintenance obligation, further complicates the business

case for profitable commercial test tool development.

 We present our approach to the development of a low-

cost, targeted test solution for the SCA: R-Check™ SCA, an

SCA compliance tool, intended for both government and

commercial use that we are developing with support from

SDR'10 Session 2A- 3

17

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

JTEL. Our intent is to offer our experience as insight into

how to address the conflicting demands of a complex

problem, modest but competitive market, and uncertain risk.

Our presentation will include a discussion of the positive

and negative external factors affecting the case for focused

SCA test tool development. Our hope is to motivate interest

in creating a broader and more hospitable commercial tool

marketplace.

2. R-CHECK SCA OVERVIEW

 R-Check SCA is a static analysis tool for ANSI C and

C++ with secondary support for the sort of XML and IDL

files associated with SCA projects. R-Check is built on the

Edison Design Group (EDG) family of compiler front

ends [3], which allows it to parse the full ANSI C and C++

languages with recognition of compiler flags, proper support

for all preprocessing directives, and retention of file and line

number information for error reporting. From the abstract

representation produced by the front end, R-Check is

capable of performing analysis with complete awareness of

the code structure and context. This capability improves on

JTEL’s search-based testing procedures by identifying

instances of non-compliance in an environment in which

macro definitions have been expanded, conditional code has

been included or excluded, comments have been filtered,

and usage context can be discerned. The decision to use a

commercial front end both improves performance and

reduces the likelihood of encountering problematic code.

The result for JTEL is a substantially faster analysis for

several requirements, with fewer human steps, that

generates reproducible error reports with fewer false

positives – fewer false positives meaning that less time is

spent in manual post-inspection of code.

 To support the manner in which code is submitted to

JTEL for evaluation, we have relaxed the type and syntax

checking systems in the front end to accommodate analysis

of files where OE or IDL-generated headers are unavailable.

The result is a mode of conservative analysis that still

allows a deep inspection, but is robust when executed on

machines that are not configured or licensed as full

development platforms.

 The structure of R-Check SCA mirrors that of a

traditional compiler and linker (see Figure 1). R-Check

processes source files independently, interpreting the usual

range of compiler arguments, and generates a summary

report, in XML, for each. A separate report generation tool

then merges the individual reports into a single composite

report. Separate post-processing capabilities support various

transform, filter, comparison, and presentation functions.

Presently, R-Check can produce reports in plain text, CSV,

and HTML formats. The HTML reports include hyperlinks

to highlighted syntax and include descriptive information

about the nature of the violation with references back to the

SCA specification itself (see Figure 2). The choice to

segment the tool in this way means that the analysis and

synthesis features can piggy-back on almost any build

process. Smart report updating can be trivially accomplished

using any standard dependency-driven build tool (e.g. GNU

Make). This same functionality also allows analysis of

source files in parallel, with no development effort on our

part, using the parallel build functionality included with

most dependency-based tools. The use of open standards

and tools have substantially reduced our development costs

while at the same time providing more, not less, capability

to the end user.

Figure 1. R-Check SCA workflow.

18

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

 Presently, R-Check provides coverage of several

requirements related to core POSIX and Minimum CORBA

restrictions. Coverage of several additional requirements on

CORBA components that span XML configuration, IDL,

and source code files is in testing now.

3. POWERFUL, LOW-COST, ROBUST DESIGN

The business case for developing R-Check depended on

being able to provide a value-adding test capability for a

multitude of platforms, without having to expend resources

developing non-essential functionality. To accomplish this,

the R-Check architecture relies heavily on off-the-shelf

components and open standards.

 For parsing source code, R-Check uses the same EDG

suite of front ends used by several other commercial source

compiler and analysis products. Although R-Check doesn’t

actually build code, having a compiler front end, and the

associated intermediate representation it generates, gives us

a prebuilt set of data structures over which to define

analyses. These data structures allow analyses to draw on

the syntactic context of program elements and support

immediate access to the file and line number information

necessary to effectively report violations. While some

vendors of general-purpose tools have claimed that the off-

the-shelf front end is inadequate for dealing with the variety

of code seen from customers [4], we have found it very

capable of processing typical SCA source bases. Given the

sheer size and complexity of the C++ language in particular,

writing a ground-up parser was not an option for us.

