
Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

HOW DIFFERENT MESSAGING SEMANTICS CAN AFFECT SCA

APPLICATIONS PERFORMANCES

Steve Bernier (Communications Research Centre Canada, Ottawa, Ontario, Canada;

steve.bernier@crc.gc.ca); Hugues Latour (Communications Research Centre Canada,

Ottawa, Ontario, Canada; hugues.latour@crc.gc.ca); Juan Pablo Zamora Zapata

(Communications Research Centre Canada, Ottawa, Ontario, Canada;

juan.zamora@crc.gc.ca)

ABSTRACT

Software Communications Architecture (SCA) compliant

radios typically contain a large number of software

components. Some software components provide access to

hardware devices while others perform signal processing.

By interacting with each other, the software components

implement a radio communications standard. To interact,

the software components use a middleware called Common

Object Request Broker Architecture (CORBA).

Using CORBA, each interaction is carried out as an

exchange of messages between two components. CORBA

supports two main type of messaging: one-way and two-

way. The application programming interfaces being used for

Joint Tactical Radio System (JTRS) radios rely on two-way

messaging. This paper explores the differences between the

two types of messaging and provides performance metrics.

The paper also describes design approaches that can be used

to avoid common pitfalls associated with the use of both

types of messaging.

1. INTRODUCTION

SCA waveform applications are typically composed of a

number of software components through which voice or

digital data samples travel. Typically the software

components get data samples from a device, transform the

data via signal processing, and send the modified data to

another device. In short, SCA waveform applications are

structured as a pipeline of components processing data

samples.

Each software component performs a specific

transformation on the data samples it receives via an input

port and sends the modified data to another component via

an output port. The more software components an

application has, the more connections between components

will be required which will lead to more interactions via the

middleware. CORBA offers two main types of interactions.

This paper describes both messaging types in section 2.

Section 3 describes the very common empty pipeline

problem which is related to the use of two-way messaging.

Section 4 describes how one-way messaging can address the

empty problem issue. It also describes the drawback of one-

way messaging with respect to order of interactions. Section

5 presents two solutions that can preserve the order of

interaction which is important for waveform applications.

Finally, section 6 provides performance metrics for different

type of messaging. The conclusion of the paper is provided

in section 7.

2. CORBA MESSAGING

Using CORBA, the invocation of a member function

implemented by an object is carried out as a message sent

from a client object to a server object. When the invocation

of the member function produces a result, a second message

is used to communicate the result back from the server to

the client object. This type of interaction is called two-way

messaging. With two-way messaging, the thread of the

client used to make the invocation is blocked until the return

message is delivered. This means the client’s execution

thread is suspended while the message travels through the

transport to the server, remains suspended while the server

member function is invoked and the result is returned to the

client via the transport.

The second type of messaging supported by CORBA is

called one-way messaging. It is used when the client does

not require a result back from the server. With one-way

messaging, the execution thread of the client resumes before

the member function is invoked on the server side. One-way

messaging is often mistakenly thought to be the same as an

invocation to a C/C++ function defined as having a void

return value. When a client invokes a C/C++ void function,

its execution is suspended until the function is executed and

returns. And such a behavior actually corresponds to a two-

way invocation.

The CORBA specification [1, 2, 3] actually defines four

types of one-way messaging. They differ in the level of

synchronization for interactions between clients and servers.

The desired level of synchronization can be selected by

SDR'10 Session 2A- 2

7

mailto:steve.bernier@crc.gc.ca
mailto:hugues.latour@crc.gc.ca
mailto:juan.zamora@crc.gc.ca

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

changing a property of the Object Request Broker (ORB)

called SyncScopePolicy to one of the following values:

 SYNC_NONE: The client’s invocation thread only

blocks until the request message is created and pushed to

the ORB. The invocation thread resumes before the ORB

sends the request message to the transport protocol (see

Figure 1). The client has no guarantee the ORB has been

successful in transferring the request to the transport

protocol stack on the client side.

