
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

786

USE OF NOVEL POWER CONTROL MECHANISMS IN AN SCA WAVEFORM

AND PLATFORM

Larry Dunst (DataSoft, Scottsdale, AZ, larry.dunst@datasoft.com)

Shahzad Aslam-Mir, Ph.D. (DataSoft, Scottsdale, AZ, shahzad.aslam-mir@datasoft.com)

Brandon Duthler (DataSoft, Scottsdale, AZ, brandon.duthler@datasoft.com)

Eric Miles (DataSoft, Scottsdale, AZ, eric.miles@datasoft.com)

Philip Balister (OpenSDR, Blacksburg, Virginia, philip@opensdr.com)

ABSTRACT

There has been considerable interest in software based

control techniques to lower the power consumption in SFF

SDRs. This paper will present a set of novel techniques

which allow any conventional SDR platform and waveform

to negotiate waveform demands while minimizing the power

usage profile. The techniques described will include

combinations of ideas such as adaptive switching, waveform

mode cognizance and a new form of experimental reflexive-

adaptive power minimizing middleware. The results of the

research will be demonstrated with experimental results and

a demonstration at the SDR Forum conference. A blueprint

adaptive power control specification will also be presented.

1. PROBLEM STATEMENT

A major concern in current generation JTRS SCA radio

assets is battery life. There is a pressing need for innovation

to solve the size, weight and power (SWAP) problem within

the current architecture. Our innovation, shown in Figure 1,

mitigates the SWAP problem with a new Small Form Factor

(SFF) middleware (SCA/e), new SFF CORBA/e profiles,

and a new SFF CORBA/e based Power Management COS-

Service, while maintaining current investments in SCA,

CORBA, and other infrastructure.

 Software infrastructures that are cognizant of power

issues can increase the operational lifecycle of mobile radio

communications devices significantly enhancing operational

capabilities of missions. Power cognizance also reduces the

cost of operating equipment – e.g. a 10% increase in battery

life for a satellite with a 5-year estimated lifetime would

extend its functional lifetime and make it profitable for an

extra ½ year. There are currently a number of active, passive

and semi-active software solutions that solve various aspects

of the power problem. An extensive amount of research has

produced a multitude of firmware, device driver, application

level software, design patterns and active hardware based

power management solutions. However these artifacts

cannot be constructively unified in any particular manner

that coherently enables the designers of communications

devices or sensor networks to use them in an open,

extensible and scalable manner, yet realize significant power

benefit.

1.1. Bursty-Volatile Activities

Of all of the application frameworks cast as power-cognizant

middleware, none are open, hardware, OS or language

independent, but all have value in their particular

applications domain. The solutions proposed in this article

provide a new portable cross-cutting mechanism through

which existing solutions can be unified into a single power

context. This is characterized by a middleware abstraction

layer where software components can either actively manage

energy use themselves or be managed by a higher level

power manager. In this way, components and clusters of

components can be uniformly power managed using a policy

and profile based approach in which the overall power

management function is a collaborative effort by multiple

software and hardware component elements working

together to enforce a policy. The solution identifies power

conservation states (via a state machine) and a way to

specify and enforce a series of power loci or threads of

execution across the device hardware and software via a

context that aims to minimize cycle count. This is done via a

set of interfaces that define a Power Management Service

Existing Technology DataSoft Innovation

MIDDLEWARE

WAVEFORM APPLICATION

MHAL OS

FPGA DSP GPP

High speed transport fabric(s)

ASIC MEMORY

P2P2

P1P1

P3P3P4P4P7P7 P5P5

P8P8

P6P6

SCA 2.2.2

Minimum CORBA

P

O

S

I

X

WAVEFORM APPLICATION

MHAL OS

FPGA DSP GPP

High speed transport fabric(s)

ASIC MEMORY

P

O

S

I

X

NEW SFF CORBA/e

NEW SFF Middleware SCA/e

High speed power managed communication bus

SFF Power

Management

COS-Service

Figure 1: DataSoft Middleware Approach to Centralized

Power Management

mailto:larry.dunst@datasoft.com
mailto:shahzad.aslam-mir@datasoft.com
mailto:brandon.duthler@datasoft.com
mailto:eric.miles@datasoft.com
mailto:philip@opensdr.com

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

whose objective is to direct all power managers in the lower

software and hardware layers to work collectively.