 For dealing with project-level configuration, we

developed a command-line utility, called ProCon. R-Check

ProCon uses a simple plain text file format for mapping file

names (with associated directories) to compiler flags and

analysis options. Mapping uses familiar regular-expression

syntax making it easy to associate options with specific

files, file types, modules, or the entire project. The R-Check

ProCon file format was designed as an accessible target for

any sort of tool or script capable of crawling over IDE-

specific (e.g., Green Hills Integrity or Microsoft Visual

Studio) build files or build logs.

 R-Check itself uses a text-based configuration file

format with references to files containing default

configuration options for each supported analysis. The

analyses are further individually customizable and support

modifying lists of keywords, disallowed functions, etc. In

this model, a waiver becomes a command-line option

designating a modified test configuration. Combined with

R-Check ProCon, this feature makes it easy to record and

implement waivers at the file, module, or project level. One

option supports explicitly setting the root directory from

which the analysis should be run, which allows alignment of

relative include paths between the R-Check analysis and the

normal build process. For each source file, R-Check

generates a summary compliance report in XML.

 On the back end, we developed a post-processing utility

called Blender that is capable of generating aggregate

reports from individual file reports and performing common

operations on reports such as merges, slices, and

comparisons. R-Check Blender supports source-to-source

Figure 2. R-Check HTML report for the JTEL AP0603

core POSIX requirement (SCA 2.2.2 Appendix B).

Lines 2617 and 2621 are shaded as sources of a potential

violation because the address of an NRQ POSIX call is taken

and passed as a function pointer argument.

19

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

processing, taking one or more XML reports to a target

XML report, and also supports generating reports in any

choice of plain text, CSV, and HTML formats. Aggregate

reports include tables of violation-counts-per-module and a

record of the tests and options sufficient for reproducibility.

The comparison capability can be used for tracking

regressions across runs. The HTML report format supports

syntax highlighting and hyperlinks for locating violations

and providing background information on the nature of the

violation linked directly to the text of the SCA specification.

 We rely exclusively on third-party tools to view reports.

The use of HTML provides a reasonable graphical

presentation capability without the need to reply on a

separate GUI or integration into any particular IDE (e.g.,

Eclipse). This choice provides more flexibility to the user

while minimizing project costs. We provide the XML

schema used for reports, so there is no barrier to end-users

writing their own companion post-processing utilities.

 Finally, in place of an IDE or IDE-plug-in, we use

GNU Make to tie the entire pipeline into an end-to-end

analysis system. Using R-Check as a compiler replacement

and R-Check Blender as a linker replacement, GNU Make

provides all of the necessary functionality for a complete

analysis. In addition we get, for free, advanced functionality

such as smart re-checks (only check files that have changed

since the last analysis) and support for parallel file analysis.

We provide a complete GNU Make-based system with

targets bound to different operations and report types.

Additional operations include support for generating code

metrics, forcing reanalysis of designated files, and

summarizing analysis progress. In terms of development

cost, about 80% of the current GNU Make-based user

interface functionality was prototyped by a single developer

in less than two days. Also, the Makefiles and wrapping

shell scripts are provided in plain text, allowing full

customizability. These files also serve as a template for

integrating R-Check into any type of development build

environment. R-Check accepts standard compiler options,

and, in most cases, R-Check and R-Check Blender can be

used as one-to-one substitutions for the complier and linker

in a build process. In this way, R-Check SCA can be run in

parallel with the daily edit-recompile-test development

cycle.

4. CHECKING INCOMPLETE CODE

R-Check has the ability to provide a conservative analysis

over incomplete source code packages. By incomplete, we

mean packages that are missing some source or included

header files. For software radio waveforms that use

CORBA, this feature means that R-Check SCA can be run

on machines that do not have a full CORBA ORB

installation (or license for installation) and thus might not

have the header files or the IDL compiler that a

development machine would require. For JTEL, this means

that their test capability is not dependent on having access to

each of the different ORB and OEs used by vendors. For

both JTEL and vendors, this feature means that testing can

Figure 3. Challenges of checking incomplete code.

20

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

begin during the development process, on any amount of

syntactically correct source code.

 The development of this capability was the single most

technically challenging aspect of R-Check’s creation.