Figure 1. SYNC_NONE CORBA Request.

 SYNC_WITH_TRANSPORT: The client’s invocation

thread blocks until the ORB request message is accepted

by the transport protocol stack (see Figure 2). The

invocation thread is unblocked without any guarantee the

request message has been received by the server.

Figure 2. SYNC_WITH_TRANSPORT CORBA Request.

 SYNC_WITH_SERVER: The client’s invocation thread

blocks until the request is accepted and validated by the

ORB on the server side (see Figure 3). The server-side

ORB makes sure the request is for a valid function of an

existing object. If the request is invalid, the

acknowledgment message sent by the server will cause an

exception to be raised on the client-side which will

unblock the invocation thread.

Figure 3.SYNC_WITH_SERVER CORBA Request.

SYNC_WITH_TARGET: The client’s invocation thread

blocks until the function is executed on the server side (see

Figure 4). The sever-side ORB returns an acknowledgment

message which contains no data if everything went well.

The return message contains an exception otherwise. This

level of synchronization provides a messaging semantic that

is equivalent to two-way messaging. The difference is that

two-way messaging can return a user-defined response or

exception while one-way messaging cannot.

Figure 4.SYNC_WITH_TARGET CORBA Request.

Note that the default for one-way messaging is set to

SYNC_WITH_TARGET for many ORBs. In fact, some

ORBs don’t implement SYNC_NONE and define it to be

the same as SYNC_WITH_TARGET [2]. Also note that

the characteristics of a transport protocol can influence the

synchronization scope. For instance, The Integrity®

operating system offers an Inter-Process Communication

(IPC) messaging framework called ―integrity connections‖

[4]. This IPC works in a way that the client sending a

message is blocked until the server accepts the message.

With such a transport, SYNC_WITH_TRANSPORT

behaves the same way SYNC_WITH_SERVER does.

Another example is with the use of a UDP-like transport.

With such a transport, there might not be a significant

difference between SYNC_NONE and

SYNC_WITH_TRANSPORT since messages can be lost

over the network.

3. THE EMPTY PIPELINE PROBLEM

Most SCA Applications [5, 6] are made of several software

components. And often those components are

interconnected in a sequence much like a pipeline where the

output of the first SCA component is fed to the input of the

next component and so on. Figure 5 illustrates a pipeline

with four components named R1, R2, R3, and R4. The

components represent the stages of the pipeline.

Figure 5. Processing Pipeline.

Figure 6 provides a sequence diagram of two-way

interactions between the four same components processing

two packets of data samples. Message number 1 shows that

8

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

component R2 receives the first data packet from R1.

Message number 2 indicates that R2 performs a

transformation of the input data and produces output data

which is then sent to R3. Component R3 does the same and

the modified data eventually reaches R4. The same

sequence of interaction happens again starting at message

number 10 for data packet number 2.

Figure 6. Two-way Messaging.

This sequence diagram clearly illustrates the pipeline of

components is only working on 1 packet at a time. That’s

because R1 waits for all other components to be done before

it can push a new data packet in the pipeline. Because of the

two-way semantic is used, R2 sits idle waiting for R3 to

return control. And the same is true between R3 and R4. At

any one time, only one component is processing data

samples. This type of interaction between the components is

called the empty pipeline problem and leads to a very

inefficient use of the computational elements of a platform

(GPP, DSP, FPGA). This problem is the same as with multi-

stage pipeline micro-processors; every functional unit in the

pipeline (e.g. stage) must stay busy to maximize the usage

of the processor.

4. USING ONE-WAY MESSAGING TO AVOID THE

EMPTY PIPE LINE PROBLEM

To avoid the empty pipeline problem, each individual

component must be able to work in parallel. In the context

of an SCA Application, the solution is to make each

component work on a different data packet at the same time.

This can be achieved using a few different approaches. One

approach consists in using one-way messaging. Figure 7

illustrates a sequence diagram where the components are

using one-way messaging.

Figure 7. One-way Messaging.

