
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights
Reserved

COVER PAGE

Copyright Transfer Agreement
“The authors represent that the work is original and they are the author or authors of the work, except for material quoted

and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the abstract and the
completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference Proceedings, on associated CD
ROMS, on SDR Forum Web pages, and compilations and derivative works related to this conference, should the paper be
accepted for the conference. Authors are permitted to reproduce their work, and to reuse material in whole or in part from
their work; for derivative works, however, such authors may not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a U.S.

Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for official U.S.
Government purposes.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights
Reserved

SPEED UP OF LINK SIMULATOR USING GPU FOR SDR SYSTEMS

Kiwook Son(HY-SDR Research Center, Hanyang Univ., Seoul, Korea: kiukk@dsplab.hanyang.ac.kr);

 Hyunseok Lee (HY-SDR Research Center, Hanyang Univ., Seoul, Korea; yundol@dsplab.hanyang.ac.kr);
June Kim (HY-SDR Research Center, Hanyang Univ., Seoul, Korea; nzneer@dsplab.hanyang.ac.kr);
Seungheon Hyeon (HY-SDR Research Center, Hanyang Univ., Seoul, Korea; sheon@ieee.org); and

Seungwon Choi(HY-SDR Research Center, Hanyang Univ., Seoul, Korea; choi@dsplab.hanyang.ac.kr)

ABSTRACT

Link simulator is a major tool for verifying algorithms

and/or inspecting performance of implemented
communication systems. As the complexity and throughput
of communication system increases, reducing the operation
speed is emerged as a key issue of the link simulator. In this
paper, we propose a novel architecture for the link simulator
which is implemented using a graphic processing unit
(GPU). In our experimental tests, the GPU-based link
simulator provides 64 times faster operation speed
compared with conventional link simulator which uses
centre processing unit (CPU) only.

1. INTRODUCTION

In various kinds of link simulators, the function of which is

verification of algorithms and/or performance inspection of
implemented system, the operation speed is the key issue
that determines the quality of the link simulator. The
operation speed is even more important in software defined
radio (SDR) system because it has to support the multi-
mode functionality. In this paper, we introduce a method of
accelerating the operation speed of general-purpose link
simulators for SDR systems.

In many cases, the operation time has been a main burden
of the entire research and development of link simulators.
Recognizing the importance of speed-up of operation time,
we propose a new scheme of using the GPU for
implementing the link simulators which perform with the
functionality of SDR. The GPU is optimized for vector
processing because it usually consists of multiple processors.
Each processor in GPU is composed of a set of threads. For
reducing the simulation time, we break the link simulator
into a set of waveform components. Each waveform
component which can be implemented very efficiently
through the vector processing is realized in GPU and the
other functions are operated in CPU separately.

To verify the performance of the proposed scheme, we
implement a WiBro 1x1 SISO link simulator and measure
the simulation time with / without GPU processing. As a
result, the operation time with GPU has been found to be 70
times faster compared with the case of CPU only processing
without GPU.

The rest of this paper is organized as follows. The
overview of the GPU is provided in Section 2. The proposed
architecture of the link simulator using GPU is described in
Section 3. In Section 4, we implement the link simulator in
accordance with the proposed architecture. In Section 5,
performance of the implemented link simulator is analyzed
in terms of elapsed time followed by conclusion in Section 6.

2. OVERVIEW OF GPU

The GPU is massively parallel processor which can be

optimized with a proper vector processing. As shown in
Figure 1, the GPU consists of plural thread processors each
of which includes 8 threads and shared memory for sharing
data among the threads. The thread processors load/store
data from/to a global memory [1].

The thread execution manager (TEM) manages thread
allocation and execution as follows. The input assembler
compiles a function from external host (e.g. CPU) into
“kernel” which is an object for GPU. The function has the
information about the number of threads for creating the
kernel. As shown in Figure 2, using the information of
number of threads, the TEM allocates a kernel instruction
into multiple threads for parallel processing [2].
Consequently, since GPU is built based on the single
instruction multiple data (SIMD) architecture which enables
an instruction to process multiple data in parallel, the GPU
is optimized for the vector processing [3].

