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ABSTRACT 

 

There has been considerable interest in software based 

control techniques to lower the power consumption in SFF 

SDRs. This paper will present a set of novel techniques 

which allow any conventional SDR platform and waveform 

to negotiate waveform demands while minimizing the power 

usage profile. The techniques described will include 

combinations of ideas such as adaptive switching, waveform 

mode cognizance and a new form of experimental reflexive-

adaptive power minimizing middleware. The results of the 

research will be demonstrated with experimental results and 

a demonstration at the SDR Forum conference. A blueprint 

adaptive power control specification will also be presented. 

 

1. PROBLEM STATEMENT 

 

A major concern in current generation JTRS SCA radio 

assets is battery life. There is a pressing need for innovation 

to solve the size, weight and power (SWAP) problem within 

the current architecture. Our innovation, shown in Figure 1, 

mitigates the SWAP problem with a new Small Form Factor 

(SFF) middleware (SCA/e), new SFF CORBA/e profiles, 

and a new SFF CORBA/e based Power Management COS-

Service, while maintaining current investments in SCA, 

CORBA, and other infrastructure. 

 Software infrastructures that are cognizant of power 

issues can increase the operational lifecycle of mobile radio 

communications devices significantly enhancing operational 

capabilities of missions. Power cognizance also reduces the 

cost of operating equipment – e.g. a 10% increase in battery 

life for a satellite with a 5-year estimated lifetime would 

extend its functional lifetime and make it profitable for an 

extra ½ year. There are currently a number of active, passive 

and semi-active software solutions that solve various aspects 

of the power problem. An extensive amount of research has 

produced a multitude of firmware, device driver, application 

level software, design patterns and active hardware based 

power management solutions. However these artifacts 

cannot be constructively unified in any particular manner 

that coherently enables the designers of communications 

devices or sensor networks to use them in an open, 

extensible and scalable manner, yet realize significant power 

benefit. 

 

1.1. Bursty-Volatile Activities 

 

Of all of the application frameworks cast as power-cognizant 

middleware, none are open, hardware, OS or language 

independent, but all have value in their particular 

applications domain. The solutions proposed in this article 

provide a new portable cross-cutting mechanism through 

which existing solutions can be unified into a single power 

context. This is characterized by a middleware abstraction 

layer where software components can either actively manage 

energy use themselves or be managed by a higher level 

power manager. In this way, components and clusters of 

components can be uniformly power managed using a policy 

and profile based approach in which the overall power 

management function is a collaborative effort by multiple 

software and hardware component elements working 

together to enforce a policy. The solution identifies power 

conservation states (via a state machine) and a way to 

specify and enforce a series of power loci or threads of 

execution across the device hardware and software via a 

context that aims to minimize cycle count. This is done via a 

set of interfaces that define a Power Management Service 
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whose objective is to direct all power managers in the lower 

software and hardware layers to work collectively. 

 

1.2. Constant-Steady State Activities  

 

Traditional middleware such as CORBA or ICE provides 

many benefits into any software system, such as location 

transparency of objects, OS independence, and hardware 

independence. The overall objective in the traditional 

middleware has been to reduce developer workload from 

having to learn the infrastructure perspective, so that he or 

she spends more time on business logic design and 

implementation. In addition, traditional middleware is seen 

as a harmonizer of language, OS, platform and underlying 

network IPC issues making them more manageable, and 

providing a safeguard in the dollar investment by providing 

a way of preventing vendor lock-in through a standards-

based approach. 

 All of these benefits are, however, not without a price. 

The traditional CORBA call has a minimum overhead of 52 

bytes per request and up to 12 bytes per reply – i.e. a total of 

64 bytes per call. After marshalling, transmitting, receiving, 

and un-marshalling, many CPU cycles have been spent. If 

this overhead could be reduced, CPU cycles and therefore 

power drain could potentially be reduced. The challenge is 

to not “break” the ORB. 