This sequence diagram shows that using one-way

messaging; the different components are working in parallel

on three different data packets. While R4 is working on

packet number 1 (message 12), R3 is working on packet

number 2 (message 10), and R2 is working on packet

number 3 (message 11). This approach leads to a better

usage of the computational elements provided by a platform.

However, the pipeline will be fully occupied only if each

component takes about the same time to perform its signal

processing. If one component takes more time to process its

input data, it becomes a bottleneck and the remaining

components in the pipeline will spend more time waiting for

input data. This illustrates how crucial it is to perform a

good functional decomposition of a waveform into

individual components.

4.1 THE IMPACT OF ADDRESS SPACE

COLLOCATION ON ONE-WAY MESSAGING

It is important to note that one-way messaging can behave

like two-messaging under special circumstances. And in

such a case, it will lead to the empty pipeline problem.

For a client to invoke a function implemented by a CORBA

server, it must use the local stub that represents the remote

server. The client invokes the function on a local stub which

generates a request message and tells the ORB core to

transmit the message to the targeted server using the

appropriate transport layer. The stub is generated from the

IDL definition of the remote function being invoked.

However, real-time ORBs use several optimizations to

accelerate interactions. One common optimization allows a

client and a server to transparently interact with each other

directly when they are located in the same address space.

This means the interaction will not cause a request to be sent

over a transport, but it will result in a direct call to the

9

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

function implemented by the server. The performance

improvement with such an approach is significant [7]. In the

context of the SCA, address space collocation can be

achieved via the use of a ResourceFactory.

The direct function call optimization is implemented in the

stub. The stub is in a position to recognize that the remote

object it represents is in the same address space as the client.

When both the client and the server are in the same address

space, the stub can perform a direction function call. This is

thought to be transparent to the client since the client always

uses a stub to make invocations.

However, when the stub makes a direct method invocation

instead of asking the ORB to go through the transport, it

does so using the client’s thread. The execution of the

client’s thread making the invocation ends up waiting until

the function returns which is the semantic of two-way

messaging. Since, the ORB core is by-passed with direct

function calls, the resulting messaging semantic will always

be two-way even if the IDL definition specifies one-way.

However, in most cases, the use of a single address space

and direct function calls will provide better performance

than the use of multiple address spaces with function calls

that go over a transport. That is true even if the single

address space calls are done in a way that produces the

empty pipeline problem. And as discussed in section 5.2,

there is a solution to avoid the empty pipeline problem even

with two-way messaging and it applies to the use of a single

address space.

4.2 THE PACKET REORDERING PROBLEM

Using one-way messaging in a pipeline configuration can

however lead to packet reordering. In other words, data

packets being sent by the first component in the pipeline

might be reordered before they reach the last component of

the pipeline. This is not the case when the pipeline is

implemented using two-way calls. With two-way calls, if

component R1 sends packet number 1 before packet number

2, component R2 will always receive the packets in that

same order. This is very important to most waveform

applications since they use signal processing algorithms that

are sequential in nature. That is, the algorithms transform

data samples using information gathered from previous data

samples. The reordering of CORBA interactions can happen

for a number of reasons.

Transport reordering: The transport used between

components can have an influence over packet reordering.

Using a UDP-like transport can cause data packets to travel

via different paths between a client and a server. But in the

context of the SCA, embedded platforms are used. And

transports on such platforms are usually more reliable.

Client-side reordering: packet reordering is mostly due to

multi-threading. It can be caused when a client uses multiple

threads to invoke the same server-side function. The reason

is that there is no guarantee the client threads will run in the

order they have been started. Furthermore, using a multi-

core processor can actually cause reordering even with a fair

scheduler and signal processing algorithms that use a

constant amount of time to process data. That is because, in

a multi-core processor, each thread can run on a different

core and be affected by how busy each core is. Thus, once

more, there is no guarantee client threads will run in a

specific order.

The ORB can also cause packets order to be changed if it

uses a thread to decouple the invocation to a stub from the

introduction of the function call request on the transport.