1.2. Constant-Steady State Activities

Traditional middleware such as CORBA or ICE provides

many benefits into any software system, such as location

transparency of objects, OS independence, and hardware

independence. The overall objective in the traditional

middleware has been to reduce developer workload from

having to learn the infrastructure perspective, so that he or

she spends more time on business logic design and

implementation. In addition, traditional middleware is seen

as a harmonizer of language, OS, platform and underlying

network IPC issues making them more manageable, and

providing a safeguard in the dollar investment by providing

a way of preventing vendor lock-in through a standards-

based approach.

 All of these benefits are, however, not without a price.

The traditional CORBA call has a minimum overhead of 52

bytes per request and up to 12 bytes per reply – i.e. a total of

64 bytes per call. After marshalling, transmitting, receiving,

and un-marshalling, many CPU cycles have been spent. If

this overhead could be reduced, CPU cycles and therefore

power drain could potentially be reduced. The challenge is

to not “break” the ORB.

2. PROPOSED SOLUTIONS

We illustrate the various facets of DataSoft SFF Power-

aware Middleware (DSPM) and how it helps implement

SCA and non SCA SDRs in Figure 2. It shows the

categorization of DSPM facets and where to apply them in

the design and implementation of a next generation SDR

device baseband solution. DSPM enforces a distributed

power management strategy based on a user profile, a

context and a specifiable policy. The intent is that the DSPM

model will enable SDR designers to stipulate a constant

minimal power execution strategy across disparate

processors and software stacks.

2.1. Bursty-Volatile Activities

The DSPM model is based around the idea of a series of

power managers that manage power of classes or clusters of

components. These components form part of the radio in all

layers and so every software and/or hardware element is

included. DSPM will control and take account of these

various levels via a single unified point of control. DSPM

models components as observable components or

controllable components, and in some cases both.

Controllable components are termed Power Aware

Components (defined in our IDL as PAComponents) to

which a power command can be applied via a Power Policy

and will control its behavior based on the software

component and underlying hardware‟s power profile.

 Reference [1] has shown that there are solutions in all

three layers for the effective management of power in an

SDR. These three layers all have a mapping to DSPM

components that are Power-aware as defined in our

middleware interfaces. The fine grained multi-voltage and

frequency approaches are abstracted using the DSPM

“power map” abstraction in our IDL definition. All of these

abstractions register with the DSPM waveform or platform

power manager depending on where these PAComponents

reside. This allows the DSPM service to effectively

negotiate power and QOS of the waveform over the

hardware as all control is now centralized. The work of

Robert and Reed [1] is referenced to show how DSPM

harmonizes power control at multiple levels.

 There are a number of different types of hardware based

voltage and frequency scaling capabilities. On our

simulation experiment platform, chosen as the TI-OMAP,

these scaling techniques have different effects. Dynamic

Voltage & Frequency Scaling (DVFS) - typically consumes

less energy/power in low performance modes by lowering

the voltage. Adaptive Voltage Scaling (AVS) - lowers

voltages when the chip process load and temperature allow it

– technically this is termed a SmartReflex approach by TI,

but the SmartReflex name is commonly used to refer to all

power savings techniques listed on the OMAP. Lastly,

Dynamic Power Switching (DPS) typically splits chips into

several power domains that can be put into low power states

individually; DSPM affords the designer all three

approaches, which makes for effective control.

