
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

HOW TO OBTAIN MORE POWERFUL SDRs USING MULTICORE

ARCHITECTURES

Raúl Dopico-López (Indra Sistemas, Aranjuez, Spain; rdopico@indra.es)
José M. Camas-Albar (Indra Sistemas, Aranjuez, Spain; jmcamas@indra.es)

Miguel A. Melchor (Tecnalia-Telecom, Zamudio, Spain; mmelchor@robotiker.es)
David Castells-Rufas (Universitat Autònoma de Barcelona, Spain; david.castells@uab.es)

ABSTRACT

Have we reached the needed performance to deal with SDR
(Software Defined Radio) user needs yet? Are we limited to
basic applications due to conventional SDR platforms
characteristics?
 During last years, end users’ demand in communication
characteristics has caused the need of advancements in SDR
terminals in order to efficiently deal with high data-rate
processing and innovative capabilities. Consequently,
different SDR architectures have been proposed by
providers and developers in order to palliate communication
performance problems, mainly providing lightweight
software implementations or multicore hardware
replacements. However, those solutions are neither flexible
enough to be integrated with conventional SDR platforms
nor scalable enough to have their inner software adapted to
forthcoming hardware advancements.
 Therefore, an adaptable multicore architecture is
presented in this paper as a suitable solution to cover
nowadays SDR performance needs, characterized by
supporting the heaviest SDR processing and being able to be
fully exploited by means of advanced parallelism
techniques.

1. INTRODUCTION

From Software Defined Radio emergence on, endless
worries have arisen to improve its performance capabilities,
and hence get more efficient communications. A wide range
of alternatives have been rapidly adopted to face these
issues, such as replacing conventional architecture hardware
elements with more powerful ones, or even reducing
software components which normally slowdown SDR
performance. Nevertheless, these straight measures can be a
double-edged sword; since although some timing gain can
be obtained, they depend on technology advances or even
forgo some of the advantages – such as portability,
reconfigurability or cost and time reduction - that software
provides to radio terminals.

 As a consequence of above stated troubles, some
multicore-based solutions have been recently adopted to
counteract SDR performance problems. However, current
applications are not able to fully exploit such parallel
architectures and hence obtain considerable improvements
in the SDR field. Even more, hardware architectures are in
constant evolution and software applications are not aligned
with hardware progresses, producing a scalability concern.
In addition, multiple innovative SDR designs based on
MPSoC architectures have arisen, but always considering
whole SDR functionality inside the MPSoC, hence
overlooking possible extensibility concerns from
conventional architectures.
 All previous things considered, herein a solution based
on parallelism and High Performance Computing (HPC) is
presented, preserving the benefits of software in the radios
and providing alternative means to improve current SDR
capabilities. Particularly, the conventional architecture
model, conceived as the typical SDR combination of a GPP
(General Purpose Processor), DSP (Digital Signal
Processor) and FPGA (Field Programmable Gate Array), is
upgraded with a new Multi-Processor System on Chip
(MPSoC) co-processor, which allows to efficiently
computing intensive SDR functions by using parallel
programming techniques. MPSoC is used in this design as a
flexible platform that, once it is defined the number of
processors (referenced hereinafter as soft-cores) running in
parallel on it, aids the other SDR modules/processors to
execute their assigned functions.
 Furthermore, an accurate MPSoC internal definition is
essential to obtain a worthwhile set of results. It collects
both an optimal selection for the communication mechanism
between the soft-cores deployed in the MPSoC and an
adequate parallel programming library to master the soft-
cores concurrency. Adaptation of already known solutions,
such as Network-on-Chip (NoC) to manage modules
communication, or tailored solutions to deal with parallel
programming in Embedded Systems are considered.
 The approach followed in this article (derived from the
analysis performed during the European ParMA project [1]),

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

introduces an SDR parallelism-based framework which aims
to:

- Enhance communications time performance in
order to approach to real-time transmission.

