
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights
Reserved

IMPLEMENTING A GENERIC FRONT PANEL FOR AN SCA RADIO

Serge Harnois (Serge.Harnois@Ultra-TCS.com);

Denis Couillard (Denis.Couillard@Ultra-TCS.com);

Steve Bernier (steve.bernier@crc.gc.ca);

ABSTRACT

One of the key benefits of the SCA specification is that it

standardizes how software applications are installed,

launched, and controlled. The specification describes a

number of programming interfaces used to control software

components. Every SCA application can be controlled using

the same programming interfaces. Thanks to the standard

interfaces, it is possible to implement generic tools to

monitor and control SCA-compliant platforms. Such tools

run on a personal computer and provide a fine level of

control over a radio.

However, in most cases, it is not practical to control a radio

via a personal computer. Also, radio operators don’t always

need the most detailed level of control. This paper explores

how a radio user interface can be implemented without the

use of a personal computer and still be generic. The paper

first explores the SCA programming interfaces that can be

used to implement a generic tool for run-time monitoring

and control. Then, it provides a discussion on how to design

an SCA application such that it can easily be controlled

generically. The paper also describes a design approach that

allows a radio front panel to be independent of waveform

applications. It concludes with a discussion on how simple it

is to implement a virtual front panel when a radio is

implemented as suggested in the paper.

INTRODUCTION

The Software Communication Architecture (SCA)

specification defines several aspect of embedded system

design. It defines the cross platform communication infra-

structure with CORBA, it defines a variety of components

with their characteristics, it defines a set of standards

application programming interfaces (APIs) to exchange

information between components, and it also defines a

useful application deployment mechanism in order to launch

and teardown applications.

However, one of the areas where the SCA specification is

less precise is the interface to control and monitor

applications. This is the subject this paper will attempt to

address by identifying which SCA APIs are suitable for this

aspect of a radio design. The paper also tries to identify

design patterns and best practices that can be applied to

facilitate the development of generic radio monitoring and

control tools. This paper will also present an example of a

specific Human Machine Interface (HMI) implemented for a

real platform using those techniques.

1. SCA APIS TO CONTROL AND MONITOR

APPLICATIONS

The first step is to explore which SCA APIs can be used to

implement a generic tool for run-time monitoring and

control. Radio control and monitoring does not impose tight

requirements for speed because human reaction time is

relatively slow when compared to a computer. Base on these

facts an API like PropertySet can be used as an interface

between any generic or specific tool and SCA applications.

The PropertySet interface provides two functions, one to get

a property value called “query” and the second one to

change a property value called “configure”. Those functions

can work with a several types of data from a simple integer

to a complex structure.

The definition of a generic monitoring and control tool here

refers to any tool able to recognize SCA APIs without

having any knowledge of the specific platform or waveform

applications running on the radio. These kinds of tools must

use exclusively SCA APIs to exchange information.

The definition of a specific monitoring and control tool as

opposition of a generic one is allowed to contain some

knowledge of the platform and also the waveform

applications. The specific tool will allow a more

personalized look and also it could be a lot more intuitive

for a user. These kinds of tools could use proprietary APIs

to exchange information however the portability of the tool

will be affected.

The flexibility of the PropertySet interface can easily

provides a suitable way to expose an understandable

interface for each possible kind of platform and waveform

application. This interface allows to configure and query

properties of all types, i.e. simples (e.g. integers, strings,

SDR'10 Session 2A- 1

3

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights
Reserved

and floating points), sequences of simples, structure of

simple ,and even sequence of structures. Again, this is not

the most efficient way to exchange information in term of

speed but it is in term of visibility of your applications

features and characteristics.

When applications possess that kind of readable and

understandable interfaces, it is significantly easier to

implement specific monitoring and control tools, such as

HMIs and Web Pages. Properties are described in the SCA

Application metadata (XML files). The combination of the

name, type, and description allow properties to talk for

themselves. A Web page can be developed in no time with

properties attached to Web pages dynamic elements. Same

thing for an HMI, where the visual interface can be specific

to the radio provider equipment, but still rely on properties

for the dynamic content.

The following figure shows how simple a Radio monitoring

and control tool can be integrated to an SCA design with the

PropertySet interface. No need to define specific Interface

Definition Language (IDL) and develop special code to use

it. The entire mechanic is already present in the SCA

standard interface part of the Core Framework.

Figure 1 - PropertySet usage for SCA applications control &

monitoring

In radio control and monitoring, there is also a need for data

refreshing aspect. An HMI is not very useful if the data

displayed is out of date or if the user needs to refresh it

manually. Another SCA standard API can be used to fulfill

this aspect of the tool design; the Event Channel is perfectly

adapted for this kind of requirement.

As shown in figure 2, the Multiple Input Multiple Output

(MIMO) structure of an event channel allows more than one

application to broadcast information intended to be

refreshed by any listener on the event channel. It also allows

more than one listener, in that case HMIs and generic

control and monitoring tools, to receive this information and

update their display if needed.

Figure 2 - Event Chanel usage for SCA applications control &

monitoring

2. DESIGN PRATICAL APPROACHES HELPING

THE DEVELOPMENT OF EXTERNAL TOOLS

In the previous section, APIs have been identified to

facilitate the implementation of radio control and monitoring

tools. In this section, some design patterns and best practices

that can be used at the radio application level will be

suggested in order to ease the information exchange between

the radio and the control & monitoring tools.