 The application level approach to manage power is via

policies/algorithms at application, middleware-OS, and

firmware-BIOS levels through industry standards. OSPM

and ACPI are the industry specifications that dominate the

GPP based CPU world. We have chosen this model because

mainstream Operating Systems, including Real-Time

DSPM SDR Power

Management

Approach

Modified ORB middleware

LP-ORB

Global Unifying Cross-layer

Power Management Service

H/W and

H/W drivers

OS/ORB S/W

and S/W drivers

Layer 6 & 7

Applications
Adaptive

GIOP

Virtualize

8bit VM
DSPlnk &

FPGA ocplnk

Specialized data

link connect

Legacy JTRS SCA Radio or

Waveform

New JTRS SCA Radio or

Waveform

DSPM

elements can

be retro-fitted

DSPM elements could be

supplanted under regular SCA

2.2.2

PART-1 BURSTY-Volatile activities PART-2 CONSTANT-steady state activities

Figure 2: Categorization of DSPM facets

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Operating Systems, support the ACPI interface and COTS

hardware can often be found with BIOS support.

 We illustrate in Figure 3 how DSPM will sit atop the

popular ACPI industry standard power manager interfaces

and provide a mechanism to enforce a unified system wide

power policy by effectively controlling all power resources

through a single unified API. Since the DSPM API is

defined in IDL, it may be implemented in C++ using

CORBA, or can be generated as a pure C API that does not

need the use of an ORB in the radio at all. This is because

DSPM is defined as a Platform-Independent Model (PIM).

 The DSPM component landscape is further broken

down into power producers and power consumers.

However, we also needed to augment this model with fine

grained state machines. DSPM has the notion of a power

channel which may connect a power producer to a power

consumer via a channel. The channel is managed by a power

manager and may be contained within the power manager.

The purpose of the channel is to try to track the particular

power drain from a specific element in the radio. In the case

where the power is pooled, the channel decouples the power

producer from the consumer allowing the channel and power

manager to mitigate the power demand with the power

supply while at the same time turn off or minimize drain

from devices or other PAComponents not active in the radio

at times of high power demand. Each of the power producers

has a fine grained state machine that can exist for the

purposes of fine grained control of the device‟s energy use.

We have defined a state machine overall for a DSPM artifact

in our specification IDL. However, a mapping of these states

to the ACPI states must be provided for the approach to be

effective. This is a task left for a PIM mapping to a

Platform-Specific Model (PSM).

 A DSPM component‟s power management states can be

mapped to a device that supports ACPI. This defines the

DSPM state transition diagram for a basic PAComponent. A

PAComponent may be active when it is participating in a

signal processing activity such as transmit or receive, it may

be in a SLEEP mode if the radio was shutdown by a

manager, it may be in a low power hibernate state where the

component is in SLEEP state, but routinely wakes up on

demand or automatically to do something and go back down

to SLEEP. These transitions need to be mapped to those of

the underlying hardware which is the strength of our solution

as well as allowing the designer complete freedom in this.

 We unify multiple disparate devices with different state

machines into a unified set of state machines that the Power

Manager can view with uniformity so as to try to impose

power minimizing activities in any Radio end user‟s Use-

Case. DSPM sees all elements in an SDR as power aware

components and this is reflected in the middleware IDL

being used to define the devices as a common interface

called PAComponent.

 The blackboard pattern [2] is a common pattern used in

multi-source data fusion application design. Utilizing a

centralized blackboard termed the PowerMap, every

component in the SDR maps its power profile and then

reports its activity such that a runtime profile of all power

draining activities in the radio can be accumulated into a

single unified image. The DSPM PowerMap concept can be

mapped to the voltage scaling domains of a typical wireless

hardware platform for greater effective control. This allows

a waveform designer to map, in a fine grained manner,

power use and power drain when the waveform is in

different modes or use-case activities. The DSPM model

specification therefore permits the control of application

resident software, drivers, firmware and ultimately hardware

uniformly via the same control interface. This control may

be applied to a software artifact that may be a C++ or C

object, an SCA resource or device (performing a pushPacket

like work activity), or simply an application specific object

performing some power related activity.