 

2. PROPOSED SOLUTIONS 

 

We illustrate the various facets of DataSoft SFF Power-

aware Middleware (DSPM) and how it helps implement 

SCA and non SCA SDRs in Figure 2. It shows the 

categorization of DSPM facets and where to apply them in 

the design and implementation of a next generation SDR 

device baseband solution. DSPM enforces a distributed 

power management strategy based on a user profile, a 

context and a specifiable policy. The intent is that the DSPM 

model will enable SDR designers to stipulate a constant 

minimal power execution strategy across disparate 

processors and software stacks. 

 

2.1. Bursty-Volatile Activities 

 

The DSPM model is based around the idea of a series of 

power managers that manage power of classes or clusters of 

components. These components form part of the radio in all 

layers and so every software and/or hardware element is 

included. DSPM will control and take account of these 

various levels via a single unified point of control. DSPM 

models components as observable components or 

controllable components, and in some cases both. 

Controllable components are termed Power Aware 

Components (defined in our IDL as PAComponents) to 

which a power command can be applied via a Power Policy 

and will control its behavior based on the software 

component and underlying hardware‟s power profile. 

 Reference [1] has shown that there are solutions in all 

three layers for the effective management of power in an 

SDR. These three layers all have a mapping to DSPM 

components that are Power-aware as defined in our 

middleware interfaces. The fine grained multi-voltage and 

frequency approaches are abstracted using the DSPM 

“power map” abstraction in our IDL definition. All of these 

abstractions register with the DSPM waveform or platform 

power manager depending on where these PAComponents 

reside. This allows the DSPM service to effectively 

negotiate power and QOS of the waveform over the 

hardware as all control is now centralized. The work of 

Robert and Reed [1] is referenced to show how DSPM 

harmonizes power control at multiple levels.  

 There are a number of different types of hardware based 

voltage and frequency scaling capabilities. On our 

simulation experiment platform, chosen as the TI-OMAP, 

these scaling techniques have different effects. Dynamic 

Voltage & Frequency Scaling (DVFS) - typically consumes 

less energy/power in low performance modes by lowering 

the voltage. Adaptive Voltage Scaling (AVS) - lowers 

voltages when the chip process load and temperature allow it 

– technically this is termed a SmartReflex approach by TI, 

but the SmartReflex name is commonly used to refer to all 

power savings techniques listed on the OMAP. Lastly, 

Dynamic Power Switching (DPS) typically splits chips into 

several power domains that can be put into low power states 

individually; DSPM affords the designer all three 

approaches, which makes for effective control. 

 The application level approach to manage power is via 

policies/algorithms at application, middleware-OS, and 

firmware-BIOS levels through industry standards. OSPM 

and ACPI are the industry specifications that dominate the 

GPP based CPU world. We have chosen this model because 

mainstream Operating Systems, including Real-Time 
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Figure 2: Categorization of DSPM facets 
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Operating Systems, support the ACPI interface and COTS 

hardware can often be found with BIOS support.  

 We illustrate in Figure 3 how DSPM will sit atop the 

popular ACPI industry standard power manager interfaces 

and provide a mechanism to enforce a unified system wide 

power policy by effectively controlling all power resources 

through a single unified API. Since the DSPM API is 

defined in IDL, it may be implemented in C++ using 

CORBA, or can be generated as a pure C API that does not 

need the use of an ORB in the radio at all. This is because 

DSPM is defined as a Platform-Independent Model (PIM). 

 The DSPM component landscape is further broken 

down into power producers and power consumers. 

However, we also needed to augment this model with fine 

grained state machines. DSPM has the notion of a power 

channel which may connect a power producer to a power 

consumer via a channel. The channel is managed by a power 

manager and may be contained within the power manager. 

The purpose of the channel is to try to track the particular 

power drain from a specific element in the radio. In the case 

where the power is pooled, the channel decouples the power 

producer from the consumer allowing the channel and power 

manager to mitigate the power demand with the power 

supply while at the same time turn off or minimize drain 

from devices or other PAComponents not active in the radio 

at times of high power demand. Each of the power producers 

has a fine grained state machine that can exist for the 

purposes of fine grained control of the device‟s energy use. 