- Alleviate conventional SDR processors overload.
- Enable new SDR services thanks to these

multiprocessing capabilities.

2. PARALLEL PLATFORM CHARACTERISTICS

The parallel platform to execute SDR applications consists
of several parts. On the one hand, a hardware platform
obviously provides the necessary computing elements and
their interconnection infrastructure, but on the other hand it
is also necessary a set of libraries and runtime software that
coordinate the different elements to successfully run the
software defined radio tasks.

2.1. MPSoC platform specification

An MPSoC is a system-on-chip with multiple computing
modules (known as tiles), typically targeted for embedded
applications. These computing tiles are linked to each other
by an on-chip interconnect and contain most or all
functionality of a complete electronic system integrating a
CPU, data storage elements, specific peripherals, a bus to
interconnect the different elements and inputs and outputs.
An MPSoC can be homogenous if all its elements are alike
or heterogeneous if they are different. A homogenous
architecture has been chosen for this research as it is more
suitable for MPI parallel programming technique, explained
in the following section. Also, some recommendations are
given in next sections regarding the use of an FPGA
(provided by vendors like Xilinx or Altera) as MPSoC in
order to achieve full reconfigurability. Some remarkable
MPSoC characteristics are:
- The number of processors in the platform is only

limited by the size of the FPGA.
- Each processor has its own memory (accessible via

a fast local bus) which produces a distributed
architecture.

- Other peripherals are: Timer/Counter to provide
accurate time stamping of events, optional UART
(Universal Asynchronous Receiver-Transmitter) for
debugging purposes (log and trace statements are
output to external consoles) and high speed bus
transceiver to allow for high data rate
communication with the external world.

2.2. Software libraries to enable Embedded Systems
parallelism

The availability of a high number of processors is not a
sufficient ingredient to get high parallelism level.
Applications should be adapted to this multiprocessing
environment by using advanced parallel programming
methods and techniques. De facto standards for parallel
programming in the HPC community are OpenMP and
Message Passing Interface (MPI [2]), for the shared memory
and message passing paradigms respectively.
 The OpenMP approach puts the pressure into the
multicore architecture and the compiler since a cache
coherent memory hierarchy is assumed and the compiler has
to create all the necessary code to make parallelism
happening transparently. On the other hand, MPI puts the
pressure into the programmer because he must explicitly
define the communication and computation pattern.
 Further differences between both paradigms reside in
the scalability and design complexity. For instance, MPI is
inherently more scalable and has lower architectural
demands, so resulting in a simpler and cheaper design. It is
true that the programmer has to burden with the cost of low
level programming, but this is less crucial in the embedded
domain. Both paradigms require some runtime support, but
it is a more important factor in MPI due to the initialization
and distribution of applications among the computing cores.
 MPI is a very large API with hundreds of functions and
an important memory footprint. For this reason, it is
convenient to use a much reduced set of functions and a
lightweight version of this API. On-Chip MPI (ocMPI [3]) is
a subset of MPI that is addressing this need. This reduced
subset of MPI includes the fundamental point to point and
collective operation functions of MPI that are enough to
create a wide range of parallel applications. Another
difference between ocMPI and full MPI stack is that no user
defined data types are considered in ocMPI, allowing a
simpler and more compact code.

2.3. Soft-core interconnects

Several interconnection strategies can be adopted to reach
targeted performance needs, a bus, a segmented bus, a mesh
or a fat tree among others. The options are endless and, to
make it worse, their convenience is determined by the traffic
pattern exposed by the running applications.
 Reconfigurable platforms running embedded
applications are flexible enough to propose application
specific network designs to meet energy, area or
performance requirements. But to be able to create these
networks a large design space must be explored. Tools such
as NocMaker (Illustration 1 [4]) are needed to obtain early
metric estimations of different design options in a timely
fashion.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Illustration 1: NoC Maker framework for NoC design

space exploration.