 The wireless device‟s battery is also modeled as a

Power aware element and is connected to the PowerMap for

the purposes of calculating battery life based on the current

activities as things stand if the current rate of draw

continues. This map thus produces a „PowerModel‟ that the

DSPM power manager can manipulate and control via its

delegate slave power managers or controllers. The battery

module abstraction uses and has its own separate controller

Power Aware Component

applyControl()
Faults
PowerEvent
PowerNotification

pushPacket()

Figure 3: Example mapping DSPM to ACPI states

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

which is under the direct control of the Radio‟s Power

Manager. Each element in the PowerMap blackboard

(termed a power point as shown in the IDL) contains power

data for that component e.g. the component‟s current state

and what state it will go into next (if known). Power points

contain additional algorithmic information that is specific to

the system designer‟s strategy. This typically could mean

data like allocated budget, current usage rate etc. and is

modeled along the lines of the work of [3]. Our chosen

demonstration platforms have voltage scaling domains

which can be mapped into this blackboard scheme allowing

for fine grained control of the device‟s power use.

2.2. Constant-Steady State Activities

We looked at what we could do to support ease of use of

DSPM middleware. Our conclusions were that in addition to

providing the DSPM runtime model as a middleware COS

Service that can be used in an existing JTRS radio asset, we

also needed to do more at the data transfer level to help

progress the advancement of the low power SFF SDR. We

therefore turned our attention onto not the SCA but rather

the CORBA ORB implementation to see what we could do

to reduce not only an ORBs footprint, but modify its core

and the protocol structure of GIOP so that it would be able

to support higher throughput at significantly lower numbers

of CPU cycles. We therefore proceeded to redesign, adapt,

and/or modify a CORBA ORB‟s features (OmniORB):

(a) Marshalling layer by cutting down GIOP‟s wire

footprint.

(b) Interface to Phy-Mac transport layers to reduce

complexity of dispatch in the server while giving it

a greater degree of concurrency in a real-time

manner.

(c) Experiment with simplifying and/or removing the

extensive stub and skeleton code generated

typically from an IDL to C++ or C code generator

(the PIM approach.)

 Based upon this we chose to modify an ORB structure

as an experiment. For the marshalling, our analysis shows

that if the ORBs involved in a signal processing chain (a

sequence of PushPacket calls) use a negotiation session,

significant CPU cycles can be saved. We term this Adaptive

GIOP. In addition at the ORB‟s transport interface, custom

transports with zero-copy semantics can be applied. This

mechanism can also be used to interface the new ORB

middleware to FPGA resident OCP components, in which

case a low energy device driver is used to pump bytes over

the mesh from a GPP or DSP to the FPGA‟s mapped

registers and back. In order to reduce server side complexity

we also proposed the replacement of the Portable Object

Adapter with a simple adapter into which an implementation

can be registered. To simplify code generation we sought to

look at Meta compilers [4] that are used upstream of

standard compilers that can generate intermediate and

simpler forms of code for high speed and very low footprint.

 We then investigated how we could improve software

power consumption when computation and IO intensive

pushPacket(..) calls are active in an SDR. We augmented

our work for conserving marshalling power in a generic

SDR with the notion of Adaptive GIOP for refitting legacy

systems that may be CORBA and SCA based. If the system

being designed is non-SCA and CORBA, Adaptive GIOP

can be retrofitted very easily. A reduction in GIOP overhead

is possible through the use of a negotiation in the client side

and server ORB such that they get to a point where the client

just sends the data and the receiving server merely un-

marshals the data in a limited capacity. If a traditional legacy

SCA CORBA waveform uses this mechanism there is

significant overhead cycle savings and improved

marshalling throughput in the waveform applications. This

has the potential to reduce CPU cycles per KB marshaled

and therefore power drain. This approach can be plugged

into any modern real-time CORBA compliant ORB.