This approach can be used by ORB-generated stubs to

implement the SYNC_NONE policy. However it allows a

client to quickly invoke the same function which will cause

several threads to be created in the client-side ORB. And as

explained earlier, there is no guarantee the operating system

scheduler will preserve the order of execution of the threads.

Server-side reordering: The most common problem of

packet reordering is caused by servers that use multiple

threads to execute the function that is invoked to transform

data packets. As described above, the operating system

scheduler can skew the packets order by allowing some

threads to get more time slices than others.

In fact, even with a fair scheduler from a good real-time

operating system, the use of multiple threads can lead to

packet reordering. For instance, packets order can be

changed when the amount of time necessary to perform the

signal processing is not constant. In some cases the time

required to perform the signal processing is related to the

input data. Some algorithms use dictionaries to compress or

encode data and the amount of time used to perform their

task depends on the correlation between the input data and

the dictionary. This means that in a multithread

environment, the threads used to encode the data that finds

the most matches in the dictionary will finish before the

other threads, and thus the order of packets cannot be

preserved.

Finally, it is important to note that most ORBs use multiple

threads. CORBA objects are serviced by multiple threads

unless explicitly configured otherwise. Different ORBs use

different multithreading algorithms to read a message

request and perform the requested invocation. Most ORBs

will allow several threads to run in parallel after they have

read a request from the transport. This allows multiple

threads to be performing the same invocation at the same

time which introduces the risk for threads to be reordered

which translates to packet reordering.

10

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

With CORBA, it is possible to specify that an object must

be served by only one thread at a time. This can be achieved

using a specific threading policy [1, 2, 8]. This policy means

the server-side ORB cannot invoke the functions of an

object using multiple threads at the same time. It provides

multi-thread safety for the target object. One might think

that using the single thread policy would preserve the packet

order by not allowing more than one thread at once to run

the data processing function. But it is not the case. The ORB

can still use several threads to read from the transport. The

single thread policy only guarantees that the ORB threads

trying to invoke the requested function will run one after the

other. And the operating system scheduler can still reorder

the waiting ORB threads and cause packet reordering.

5. AVOIDING DATA PACKET REORDERING

In the end, there are solutions to preserve the order of data

packets. First, a client needs to make sure it does not reorder

packets right from the beginning. The easiest way to do this

is to use a single thread to make invocations to a same

server-side function. This solution is independent of the type

of messaging being used. However, on the server-side, the

solution can be more or less difficult to implement. It

depends on the type of messaging being used.

5.1 ONE-WAY MESSAGING

Since one-way messaging can always cause packet

reordering, the solution involves stamping each packet with

a sequential number as they are produced and introduced

into the pipeline of components. This must be implemented

at the application-level. With this solution, each component

must store the packet(s) that are out of sequence in a buffer

and process them in order. The components also have to

deal with the possibility of having to skip packets when they

don’t arrive within a specific amount of time or risk

delaying the processing for too long. Determining the

appropriate buffer sizes and time delays is not easy and is

platform-specific.

Flow control is also very important with one-way

messaging. The producer of data packets can outpace the

pipeline of processing components. And since buffers

cannot be of unlimited capacity, flow control is required.

Flow control must provide APIs that will deal with both

buffer overflow and buffer underflow. The APIs must allow

a server component to tell a client component to stop

sending data packets when the server-side buffer is near full.

The APIs also need to allow the server to tell the client to

resume sending packets when the buffer is near empty.

Calibrating flow control can be difficult. It involves finding

the appropriate low and high buffer thresholds for each

component of the pipeline. This thresholds can change with

different operating environments.

Note that flow control alone generally cannot be used to

avoid packet reordering. This is related to the fact that even

when the flow of packets is under control, it is possible for a

server-side ORB to use multiple threads and cause

reordering. The only way to avoid packet reordering with

flow control is to only allow a packet to be delivered to a

component after it is done processing the previous packet.