 It is worth mentioning two well-suited examples of soft-
cores interconnect models targeted to the SDR MPSoC
platform:

• P2P Network: Point-to-point interconnection of all
the processors via dedicated links (e.g. FSL
protocol provided by Xilinx). This is a simple and
fast solution but lacks scalability (resources grow
quadratically with the number of cores). For this
reason, this can be a valid choice for a small
number of cores.

Illustration 2: P2P Network Connectivity Model.

• Network-on-Chip (NoC): It is the current

paradigm for communications within large VLSI
systems implemented on a single silicon chip.
NoCs are constructed from multiple point-to-point
data links interconnected by switches (also referred
to as routers), such that messages can be relayed
from any source module to any destination module
over several links by making routing decisions at
the switches. Two possible routing techniques on

the two-dimensional mesh NoC are designed for
this solution:
o Ephemeral circuit switching [5] consists in a

circuit switching strategy that only transfers
data only during the circuit establishment
signalling, tearing down the circuits
immediately after connection. This approach
gives a very simple hardware implementation
but at the cost of adding substantial overhead
and hence reducing performance. It is an
interesting option if traffic is low and packets
short.

o Wormhole routing [6] is a packet switching
variant in which packets are split into smaller
units (called flits). Flits are transmitted in a
packet switching fashion but circuits are
reserved at the packet level. This approach
introduces some buffering costs, but far less
than a typical packet switching network and it
exhibits much better performance compared to
ephemeral circuit switching. Overall, it is a
good option for large packets and sustained
traffic.

Illustration 3: Network-on-Chip Connectivity Model.

3. PARALLELIZATION OF SDR FUNCTIONS

3.1. Objective

The fact of having an MPSoC in SDR architectures provides
high benefits in processing power capabilities, what is
especially interesting for high intensive and processing
consuming communication algorithms.
 Nowadays with the emergence of new communication
protocols using advanced techniques, the processing power
needs are continuously increasing. In this context the
possibility of including in our architecture a flexible,
adaptable and scalable MPSoC allows us to adapt our
architecture to the instantaneous processing requirements,
what produces a high increase in terms of processing power
capabilities allowing:

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

• The introduction of advance and emerging
modulation and multi-antenna techniques.

• The improvement of the codification and error
correction techniques.

• The introduction in the embedded system of
emerging MAC Layer techniques, increasing the
efficiency and PHY Layer usage and being able to
improve the QoS perceived by the user.

• The introduction in the embedded system of
emerging NET Layer advanced routing techniques,
such as the deployment of MANET networks.

 The consequences are quite beneficial for the
applications running on the radio, and of course for the user,
that will take advantage of services with higher data rate,
lower Bit Error Rate (BER) and lower Latency.

3.2. Limitations

To exploit to the maximum all the possibilities of having an
MPSoC coprocessor in SDR architecture, some basic
concepts have to be taken into account in the Hardware and
Waveform Design:
 Regarding the Hardware Design, the best place in the
architecture must be found for the MPSoC. Taking into
account that FPGA devices are intrinsically parallel by
nature, no benefits are obtained by parallelizing FPGA
functions. Therefore, it seems more sensible to place the
MPSoC as coprocessor of processor-type components, such
as GPP and DSP, as shown in the example of Illustration 4.

Illustration 4: MPSoC-based SDR architecture.

 Regarding the Waveform design, the assignment of
components to processors, among them the MPSoC, must be
carefully analyzed. Those that can better exploit the
parallelism must be chosen to be deployed in the MPSoC.
Those functions inherently sequential (e.g. shift-register
based algorithms) must be avoided in favour of those that
admit parallelization (e.g, block processing based algorithms

or a mapping function in a modulator). The objective is to
allocate those functions that more alleviate the SDR
architecture processor in the MPSoC and better take
advantage of the MPSoC characteristics.