R-Check uses a commercial compiler front-end with full

parsing capability for the C and C++ languages. For that

reason, R-Check natively processes (and thus requires) all of

the included header files (both system and IDL-generated)

that are required by a compiler. Implementing an incomplete

code checking capability, called Partial Code Model (PCM),

required relaxing the type and syntax checking systems to

both suppress errors arising from missing information and to

infer information from usage that would normally be

provided by an explicit declaration. Development of this

capability, which is orthogonal to the analyses performed,

required a significant amount of compiler expertise.

 Figure 3 illustrates some of the issues that PCM needs

to resolve in order to surmise that a violation has or may

have occurred. In this example, a call to the POSIX function

strerror() would be a violation, as this is a call to a

function designated “Not Required” (NRQ) in Appendix B

of the SCA 2.2.2 specification. Whether or not this is an

actual violation depends upon (1) whether or not the call is

to an actual POSIX call (violation) rather than to a locally

defined function with the same name (not a violation) and

(2) whether or not the argument to g_err() is evaluated

(violation) rather than passed through a macro to be used as,

say, syntax substituted verbatim into a printf statement

(not a violation). As a benefit of R-Check’s ability to

analyze code in context, in its native (complete-code) mode

R-Check makes these distinctions automatically. Using

PCM, R-Check provides the best conservative analysis

possible from the available information.

 The resolution of macros, in particular macro-defined

functions, in cases where the defining header is not included

is a particularly tricky issue. From a pure analysis

standpoint, this problem is tricky since, before the

expansion occurs, the code need not be syntactically correct.

Without the definition, a best effort must be made to analyze

the existing code while ignoring errors that arise from

simply not having the macro definition. Our method for

accomplishing this involves traversing the available part of

the syntax tree while suppressing errors from the grammar.

Of course, missing macros could permute even apparently

compliant code into non-compliant code. To handle this, we

flag the potentially offending code for post-inspection, but

do not raise a specific violation.

 With PCM, it is not strictly necessary to provide an

R-Check ProCon configuration file – R-Check will skip

(and report) include files it cannot find. Combined with our

GNU Make-based build system, which includes support for

finding all of the source files in a directory that can be

analyzed, R-Check SCA can be run, out-of-the-box by

simply changing the working directory to the root of a

source tree and running a single command with no

arguments: rcheck.make.

5. TEST COVERAGE & PERFORMANCE

The current version of R-Check SCA includes tests distilled

from the SCA 2.2 and SCA 2.2.2 specifications into JTEL

requirements. The tests are named by each requirement and

can be individually included or excluded from the test suite.

The current version includes tests related to the use of core

POSIX and Minimum CORBA, as these tests were

identified by JTEL as among their most time intensive.

Additional tests are in development now that include

integrating information between the source code, XML

configuration files, and unprocessed IDL files. We are

developing an additional stand-alone utility to pull

information from the non-source-code files and store it for

access and comparison within R-Check. This functionality

will enable testing of requirements relating to the use of

ports, consistency checks between component declarations

and implementations, and completeness of component

implementations. As with the other parts of the R-Check

architecture, this utility will use a text-based open format,

will use a context-aware intermediate representation, and

will be executable through a command-line interface. The

IDL-parsing capability will be reusable and will further

extend the scope of the R-Check architecture to support a

range of CORBA-related specifications.

 In working with JTEL, R-Check has been tested against

more than a dozen commercial waveforms contained in the

Network Enterprise Domain Information Repository (NED

IR). Running in PCM on standard JTEL workstations (that

is, without either a CORBA ORB or OE installation),

R-Check successfully processes 100% of the tested

waveform files, without modification, and generates

uniform, reproducible reports that are as or more complete

than the reports generated from the existing methodology

for the requirements covered. Performance on other

waveforms tends to track closely with expected compilation

times. On the open Calit2 version of FM3TR [5], analysis

takes two to three minutes on a typical desktop machine. For

the largest waveforms, R-Check automatically processed

more than ten million total lines of code (in PCM with

available headers expanded) in about ninety minutes. The

equivalent manually intensive search-and-inspect analysis

for the same covered requirements typically requires two or

more days of dedicated test engineer time. Again, the GNU

Make-based system supports smart re-checking of modified

files and can take advantage of multi-processor machines

with its built-in parallel execution option. The report

synthesis and post-processing tools scale to reports

generated from thousands of files without difficulty.