This kind of flow control would increase the amount of

signaling required for each packet which would most

certainly have a negative impact on performance.

5.2 TWO-WAY MESSAGING WITH USER-THREAD

Another approach to avoid packet reordering is to use two-

way messaging. But as discussed earlier, this solution can

cause a pipeline to remain empty and lead to performance

issues. There is however an obvious solution to empty

pipeline problem. The solution consists in using a thread

within each component to decouple the reception of a packet

from the processing of a packet. That is, instead of

processing the data packet on the ORB thread making the

invocation, the processing can be done on a user-thread that

will also forward the packet to the next component. This

approach allows the pipeline to fill in with more than one

data packet at the same time. As shown in Figure 8, this

approach leads to a pipeline usage that is very similar to

one-way messaging when it is synchronized with the server

as shown in Figure 3. The main difference is that two-way

messaging implicitly preserves the order of packets.

Under this approach, packet ordering is preserved

independently of the characteristics of the transport being

used. Two-way messaging makes a client wait for the

invocation to terminate before it can make a new invocation.

As a result, the client is not able to send a new packet to the

server before the server actually stores the current packet in

a buffer. There is only one packet in transit between the

moment a client invokes a function and the moment at

which the execution of the server function is terminated. It

is thus not possible to cause the reordering of packets. And

this approach is independent of the transport characteristics

and of the ORB’s multithreading strategy.

Naturally, since a buffer is used to store packets within each

component of the pipeline, flow control is still required.

Consequently, the server needs to be able to tell the client

when to stop sending new packets to avoid buffer overflow.

However, with two-way messaging, the client and the server

are synchronized. Therefore, if the client only regains

control when the server has room to accept a new packet,

the client cannot cause buffer overflow. And since the

server never tells the client to stop producing packets, there

is no need for an API to control buffer underflow. This

solution still requires that appropriate buffer sizes be

determined. However, it does not require the use of explicit

APIs for high and low watermarks.

11

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Figure 8. Two-way messaging with a user-thread

The other main difference with one-way messaging lies in

the bundling of components into a single address space. As

explained earlier, if components using one-way messaging

are bundle together, the semantic of messaging changes to

two-way messaging and leads to the empty pipeline

problem. That is not the case with components that use

two-way messaging with a user-thread in each component.

When combined together, those components will still have a

user-thread per component to perform the packet

processing. And that allows different packets to be

processed in parallel by different component user-threads.

In other words, it allows the pipeline to be filled with

packets.

6. METRICS

This section provides metrics used to make a performance

comparison between the different types of messaging

semantics. All the tests have been executed pushing 1000

packets through a pipeline of 3 SCA components. Each

packet was made of 1024 elements of type double, which

requires 8 bytes per element on the Intel Q9300 quad

processor used for testing. The processor was clocked at

2.5GHz, had 6 gigs of RAM, and ran Linux FC12. The ORB

used was ORBexpress RT version 2.8.2 with the IIOP

transport. In every test, all the components were hosted on

the same processor in different address spaces. All 3 SCA

components of the pipeline perform a certain amount of

signal processing that takes 5 ms. The pipeline is fed by a

fourth SCA component which is the packet producer.

In theory, it should take at least 5010 ms for the 1000
th

packet to go through the last stage of the pipeline. It should

take 5 ms for each packet to go through the first stage and

the last packet should take and extra 10 ms to go through the

last 2 stages. The assumption behind this reasoning is that

each stage has only one thread. In other words, each stage

only deals with one packet at a time.

Of course, no increase in the throughput can be achieved by

simply using multiple threads in a single core processor

because the threads run in time sharing mode. However,

according to [9], multi-threading can be used to minimize

the waste of processing cycles in a single core when many

requests are made to access external memory.

With a pipeline, each stage must be able to perform in less

time than it takes for the next packet to arrive. Buffers can

be used to accommodate the potential bursty-ness of the

traffic. Using multiple cores, different stages of a pipeline

can run concurrently. If each stage is assigned to a different

core, the packet budget is effectively multiplied by the

number of cores [9].