3.3. Hints on a good selection of SDR functions

As previously mentioned, the functions to be allocated in the
MPSoC must be wisely selected in order to obtain the
maximum benefit from the parallelism. Some good
candidate examples are presented here in order to help
during the selection process:

• The mapping and decider algorithms in a PSK
modulator/demodulator, since the bit chain and the
symbol chain can be readily divided between the
different cores existing in the MPSoC.

• Block-processing bit level algorithms such us
interleavers/deinterleavers or a Red-Solomon
coder/decoder.

• Video or Audio CODEC and DECODEC
functions.

 Another important issue that must be taken into account
is the time consumed by the communications between
MPSoC and SDR processors. To minimize this effect it is
suggested:

• All the processors in the conventional architecture
running SDR functions logically connected to the
next parallelized SDR functions in the MPSoC,
should have a direct physical connection with
MPSoC.

• When possible, the chosen parallelizable
components to be deployed and executed on the
MPSoC should be concatenated in the SDR
Waveform logic block diagram.

4. MPSOC COPROCESSING PROBLEMS

4.1. Hardware and Packaging implications

Regarding HW issues, some considerations must be taken
into account for the inclusion of the MPSoC in our
architecture:

• Physical connections must exist among MPSoC
coprocessor and all GPP and DSP type processors
allocated in the SDR comprising “parallelization-
candidate” functions in order to reduce the number
of hops to the MPSoC, and hence the slowdown
produced by the communications time.

• The interfaces between GPP and DSP type
processors must be compatible with the ones
provided by the MPSoC. In this case, an FPGA
based implementation of the MPSoC eases this
concern due to the inherent flexibility of these

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

devices that allow the implementation of different
interfaces.

• The inclusion of the MPSoC increases the size of
our HW architecture and may require resizing up
the enclosure of our equipment.

• One of the main drawbacks of current multi-core
architectures is the high power consumption. This
must be taken into account when dimensioning
power supply and cooling needs.

4.2. MPSoC further needs: operating environment

The bare minimum software required by the MPSoC
platform and ocMPI is a Board Support Package (with
drivers for all peripherals) and standard C libraries. Even in
this limited environment useful parallel applications can be
written and executed in the platform. However, as the
complexity of the applications increase, the application
developer could need to benefit from additional support,
such as a small multitasking kernel or operating system with
a memory or flash-based file system (e.g. Xilkernel,
VxWorks, etc). As an example, some SDR functions to be
parallelized could take advantage of common open source
programming libraries which may require some OS services
(e.g. threads, semaphores, timers, file systems and so on,
which could be used by some SDR functions like Audio
CODEC).

5. FUTURE STEPS IN SDR PARALLELISM

An MPSoC solution to alleviate communication
performance problems in SDR has been outlined inside this
article, proposing a new multi-core architecture within the
SDR terminal. However, this emerging solution opens the
door to further considerations within the SDR world that are
currently pivotal issues, such as SCA and security features.

5.1. SCA coverage to MPSoC platform

Software Communications Architecture (SCA [7]) is an
SDR standardized framework, which provides a common
architecture for all SDR developments. This world-wide
known de-facto standard brings forth advantageous
properties such as extensibility, code reusability and cost
reduction.
 The multicore solution herein presented, could be easily
represented in the SCA by considering the MPSoC as a new
SCA ExecutableDevice characterised by a set of properties.
Specifically, this new MPSoCDevice would be able to load
and execute the subset of SDR application functions that are
going to be parallelized in the MPSoC (corresponding with
the SDR heavy functions previously allocated in the

GPP/DSP). Besides, a few properties could be defined for
this MPSoCDevice, such as:

• Computing tiles: This property defines a list of
computing tiles, each of them specified with
particular characteristics (a suitable solution for
heterogeneous MPSoCs).

• Connectivity Model: The user could define a
specific interconnect between soft-cores, like P2P
Network, NoC Wormhole or Ephemeral NoC (see
section 2.3).