The first concept, a design pattern called proxy, has been

briefly introduced in the previous paragraph. This design

pattern is used at the property level to publish some platform

or application attributes to external applications. This

design pattern allows an application developer to advertise a

platform feature without having to redesign the feature,

simply by using a property at the assembly Controller level.

The Assembly Controller property will invoke the query

operation of the platform component control port to get its

property value. The same mechanism is used to modify the

property value, this time the configure operation will rather

be used.

The same concept can be applied for specific APIs, instead

of invoking query and configure, just use the specific

operations advertised by the API.

The second concept is a best practice based on the fact that

the Assembly Controller of an SCA application is always the

only entry point of the application. In that way, if a property

located in another resource or device has to be available to

an entity outside of the application, a property shall be

present on the Assembly controller as a proxy to the other

one.

The same concept applies to method on specific ports.

Properties at the Assembly Controller need to be

implemented as proxies to those methods. The following

figure illustrates this concept showing the assembly

controller as a gateway to external applications.

Application 1

Application 2

Radio Control &

Monitoring tool

PropertySet
API

PropertySet
API

Application 1 Application 2

Event

Channel

HMI 1 HMI 2 Generic Control &

Monitoring tool

4

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights
Reserved

Figure 3 – Assembly Controller as a gateway to external

applications.

The last concept is a best practice to help an external control

& monitoring tool to update its information displayed to the

user. This concept specifies that each property that is public

to the application should generate an event with the name of

the property and its value each time the property is modified.

That way, any application listening to the event channel can

react on those events and refresh its displayed information if

necessary.

3. IMPLEMENTATION OF AN HMI BASED ON THE

BEST PRACTICES

To illustrate those concepts and demonstrate their real

benefits, an HMI named Virtual Front Panel has been

developed to monitor and control a real SCA radio, the

AN/GRC-245 HCLOS radio from Ultra Electronic-TCS.

(Shown in Figure 4) This SCA-based radio is actually in

production and deployed in the battlefield. That particular

radio was designed in accordance with the best practices

described in section 2.

Figure 4 – ULTRA Electronics-TCS

AN/GRC-245 HCLOS SCA radio

The Virtual Front Panel needed to react exactly the same

way as the physical front panel of the radio and allow the

user to navigate through the radio menus and change radio

settings.

For instance, when a user changes the radio data rate, a call

to the configure function is made on the PropertySet

interface to change the waveform application data rate

property. (Refer to Figure 5 - step 1)

Then the waveform application goes and configures other

internal components to do the necessary changes. (Refer to

Figure 5- steps 2 & 3)

When the configuration is completed, the data rate property

send an event containing the property name and its new

value. (Refer to Figure 5- step 4)

Finally the Virtual Front Panel receives the event and

refreshes the display with the new radio data rate.

Figure 5 - Property configuration by the Virtual Front Panel

example

The radio SCA software architecture was already meeting

the majority of the best practices and design pattern

described in the section 2 at the exception of the event

channel broadcast.

An event channel has been incorporated in the design and in

less than a week the radio was producing event on all

relevant properties in order to refresh the Virtual Front

Panel.

Figure 6 – Virtual Front Panel Application

Resource 1

Resource 2

Device 1

Assembly

Controller HMI

Waveform Application

 Property_DataRate

 etc...

Component 1

 Property_1

 etc...

configure

Property_1

Component 2

 Property_A

 Property_B

 etc...

configure

Property_A

And

Property_B

Virtual Front

Panel
configure

Property_DataRate

new

Property_Datarate

event.

1

3

2

4

5

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights
Reserved

The Virtual Front Panel resides on a desktop computer using

Windows 7 as the OS and it has been developed in Java.(see

Figure 6) The radio is a proprietary platform running the

INTEGRITY OS and software has been developed in C++.

That demonstrates the benefits of the platform independence

provided by the SCA framework and also the power of

standard interfaces described in section 1.

This project was a research and development project and it

has been realized with a short time period only one month.

The development of the Virtual Front Panel GUI and of the

radio infrastructure has been done by two different teams at

different locations. A small specification document has been

written by the radio design team to describe the overall

architecture, along with the specific events and properties

involved in this design. With this information, the GUI

developer in the other team was able to create test

components to emulate the radio events and properties, and

to feed the Virtual Front Panel during the development. The

time for integration was extraordinary short, with the GUI

working on the first day of the integration.

CONCLUSION

The use of the standard SCA API PropertySet and the event

channel are perfectly adapted to allow control and

monitoring tools to interface with SCA applications.

When applied to an SCA radio design early on, some best

practices and design patterns can facilitate the development

of control and monitoring tools.

The Virtual Front Panel project demonstrates with success

the benefits of all the concepts described by this paper.

ACKNOLEDGEMENTS

We would like to express our gratitude to the

Communication Research Center Canada and Ultra

Electronics – Tactical Communication Systems for

supporting us in this project.

REFERENCES

[1] JTRS Standards -Joint Program Executive Office (JPEO) Joint

Tactical Radio System (JTRS)., “SOFTWARE

COMMUNICATIONS ARCHITECTURE SPECIFICATION”,

Version 2.2.2, May 15, 2006

6