Table 1 shows metrics produced with a test where the

packet producer was using a one-way API to send packets to

the pipeline without waiting before sending each packet.

During this test, the one-way messaging semantic was set to

SYNC_WITH_TRANSPORT. The table shows how much

time it took for the last packet (i.e. the 1000
th

 packet) to

reach each stage of the pipeline.

 Stage 1 Stage 2 Stage 3

Time of last Pkt

arrival

4463.20ms 4508.41ms 4513.61ms

of Pkt reordered 315 520 612

Table 1: One-way messaging with a no wait producer

Interestingly enough, all 1000 packets have been processed

in less than the theoretical 5010 ms for a multi-core

processor hosting each stage on a different core. In fact, the

last packet left the first stage after only 4463.20 ms which is

before the expected 5000 ms. That is because the test allows

packets to be sent faster than they can be processed and as a

result, the ORB within the first stage component uses more

than one thread to invoke the processing function. What

happened is the core that hosted the packet producer was

12

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

periodically idle and the 3 stages where able to share the 4th

core to run some extra threads concurrently. On a single

core processor, this could not happen.

This first test has also demonstrated that one-way messaging

coupled with the use of multiple threads at the server-side

ORB has caused a significant amount of packets to be

reordered. Table 1, provides the average number of packets

that were received out-of-sequence in each stage of the

pipeline. At the last stage of the pipeline, out of 1000

packets, over 612 packets had been reordered.

What Table 1 does not show is that the packet producer (i.e.

the first component) was actually being paced by the

transport. Even if the producer did not sleep before sending

each packet, it periodically was blocked by the transport.

Every time the transport buffers became full, the transport

blocked the producer to prevent overflow. To be more

precise, the stub used by the producer waited after the ORB

to push the packets to the transport which was periodically

blocking. The producer was blocked until the transport

buffers had enough space to accept a new message. During

our tests, the default buffer size for the TCP/IP stack was

difficult to determine because the stack used buffer auto-

tuning. This means the buffers increased in size as needed.

Nevertheless, the test caused the TCP/IP stack to reach a

maximum buffer size. Figure 9 shows how much time it

took for the producer to send a packet to the first stage of

the pipeline. When the transport buffers were not full, the

producer was able to send packets in as little as 9 usec. In

fact, most packets were sent in less than 16 usec. But the

transport buffers reached full capacity quite often because

the producer was very aggressive. Therefore, the producer

periodically had to wait for approximately 44 ms.

Table 2 shows the same metrics but for a test that used one-

way messaging with a packet producer that waited 5 ms

between each packet being sent to the pipeline. The first

thing to notice is that it took more than 5000 ms for the last

packet to exit of stage 1. That is because the producer was

not introducing packets faster than the pipeline stages could

handle. As a result, there were fewer threads created by the

server-side ORB of the stage 1 component. The different

cores where not solicited enough and did not run different

threads of a same stage in parallel. But as stated earlier, to

some waveform applications, even a small quantity of

reordering can cause serious problems.

 Stage 1 Stage 2 Stage 3

Time of last Pkt

arrival

5416.57ms 5421.74ms 5426.90ms

of Pkt reordered 95 216 349

Table 2. One-way messaging with a 5ms wait producer

Table 3 shows metrics for a test that used two-way

messaging with a packet producer that did not wait between

each packet it sent. With this test, the function invoked on

each stage did the signal processing for 5 ms and then

invoked the processing function of the next component in

the pipeline. This caused the empty-pipeline problem as

described in section 3 and illustrated in Figure 6.

The first thing to note about this test is that each packet

went through the pipeline alone. The packets had to wait at

least 5 ms at each of the three stages which adds up to

15,000 ms for 1000 packets. And since the test recorded the

time at which each packet left the stages and that each stage

waited after the next stage to complete, the timings are in

reverse order compared to the previous tables. It took more

time to finish stage 1 than it took to finish stage 2. And the

same is true regarding between stages 2 and 3.