We have defined a state machine overall for a DSPM artifact 

in our specification IDL. However, a mapping of these states 

to the ACPI states must be provided for the approach to be 

effective. This is a task left for a PIM mapping to a 

Platform-Specific Model (PSM). 

 A DSPM component‟s power management states can be 

mapped to a device that supports ACPI. This defines the 

DSPM state transition diagram for a basic PAComponent. A 

PAComponent may be active when it is participating in a 

signal processing activity such as transmit or receive, it may 

be in a SLEEP mode if the radio was shutdown by a 

manager, it may be in a low power hibernate state where the 

component is in SLEEP state, but routinely wakes up on 

demand or automatically to do something and go back down 

to SLEEP. These transitions need to be mapped to those of 

the underlying hardware which is the strength of our solution 

as well as allowing the designer complete freedom in this. 

 We unify multiple disparate devices with different state 

machines into a unified set of state machines that the Power 

Manager can view with uniformity so as to try to impose 

power minimizing activities in any Radio end user‟s Use-

Case. DSPM sees all elements in an SDR as power aware 

components and this is reflected in the middleware IDL 

being used to define the devices as a common interface 

called PAComponent. 

 The blackboard pattern [2] is a common pattern used in 

multi-source data fusion application design. Utilizing a 

centralized blackboard termed the PowerMap, every 

component in the SDR maps its power profile and then 

reports its activity such that a runtime profile of all power 

draining activities in the radio can be accumulated into a 

single unified image. The DSPM PowerMap concept can be 

mapped to the voltage scaling domains of a typical wireless 

hardware platform for greater effective control. This allows 

a waveform designer to map, in a fine grained manner, 

power use and power drain when the waveform is in 

different modes or use-case activities. The DSPM model 

specification therefore permits the control of application 

resident software, drivers, firmware and ultimately hardware 

uniformly via the same control interface. This control may 

be applied to a software artifact that may be a C++ or C 

object, an SCA resource or device (performing a pushPacket 

like work activity), or simply an application specific object 

performing some power related activity. 

 The wireless device‟s battery is also modeled as a 

Power aware element and is connected to the PowerMap for 

the purposes of calculating battery life based on the current 

activities as things stand if the current rate of draw 

continues. This map thus produces a „PowerModel‟ that the 

DSPM power manager can manipulate and control via its 

delegate slave power managers or controllers. The battery 

module abstraction uses and has its own separate controller 
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Figure 3: Example mapping DSPM to ACPI states 
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which is under the direct control of the Radio‟s Power 

Manager. Each element in the PowerMap blackboard 

(termed a power point as shown in the IDL) contains power 

data for that component e.g. the component‟s current state 

and what state it will go into next (if known). Power points 

contain additional algorithmic information that is specific to 

the system designer‟s strategy. This typically could mean 

data like allocated budget, current usage rate etc. and is 

modeled along the lines of the work of [3]. Our chosen 

demonstration platforms have voltage scaling domains 

which can be mapped into this blackboard scheme allowing 

for fine grained control of the device‟s power use. 

 

2.2. Constant-Steady State Activities  

 

We looked at what we could do to support ease of use of 

DSPM middleware. Our conclusions were that in addition to 

providing the DSPM runtime model as a middleware COS 

Service that can be used in an existing JTRS radio asset, we 

also needed to do more at the data transfer level to help 

progress the advancement of the low power SFF SDR. We 

therefore turned our attention onto not the SCA but rather 

the CORBA ORB implementation to see what we could do 

to reduce not only an ORBs footprint, but modify its core 

and the protocol structure of GIOP so that it would be able 

to support higher throughput at significantly lower numbers 

of CPU cycles. We therefore proceeded to redesign, adapt, 

and/or modify a CORBA ORB‟s features (OmniORB): 

(a) Marshalling layer by cutting down GIOP‟s wire 

footprint. 

(b) Interface to Phy-Mac transport layers to reduce 

complexity of dispatch in the server while giving it 

a greater degree of concurrency in a real-time 

manner. 