21

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

6. SUMMARY

R-Check SCA is a commercially available [6] solution for

statically checking source code compliance with the SCA

version 2.2 and/or 2.2.2 specifications. Built using a range

of off-the-shelf components and open data formats, the

R-Check architecture demonstrates a cost-effective, but still

powerful and robust analysis platform. The context-aware

intermediate representation generated by the compiler-grade

front end permits almost any aspect of the source code to be

reasoned about. The use of command-line utilities to

manage configuration and report generation permits

R-Check to be customized for integration into almost any

type of development environment. Leveraging external

viewers and existing build tools like GNU Make not only

substantially reduce development and maintenance costs,

but also provide more customizable functionality to the end-

user than a custom, closed tool would. The use of simple

interfaces and open data formats means that R-Check SCA

imposes virtually no restrictions on the end-user’s

development process and does not require additional third-

party software purchases. On the contrary, the open

interfaces facilitate creation of custom capabilities that fit

the customer’s needs and practices. With PCM, R-Check

SCA can provide an immediate capability without any setup

or customization. The performance of R-Check is

comparable to a traditional source compiler, meaning that it

is efficient enough to integrate into the daily development

cycle.

 Development of the R-Check v1.0 architecture and

R-Check SCA required, in total, approximately ten

developer-months, of which roughly half were devoted to

implementing PCM. Purchase of an EDG license was the

only other significant development cost. Approximately

80% of the development effort required some level of

compiler or static analysis expertise. From a business

standpoint, we expect to amortize this development cost by

using the R-Check architecture as the basis of a service

business developing other low-cost custom static analysis

capabilities, of which R-Check SCA is the first example.

 Looking forward, a significant source of development

risk is the volatility of the SCA itself, and in particular, the

implications of the forthcoming SCA Next. Currently,

analyses must be coded into R-Check and then exposed

through a command-line interface. Analyses typically have

several customization options, but the basic analysis type is

“baked-in” to the product. We are experimenting now with

several analysis template and pattern matching ideas that

would allow new analyses to be specified through an open

format. We expect this feature to mitigate future risk. A

second, perhaps more significant, source of risk is the

volatility of the C++ language. To reduce costs, many parts

of the R-Check architecture are built directly on top of the

front-end code base. A significant change to the language,

for example the adoption of C++0x [7] for waveform

development, would require a significant reimplementation

effort on our part.

 Beyond meeting JTEL’s testing needs, one of our

forward goals for R-Check SCA is to facilitate on-site

testing and certificate generation. In this model, compliance

testing could be done on-site, directly by the vendor, with

the result being a certificate of compliance linked to the

source code. Clever use of digital signatures and check-

sums could even allow this process to be implemented in a

non-intrusive manner. Formal certification could then be

accomplished through a simple hash check that would

confirm that the certificate generated is, in fact, linked to the

submitted code. Wherever final testing occurs, the ability to

run equivalent tests as part of the daily edit-recompile-test

development cycle should significantly reduce the need for

expensive “dry-runs” and iterative submission for

certification.

 From several conversations with waveform vendors, we

understand that is a strong desire for test tools that not only

match, but exceed JTEL standards. With the R-Check

architecture we can offer custom test solutions within a

robust framework at minimal cost.

7. ACKNOWLEDGEMENTS

Development of R-Check SCA was funded under Navy

SBIR contract N00039-09-C-0118. The authors would like

to thank our technical contact at SPAWAR, John Thom,

who has been extremely supportive of this effort and tireless

in helping us improve R-Check. We would also like to thank

Jim Kulp of Mercury Federal Systems for his insight and

many valuable contributions.

8. REFERENCES

[1] https://jtel.spawar.navy.mil.

[2] M. Turner, “Global Military SDR Solutions – Practical

Methods for SCA Radio Compliance and Deployment,” Proc.

of the SDR ’09 Technical Conference and Product Exposition,

December 2009.

[3] http://www.edg.com.

[4] A. Bessey, K. Block, B. Chelf, A.Chou, B. Fulton, S. Hallem,

C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, “A

Few Billion Lines of Code Later: Using Static Analysis to

Find Bugs in the Real World,” CACM, Vol. 53, No. 2, pp 66-

75, February 2010.

[5] http://jtrs.calit2.net/.

[6] https://www.reservoir.com/rcheck.

[7] http://www.open-std.org/jtc1/sc22/wg21/.

22

https://jtel.spawar.navy.mil/
http://www.edg.com/
http://jtrs.calit2.net/
https://www.reservoir.com/rcheck
http://www.open-std.org/jtc1/sc22/wg21/