It is important to highlight that this two-way test did not

cause any packet reordering. But it was done at the cost of a

much lower throughput. Figure 10 shows how much time it

took for the producer to send packets through the pipeline

stages. The figure also shows the producer did not get

blocked by the transport as often as for the one-way test

(Figure 9). For the two-way test, in most cases, the producer

waited for an average of 15.68 ms between packets with a

couple cases were it waited more than 40 ms with one

extreme case at around 85 ms.

 Stage 1 Stage 2 Stage 3

Time of last

Pkt arrival

15,684.19ms 15,684.06ms 15,683.93ms

of Pkt

reordered

0 0 0

Table 3. Two-way messaging with a no wait producer

Table 4 shows the result of a test that used two-way

messaging with a user-thread in each stage to decouple the

reception of a packet from the processing and forwarding of

the packet to the next stage. That test was executed with a

producer that did not wait between the sending of each

packet. Upon the reception of a new packet, instead of

processing the packet before returning control to the client,

each stage stores the packet in a buffer, notifies a user-

thread, and returns. The user-thread wakes up when notified

and takes the oldest packet from the buffer, transforms it,

and sends it to the next stage.

Since the component sending the packet is blocked on the

two-way call until the packet is accepted and stored in a

buffer, there is never two packets in transit at the same time

between two stages. This means none of the components

have more than one server-side ORB thread waiting to

invoke the processing function. This prevents packets from

being reordered. For as long as the user-thread processes the

packets in order, no reordering is caused.

13

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

This approach effectively preserves the order of packets and

keeps the pipeline busy with different packets. It provides

much better performance than the simple two-way approach

with suffers from the empty-pipeline problem. In fact, the

performances are slightly better than those of the one-way

messaging approach with a time-based paced producer

(Table 2). That is because using two-way messaging with a

user-thread, each stage can introduce a new packet as soon

as the next stage unblocks. The time between packets can be

smaller than 5 ms when the stages benefit from multi-core

processing.

Figure 11 shows that the use of a user thread with two-way

messaging led to an average wait per packet of around 5.38

ms. It also produced fewer long waits than for the two other

methods. Only a few packets took more than 20 ms to be

transmitted with the extreme cases of around 60 ms.

 Stage 1 Stage 2 Stage 3

Time of last Pkt

arrival

5286.22ms 5267.73ms 5297.16ms

of Pkt reordered 0 0 0

Table 4. Two-way messaging with a no wait producer and a

user-thread per stage

7. CONCLUSION

CORBA offers two types of messaging semantics: one-way

and two-way. The main difference between the two resides

in the level of synchronization between a client and a server

which has an impact on the speed of interactions. One-way

messaging is often considered a better approach than two-

way messaging from a throughput perspective. However,

one-way messaging cannot preserve the order of interactions

between components which translates into the reordering of

data packets as they flow through a pipeline of components.

The ordering of packets is very important for the type of

signal processing performed by waveform applications. On

the other hand, two-way messaging preserves the order of

interactions but leads less than optimum throughput.

Different approaches can be used to preserve the order of

packets. If one-way messaging is used, the components of

an application must implement extra functionality to

preserve the packet order and to perform flow control. Each

component must be prepared to receive packets out of order

and to reorder them before performing the signal processing.

Each component must also provide buffers to hold packets

and implement mechanism to pace the producer to avoid

buffer underflow as well as buffer overflow. This requires

the use of low and high watermarks that must be tuned for

every different platform the waveform is be ported to. But

this solution provides much better performance than the

plain two-way messaging.

Another approach is to use two-way messaging with a user-

thread to decouple the reception of a packet from its

processing and forwarding. The advantage of this approach

is that it preserves the order of packets without stamping

each packet with a number and without having to put the

packets back in order after their reception. And according to

preliminary tests performed, this approach is very similar

with the theoretical best performance possible in a multi-

core environment with as many cores as there are stages in

the application. It’s also very close in performance to plain

one-way messaging which has the disadvantage of causing a

large amount of packet reordering. Also, using this approach

during testing, the metrics show that components were well

synchronized with each other regarding the throughput of

the data flow.