Host

Input Assembler

Thread Execution Manager

Thread Processors

Shared
Memory

Shared
Memory

Thread Processors

Shared
Memory

Shared
Memory

Thread Processors

Shared
Memory

Shared
Memory

Thread Processors

Shared
Memory

Shared
Memory

Load / Store

Global Memory

Figure 1 Architecture of GPU

Proceedings of the SDR ’09 Technical Conference and P
Reserved

Device
Kernel

Computation Grid

Block
(0, 0)

Block
(1,

Block
(0, 1)

Block
(1,

Block (1, 1)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 0

Thread
(3, 1

Figure 2 Structure of Kernel

Moreover, by providing software development kit (SDK),
the GPU expands their working area into other sites which
requires large scale calculation such
financial simulation, communication, etc. In other words,
the GPU could be utilized not only
processing but also for various other signal processing

3. PROPOSED ARCHITECTURE FOR GPU BASED
LINK SIMULATOR

The proposed GPU-based link simulator is divided into

three parts, CPU application, Framework, and GPU signal
processing, as shown in Figure 3. The CPU application is
for managing the entire link simulator (such as setting the
simulation parameters up and executing
Framework includes application programming interfaces for
controlling GPU, and the GPU signal processing is for
performing most calculations required in the

Operating System

PCI express
BUS

Main Memory

CPU

Global
Memory

Modem Component

Data
Control

Core Framework

Application (Link Simulator)

Figure 3 Proposed Architecture for GPU based

Simulator

Data transfer between the CPU and GPU is performed via
Peripheral Component Interconnect (PCI)
direct memory access (DMA) scheme.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009

Computation Grid

Block
0)

Block
(2, 0)

Block
1)

Block
(2, 1)

Thread
0)

Thread
)

Structure of Kernel

Moreover, by providing software development kit (SDK),
the GPU expands their working area into other sites which
requires large scale calculation such as fluid dynamics,
financial simulation, communication, etc. In other words,
the GPU could be utilized not only for 3D-graphic

signal processings.

E FOR GPU BASED
LINK SIMULATOR

based link simulator is divided into
three parts, CPU application, Framework, and GPU signal

. The CPU application is
entire link simulator (such as setting the

ing the link simulator).
ramework includes application programming interfaces for

controlling GPU, and the GPU signal processing is for
in the simulator.

Global
Memory

GPU

Modem Component

Software
HardwareData

Control

for GPU based Link

Data transfer between the CPU and GPU is performed via
Peripheral Component Interconnect (PCI) express bus with

4. APPLICATION TO WIBRO

Figure 4 shows the software

WiBro link simulator [4]. The link simulator consists of 4
parts, input signal generation, fading channel coefficient
generation, WiBro modem, and
calculation part. The input
coefficients generation, and calculati
operated in CPU. The modem component
IFFT/FFT, channel estimation,
components is programmed into
component of GPU is mapped to the kernel.

Figure 4 Software Structure of

The link simulator operates in

Firstly, CPU copies the input
GPU via PCI express, and then GPU encodes them
accordance with WiBro protocols. The encoded data
sent back to CPU for fading channel emulation
signals are fed into FFT component
GPU retrieves the signal and transfer
calculating BER. Detail of
follows.

The transmit part of the link simulator
components, such as convolutional encoder
IFFT as shown in Figure
convolutional encoder (CC) in our link simulator
set to 3 as shown in Figure 5
CC is dependent upon the current and some past inpu
encoding procedure for the
performed in parallel. However, since there are no
dependencies among the FEC blocks,
into each thread of the kernel.

uct Exposition, Copyright © 2009 SDR Forum, Inc. All Rights

APPLICATION TO WIBRO LINK SIMULATOR

software structure of GPU-based
The link simulator consists of 4

parts, input signal generation, fading channel coefficient
generation, WiBro modem, and bit error rates (BER)

input signals and fading channel
and calculating BER parts are

modem component which includes
FFT, channel estimation, and channel coding/decoding

programmed into GPU, where each
component of GPU is mapped to the kernel.

Software Structure of WiBro Link Simulator

tes in the following procedures.
CPU copies the input signals generated by itself to

, and then GPU encodes them in
accordance with WiBro protocols. The encoded data are

for fading channel emulation. The faded
component in GPU and then the

signal and transfers the data into CPU for
each component is depicted as

transmit part of the link simulator consists of three
convolutional encoder, permutator, and
Figure 4. Constraint length of the

) in our link simulator has been
. Since the output symbol of the

current and some past inputs, the
encoding procedure for the FEC block could not be

in parallel. However, since there are no
dependencies among the FEC blocks, we deploy plural CC’s

kernel.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights
Reserved

Input
bit

First
Code symbol

Second
Code symbol

Figure 5 Convolutional Code Encoder (K=3)

In receive part of the link simulator, Viterbi decoder is
used for decoding the convolutional encoded data. The
Viterbi decoder is the most widely used algorithms to
decode the convolutional code. The Viterbi decoder uses a
trellis diagram of convolutional code for decoding as shown
in Figure 6. In the trellis diagram, the vertical axis
represents state while the horizontal axis denotes time.