(c) Experiment with simplifying and/or removing the 

extensive stub and skeleton code generated 

typically from an IDL to C++ or C code generator 

(the PIM approach.) 

 Based upon this we chose to modify an ORB structure 

as an experiment. For the marshalling, our analysis shows 

that if the ORBs involved in a signal processing chain (a 

sequence of PushPacket calls) use a negotiation session, 

significant CPU cycles can be saved. We term this Adaptive 

GIOP. In addition at the ORB‟s transport interface, custom 

transports with zero-copy semantics can be applied. This 

mechanism can also be used to interface the new ORB 

middleware to FPGA resident OCP components, in which 

case a low energy device driver is used to pump bytes over 

the mesh from a GPP or DSP to the FPGA‟s mapped 

registers and back. In order to reduce server side complexity 

we also proposed the replacement of the Portable Object 

Adapter with a simple adapter into which an implementation 

can be registered. To simplify code generation we sought to 

look at Meta compilers [4] that are used upstream of 

standard compilers that can generate intermediate and 

simpler forms of code for high speed and very low footprint. 

 We then investigated how we could improve software 

power consumption when computation and IO intensive 

pushPacket(..) calls are active in an SDR. We augmented 

our work for conserving marshalling power in a generic 

SDR with the notion of Adaptive GIOP for refitting legacy 

systems that may be CORBA and SCA based. If the system 

being designed is non-SCA and CORBA, Adaptive GIOP 

can be retrofitted very easily. A reduction in GIOP overhead 

is possible through the use of a negotiation in the client side 

and server ORB such that they get to a point where the client 

just sends the data and the receiving server merely un-

marshals the data in a limited capacity. If a traditional legacy 

SCA CORBA waveform uses this mechanism there is 

significant overhead cycle savings and improved 

marshalling throughput in the waveform applications. This 

has the potential to reduce CPU cycles per KB marshaled 

and therefore power drain. This approach can be plugged 

into any modern real-time CORBA compliant ORB. 

 

3. EXPERIMENTS AND RESULTS 

 

For the experiment we chose a Beagle Board, as shown in 

Figure 4, which was used with embedded Linux and hosted 

the Omni-ORB CORBA ORB, the Virginia Tech OSSIE 

Core Framework and ran an SCA compliant FM-Demod 

waveform that outputs sound to a speaker. 

 

3.1. Bursty-Volatile Activities 

 

Our simulation experiment is designed in three parts to 

demonstrate our key DSPM middleware low power 

capabilities. For this experiment, we have recorded I & Q 

samples of an FM voice signal for demodulation, resample, 

and output to a speaker. 

 
Figure 4: The Experiment- The Beagle Board 
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 Part I is the Baseline experiment that demonstrates the 

power drainage with no DSPM. Part II of the simulation 

experiment contains a DSPM SQUELCH PAComponent 

that is controllable from the DSPM PowerManager. 

Whenever the squelch is applied the PAComponent issues 

an Event to the DSPM PowerManager. In this experiment 

Strategy 1 is to cause a Control signal to turn off the SCA 

waveform processing. The power drain is low when Strategy 

1 is applied and high without it demonstrating that our 

DSPM concepts save power. 

 Part III of the simulation experiment is the same as Part 

II with a new controllable PAComponent added called 

Freq/Drv that controls the power to the video driver. This 

experiment implements a new Strategy 2 that, upon 

receiving the Event signal, the DSPM will issue a Control 

signal to the SQUELCH PAComponent and an IOCTL 

control signal that the Freq/Drv PAComponent uses to 

control the video driver power. Power drain is high when the 

voice signal is present and low when the signal is absent due 

to DSPM Power Management. Note that the power 

consumption is significantly reduced when the additional 

strategy is implemented. The reason here is the power 

manager elements of both the waveform data passing 

resource and the hardware element in the radio are made to 

work collaboratively and in lock step based on an applied 

DSPM strategy policy to control the use of those elements 

differently in situations when a signal is present as opposed 

to when it is not. 