3. EXPERIMENTS AND RESULTS

For the experiment we chose a Beagle Board, as shown in

Figure 4, which was used with embedded Linux and hosted

the Omni-ORB CORBA ORB, the Virginia Tech OSSIE

Core Framework and ran an SCA compliant FM-Demod

waveform that outputs sound to a speaker.

3.1. Bursty-Volatile Activities

Our simulation experiment is designed in three parts to

demonstrate our key DSPM middleware low power

capabilities. For this experiment, we have recorded I & Q

samples of an FM voice signal for demodulation, resample,

and output to a speaker.

Figure 4: The Experiment- The Beagle Board

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 Part I is the Baseline experiment that demonstrates the

power drainage with no DSPM. Part II of the simulation

experiment contains a DSPM SQUELCH PAComponent

that is controllable from the DSPM PowerManager.

Whenever the squelch is applied the PAComponent issues

an Event to the DSPM PowerManager. In this experiment

Strategy 1 is to cause a Control signal to turn off the SCA

waveform processing. The power drain is low when Strategy

1 is applied and high without it demonstrating that our

DSPM concepts save power.

 Part III of the simulation experiment is the same as Part

II with a new controllable PAComponent added called

Freq/Drv that controls the power to the video driver. This

experiment implements a new Strategy 2 that, upon

receiving the Event signal, the DSPM will issue a Control

signal to the SQUELCH PAComponent and an IOCTL

control signal that the Freq/Drv PAComponent uses to

control the video driver power. Power drain is high when the

voice signal is present and low when the signal is absent due

to DSPM Power Management. Note that the power

consumption is significantly reduced when the additional

strategy is implemented. The reason here is the power

manager elements of both the waveform data passing

resource and the hardware element in the radio are made to

work collaboratively and in lock step based on an applied

DSPM strategy policy to control the use of those elements

differently in situations when a signal is present as opposed

to when it is not.

 Figure 5 summarizes the simulation experiment power

drainage results. It is annotated to show the WF Data Begin

for Part I, II, and III. In Part I only, the WF Data contains no

Signal and shows the same power drainage as when the

signal is present. In Part II, the Squelch Enabled shows the

power savings due to the DSPM SQUELCH PAComponent.

In Part III, the Driver Inactive shows the power savings due

to the DSPM PowerManager.

3.2. Constant-Steady State Activities

We also designed another simulation experiment in order to

demonstrate the power savings potential using an Adaptive

GIOP approach. For this experiment, we modified our base

experiment to not use the standard CORBA calls. Instead,

we applied an Adaptive GIOP mechanism. This simulates

reducing the GIOP information and even bypassing and

optimizing out unnecessary marshalling operations. The

setup was then run using both Normal GIOP method and

then again using the Adaptive GIOP mechanism.

 Both experiments consisted of a chain of four

independent WF components; file-input, fm-demod,

resampler, and soundPlayback. In the Normal GIOP

experiment, each component is connected together using a

traditional SCA port connection that utilizes the standard

GIOP mechanisms provided by the ORB vendor while the

Adaptive GIOP experiment applied our optimization

techniques. In both experimental setups, the data throughput

was fixed at 256 kilobytes per second, with packet sizes

fixed at 2048 bytes. Figure 6 shows the current utilization

over time for both experimental setups. This graph shows

that Adaptive GIOP demonstrates a lower, more predictable,

and consistent current usage profile than the traditional

GIOP mechanism.

 Not only was the Adaptive GIOP current usage

consistently lower then the Normal GIOP usage, we did

further measurements to demonstrate the efficiency of the

Adaptive GIOP method. To maintain the required

throughput level, the Normal GIOP could support a data

packet size of no less than 2048 bytes, which had an

equivalent of 273 pushPacket() calls per second. The

Adaptive GIOP method was capable of supporting a data

packet size as small as 256 bytes, which had an equivalent of

2,187 pushPacket() calls per second. This demonstrated that

Adaptive GIOP was sending more useful waveform data at a

lower energy cost – higher throughput yet lower current.