1S

4S

3S

2S

nx

nr

Encoder output :

Recevied symbol :

n1-n

1+nx

1+nr

2+n1+n

2+nx

2+nr

Figure 6 Trellis Diagram of Convolutional Code

 Viterbi decoder consists of two parts. One is add-compare-
selection (ACS) part and the other is trace-back part.
Operating of ACS takes almost all the Viterbi decoder
processing time. ACS is for calculating the branch metric
and adding the branch metric with the path metric. During
the state transition in the trellis diagram, each branch metric
is independent of another metric. Therefore we allocate as
many threads as the number of states into the decoding
block and create as many decoding blocks as the length of
convolutional code as shown in Figure 7. Each thread stores
the survival path which is calculated from path metric and
branch metric [5].

After finding survival path, traceback should be conducted.
Unfortunately, it is impossible to parallelize the traceback
procedure.

Block Block Block

state state state

Number of Code
For Decoding

Number of
States

Allocate the
threads

state state

Number of
States

state

Figure 7 Kernel for Viterbi Decoder

4. PERFORMANCE ANALYSIS

In this section, we present the performance of the GPU link

simulator. We use GeForce 9800 GTX+ provided by
NVDIA to ascertain performance of the GPU link simulator.
Also we implement CPU link simulator, programmed by C
language, to compare the performance to each other. The
system parameters for the link simulator are as follows;

· Modulation : QPSK
· FFT size : 1024 points
· Coding Rate : 1/2
· Channel : AWGN
· Channel Estimation : Linear Interpolation

Figure 8 and 9 illustrate the elapsed time of the each

component in GPU-based and CPU-based link simulator,
respectively. As shown in the figures, most of the
processing time was consumed by FEC component.
Therefore FEC processing time is the key factor for
accelerating speed of the link simulator.

The GPU-based link simulator requires 1.994ms for
processing a single WiBro frame, while CPU-based
simulator takes 128.34ms. In other words, operation time of
GPU link simulator is 64 times faster than CPU link
simulator.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights
Reserved

Figure 8 Elapsed Time for each Component in GPU

Based Link Simulator

Figure 9 Elapsed Time for each Component in CPU

Based Link Simulator

5. CONCLUSION

Most PCs used at home or office have GPU for 3D graphic

processing. If we use this powerful computing resource, we
can shorten our research period. Especially, in wireless
communication engineering, the simulator is an important
tool to analyze the performance of the implemented systems.
However, most simulators require excessive waiting times
for acquiring the results, due to its intensive computation.
GPU can be a solution for this problem because of its
powerful computation capacity.

In this paper, we proposed a novel architecture for
accelerating a link simulator with GPU. In addition,
parallelization scheme, which is a key issue in implementing
GPU-based link simulator, is presented. Using this
characteristic of GPU, we improve the performance of
GPU-based link simulator by up to 64 times faster than
CPU-based link simulator.

ACKNOWLEDGEMENT

This research was supported by the MKE (The Ministry of
Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program supervised
by the IITA(Institute for Information Technology
Advancement) (IITA-2009-C1090-0902-0003)

7. REFERENCES

[1] Tom R. Halfhill, “Parallel Processing With CUDA”,
Micro Processor Report, 2008.01.28
[2] NVIDIA Cooperation “NVIDIA CUDA Compute
Unified Device Architecture Programming Guide”
[3] Michael Weiss, Compass, Inc. “Strip Mining on SIMD
Architecture”, ACM, pp.234-243, 1991
[4] IEEE, Part 16 : Air Interface for Broadband Wireless
Access System, IEEE, 2007, New York
[5] G Fettweis, H Meyr, “Parallel Viterbi Algorithm
Implementation: Breaking the ACS Bottleneck” IEEE
Transactions on Communications, vol.31, No.8, Aug 1989

Convolutional

Encoder, 0.389

Permutation, 0.1

7

IFFT, 0.02

FFT, 0.02

Channel

Estimation, 0.073

De-

Permutation, 0.0

37

Compensation, 0

.057

Viterbi

Decoder, 1.379

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

GPU

ms

Convolutional

Encoder, 26.34

Permutation, 7.6

IFFT, 6.55

FFT, 7.03

Channel

Estimation, 8.86

De-

Permutation, 7.0

1

Compensation, 1

5.93

Viterbi

Decoder, 60.2

0 10 20 30 40 50 60 70

CPU

ms

	Index
	Papers by Author
	Papers by Session