 Figure 5 summarizes the simulation experiment power 

drainage results. It is annotated to show the WF Data Begin 

for Part I, II, and III. In Part I only, the WF Data contains no 

Signal and shows the same power drainage as when the 

signal is present. In Part II, the Squelch Enabled shows the 

power savings due to the DSPM SQUELCH PAComponent. 

In Part III, the Driver Inactive shows the power savings due 

to the DSPM PowerManager. 

 

3.2. Constant-Steady State Activities  

 

We also designed another simulation experiment in order to 

demonstrate the power savings potential using an Adaptive 

GIOP approach. For this experiment, we modified our base 

experiment to not use the standard CORBA calls. Instead, 

we applied an Adaptive GIOP mechanism. This simulates 

reducing the GIOP information and even bypassing and 

optimizing out unnecessary marshalling operations. The 

setup was then run using both Normal GIOP method and 

then again using the Adaptive GIOP mechanism. 

 Both experiments consisted of a chain of four 

independent WF components; file-input, fm-demod, 

resampler, and soundPlayback. In the Normal GIOP 

experiment, each component is connected together using a 

traditional SCA port connection that utilizes the standard 

GIOP mechanisms provided by the ORB vendor while the 

Adaptive GIOP experiment applied our optimization 

techniques. In both experimental setups, the data throughput 

was fixed at 256 kilobytes per second, with packet sizes 

fixed at 2048 bytes. Figure 6 shows the current utilization 

over time for both experimental setups. This graph shows 

that Adaptive GIOP demonstrates a lower, more predictable, 

and consistent current usage profile than the traditional 

GIOP mechanism. 

 Not only was the Adaptive GIOP current usage 

consistently lower then the Normal GIOP usage, we did 

further measurements to demonstrate the efficiency of the 

Adaptive GIOP method. To maintain the required 

throughput level, the Normal GIOP could support a data 

packet size of no less than 2048 bytes, which had an 

equivalent of 273 pushPacket() calls per second. The 

Adaptive GIOP method was capable of supporting a data 

packet size as small as 256 bytes, which had an equivalent of 

2,187 pushPacket() calls per second. This demonstrated that 

Adaptive GIOP was sending more useful waveform data at a 

lower energy cost – higher throughput yet lower current. 

 

4. CONCLUSION 

 

DataSoft has developed a Power Management Service PIM 
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Figure 5: DSPM Experiment Comparison 

 
Figure 6: Normal and Adaptive GIOP current usage  
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that specifies a power regulation model in IDL to ensure 

platform independence. Our approach uses UML and 

CORBA IDL from the OMG for a more global power 

savings service specification. In addition, we have 

developed a technique that modifies the CORBA ORB 

implementation that saves power by adaptively slimming the 

protocol footprint of GIOP dynamically for efficient 

throughput of waveform traffic and returning to regular 

footprint when not needed. 

 The results of our research demonstrate that the 

DataSoft Small form factor Power-aware Middleware 

(DSPM) model, consisting of Part-1: Bursty-Volatile 

activities and Part-2: Constant-Steady State activities, is a 

practical and feasible way of monitoring and regulating 

power so as to maximize the system performance of 

software defined radios at reduced energy levels. 

 Our Part-1 experiments using the DataSoft Global 

Unifying Cross-layer Power Management Services verify a 

power savings for the H/W and H/W drivers and the 

OS/ORB S/W and S/W drivers as shown in Figure 5. We 

have also identified the possibility of Layer 6 & 7 

Applications power saving mechanisms. 

 Our Part-2 experiments using the DataSoft Modified 

ORB middleware LP-ORB concepts show a power savings 

for our Adaptive GIOP. Figure 6 demonstrates that the 

DataSoft Adaptive GIOP has more computational efficiency 

per unit of energy. This mechanism is particularly powerful 

in higher throughput SCA waveform applications where a 

chained sequence of PushPacket calls are used in the signal 

processing transformation link to pass data in the waveform. 

We have also developed waveform links to DSPs & FPGAs 

in a portable yet energy efficient manner that yields power 

savings, which will be demonstrated in subsequent 

publications. 
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