In conclusion, there are a number of things that can be done

to improve the throughput of interactions between SCA

components. Using a ResourceFactory to provide a single

address space to host several components can provide

tremendous improvements. The type of messaging used can

also provide serious improvements. And, as discussed in

this paper, one-way messaging is not necessarily a superior

solution.

8. REFERENCES

[1] Object Management Group, Common Object Request

Broker Architecture: Core Specification, version 3.0.3,

formal/04-03-01, March 2004.

[2] Objective Interface Systems Inc., CORBA

Programming using ORBexpress RT for C++, version 2.6,

April 2006.

[3] S. Vinoski, ―New Features for CORBA 3.0‖,

Communications of the ACM, October 1998.

[4] INTEGRITY Kernel Reference Guide, June 2006.

[5] Software Communications Architecture Specification,

Version 2.2.2., December 2006.

[6] F. Lévesque, S. Bernier, ―Interconnection SCA

Applications‖, SDR’07, Denver, USA, November 2007.

[7] S. Bernier, C. Auger, J.P. Zamora Zapata, H. Latour,

M. Michaud-Rancourt, ―SCA Advanced Features –

Optimizing Boot Time, Memory Usage, and Middleware

Communications‖, SDRF’09 Technical Conference, 2009.

[8] M. Henning, S. Vinoski, ―Advanced CORBA

Programming with C++‖, Addison Wesley, February 1999.

[9] Y. Zhang, K. Ootsu, T. Yokota, T. Baba, ―Clustered

Communication for Efficient Pipelined Multithreading on

Commodity MCPs‖, IAENG International Journal of

Computer Science, 2009.

14

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Figure 9. Time it took for the no-wait producer to send each packet using one-way messaging

Figure 10. Time it took for the no-wait producer to send each packet using two-way messaging

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1

3
2

6
3

9
4

1
2
5

1
5
6

1
8
7

2
1
8

2
4
9

2
8
0

3
1
1

3
4
2

3
7
3

4
0
4

4
3
5

4
6
6

4
9
7

5
2
8

5
5
9

5
9
0

6
2
1

6
5
2

6
8
3

7
1
4

7
4
5

7
7
6

8
0
7

8
3
8

8
6
9

9
0
0

9
3
1

9
6
2

9
9
3

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1
3
0
5
9
8
8

1
1
7

1
4
6

1
7
5

2
0
4

2
3
3

2
6
2

2
9
1

3
2
0

3
4
9

3
7
8

4
0
7

4
3
6

4
6
5

4
9
4

5
2
3

5
5
2

5
8
1

6
1
0

6
3
9

6
6
8

6
9
7

7
2
6

7
5
5

7
8
4

8
1
3

8
4
2

8
7
1

9
0
0

9
2
9

9
5
8

9
8
7

15

Proceedings of the SDR ’10 Technical Conference and Product Exposition, Copyright © 2010 Wireless Innovation Forum, Inc. All Rights Reserved

Figure 11. Time it took for the no-wait producer to send each packet using two-way messaging with a user-thread

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

―The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works related
to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce their
work, and to reuse material in whole or in part from their work; for derivative works, however, such authors may
not grant third party requests for reprints or republishing.‖

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

0

10000

20000

30000

40000

50000

60000

70000

1

3
2

6
3

9
4

1
2
5

1
5
6

1
8
7

2
1
8

2
4
9

2
8
0

3
1
1

3
4
2

3
7
3

4
0
4

4
3
5

4
6
6

4
9
7

5
2
8

5
5
9

5
9
0

6
2
1

6
5
2

6
8
3

7
1
4

7
4
5

7
7
6

8
0
7

8
3
8

8
6
9

9
0
0

9
3
1

9
6
2

9
9
3

16