4. CONCLUSION

DataSoft has developed a Power Management Service PIM

DSPM Experiment Comparisons

0.35

0.37

0.39

0.41

0.43

0.45

0.47

Time

C
u

r
r
e

n
t

U
s

a
g

e
 (

A
m

p
s

)

Baseline Experiment (No DSPM)

Application Level Power Management

Application + Low Level Power Management

Squelch
Enabled

Squelch
Disabled

Driver
Inactive

Driver
Active

WF Data
Begin

WF Data
Contains no

Signal

DSPM Experiment Comparisons

0.35

0.37

0.39

0.41

0.43

0.45

0.47

Time

C
u

r
r
e

n
t

U
s

a
g

e
 (

A
m

p
s

)

Baseline Experiment (No DSPM)

Application Level Power Management

Application + Low Level Power Management

Squelch
Enabled

Squelch
Disabled

Driver
Inactive

Driver
Active

WF Data
Begin

WF Data
Contains no

Signal

Figure 5: DSPM Experiment Comparison

Figure 6: Normal and Adaptive GIOP current usage

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

that specifies a power regulation model in IDL to ensure

platform independence. Our approach uses UML and

CORBA IDL from the OMG for a more global power

savings service specification. In addition, we have

developed a technique that modifies the CORBA ORB

implementation that saves power by adaptively slimming the

protocol footprint of GIOP dynamically for efficient

throughput of waveform traffic and returning to regular

footprint when not needed.

 The results of our research demonstrate that the

DataSoft Small form factor Power-aware Middleware

(DSPM) model, consisting of Part-1: Bursty-Volatile

activities and Part-2: Constant-Steady State activities, is a

practical and feasible way of monitoring and regulating

power so as to maximize the system performance of

software defined radios at reduced energy levels.

 Our Part-1 experiments using the DataSoft Global

Unifying Cross-layer Power Management Services verify a

power savings for the H/W and H/W drivers and the

OS/ORB S/W and S/W drivers as shown in Figure 5. We

have also identified the possibility of Layer 6 & 7

Applications power saving mechanisms.

 Our Part-2 experiments using the DataSoft Modified

ORB middleware LP-ORB concepts show a power savings

for our Adaptive GIOP. Figure 6 demonstrates that the

DataSoft Adaptive GIOP has more computational efficiency

per unit of energy. This mechanism is particularly powerful

in higher throughput SCA waveform applications where a

chained sequence of PushPacket calls are used in the signal

processing transformation link to pass data in the waveform.

We have also developed waveform links to DSPs & FPGAs

in a portable yet energy efficient manner that yields power

savings, which will be demonstrated in subsequent

publications.

5. ACKNOWLEDGEMENTS

This research was supported through Navy contract

N00039-08-C-0079. The opinions presented are those of the

authors and do not necessarily reflect the views of the

sponsors. The authors would also like to thank Zeligsoft for

their support.

6. REFERENCES

[1] M. Robert and J. Reed, “Power Management in SDR”,

Presentation to OMG Technical Conference on Software
Based Communication, September 14, 2004.

[2] D. Duego, M. Weiss, and E. Kendall, “Blackboard design
pattern”,
http://chat.carleton.ca/~narthorn/project/patterns/BlackboardP
attern-display.html

[3] H. Zeng, C. Ellis, A. Lebeck, and A.Vahdat, “Currentcy: A
Unifying Abstraction for Expressing Energy Management
Policies”, USENIX 2003 Annual Technical Conference, June
2003.

[4] E. Willink, “Meta-Compilation for C++”, University of
Surrey, 2001.

http://chat.carleton.ca/~narthorn/project/patterns/BlackboardPattern-display.html
http://chat.carleton.ca/~narthorn/project/patterns/BlackboardPattern-display.html

	Home
	Papers by Session
	Papers by Author