In order to carry out a full interaction between the SCA
component model and the MPSoC, the following aspects are
recommended to be taken into account:

• The FPGA which represents the MPSoC should
offer a dynamic load of its binary code. It would
enable the possibility of transparently
reprogramming the synthesized platform by
changing the MPSoCDevice parameters provided.

• The load and execute functions provided by this
SCA ExecutableDevice would permit to deploy the
SDR selected functions on the current parallel
platform, by incremental synthesis from the
platform binary code.

5.2. Security functions parallelization

Recent developments are considering security features as
key factors in SDR architecture. In fact, SCA defined some
overall security guidelines [8] that are currently under
consideration to face new security implementations in SDR
architectures. Generally speaking, SCA introduces a security
zones distribution which splits the conventional GPP into
three differentiated processors (RED, Crypto and BLACK),
each of them performing a different subset of functions.
Inside this security architecture, the functions executed
within the Cryptographic Sub-System (CSS) deal with high-
data processing algorithms that imply a great amount of
time.
 Therefore, it is suggested to think over MPSoC
platforms within the CSS that can be used as aid-computing
systems in order to minimize the impact of security
implementation on our SDR performance. Due to security
reasons, an independent MPSoC platform should be used
only by the CSS, since the INFOSEC boundary composed of
RED and BLACK processors have less restrictive security
requirements and thus should not be allowed to access data
allocated within the cryptographic boundary.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Illustration 5: New parallel architecture considering

security boundaries.

5. CONCLUSIONS

As part of the parallel-based solution for SDR performance
enhancement, important aspects have been tackled in this
article:

• An architecture design for the parallel platform has
been presented, including hardware and software
recommendations.

• Typical problems encountered during the SDR
functions selection and possible helpful advices
have been given.

• A set of needs, drawbacks and implications
attached to MPSoC usage have been illustrated, as
well as possible directions to counteract them.

• Prospective movements to finally include
parallelism and multicore processing in the SDR
world have been introduced, looking for a perfectly
suited integration with the latest SDR progresses.

All in all, this article has presented the possibilities that
multi-core architectures and parallelism techniques could
offer to SDR conventional systems to maximize their
benefits. Thus, it has been sketched an innovative design
targeted to pave the way to future initiatives considering
parallelism as an emerging enabler to maximize SDR
capabilities and performance.

6. REFERENCES

[1] ParMA Project, http://www.parma-itea2.org/
[2] V. Kumar, A. Grama, A. Gupta, and G. Karypis. "Introduction

to Parallel Computing". Benjamin Cummings, 1994.
[3] Jaume Joven, David Castells, Jordi Carrabina, “An Efficient

MPI Microtask Communication Stack for NoC-based MPSoC
Architectures”, ACACES, 2008.

[4] D. Castells-Rufas, J. Joven, S. Risueño, E. Fernandez, J.
Carrabina, "NocMaker: A CrossPplatform Open-Source
Design Space Exploration Tool for Networks on Chip". INA-
OCMC Workshop, Paphos, Cyprus, January, 2009.

[5] D. Castells-Rufas, J. Joven, J. Carrabina, "A Validation and
Performance Evaluation Tool for ProtoNoC". International
Symposium on System-on-Chip 2006 (SOC2006). Tampere,
Finland, November 13-16, 2006.

[6] W. Dally, B. Towles, “Principles and Practices of
Interconnection Networks”. Morgan Kaufmann, 2004.

[7] JPEO JTRS, "Software Communications Architecture
Specification", Version 2.2.2, 15th May 2006.

[8] JPEO JTRS, "Security Supplement to the Software
Communications Architecture Specification", MSRC-5000
SEC V1.1, 17th November 2001.

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for
material quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the
copyright of the abstract and the completed paper to the SDR Forum for purposes of publication in the SDR
Forum Conference Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and
derivative works related to this conference, should the paper be accepted for the conference. Authors are
permitted to reproduce their work, and to reuse material in whole or in part from their work; for derivative
works, however, such authors may not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

	Home
	Papers by Author
	Papers by Session

