
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

IMPLEMENTATION OF A 2-FSK CONTINUOUS WAVEFORM USING A

SOFTWARE DEFINED RADIO PLATFORM

Jesús García Lledó, Javier Bermejo Parra, Ramón García Gómez
GTSC - ETSIT Universidad Politécnica de Madrid, Spain,

{jesus.garcial, javier.bermejo, ramon.garcia}@upm.es

ABSTRACT

In this paper we describe a “software-based”
implementation of a 2-FSK continuous waveform. The base
band processing is done in the DSP and the interpolation /
decimation, and frequency translation is implemented in the
FPGA. The AD and DA interfaces are situated in an
intermediate frequency of 70 MHz. For the AD conversion
a band pass scheme is used. The DA conversion is a low
pass filtering although the signal is digitally modulated at
the frequency of 70 MHz. Sliding Goertzel algorithm is
used in the 2-FSK receiver as a pass band filter. Symbol
Synchronization is based on an Early – Late algorithm.
Viterbi Coprocessor available in the DSP is used to
implement a convolutional decoder. The architecture and
most significant blocks are explained in this paper. Finally
some results of the implementation are given.
Keywords: Software Defined Radio, FSK Modulation, DSP,
FPGA, Goertzel, ADC, DAC, NCO, DDS.

1. INTRODUCTION

Nowadays the challenge of Software Defined Radio
concept is to digitize the signal as early as possible in the
receiver while keeping the signal in the digital domain and
converting to the analog domain as late as possible in the
transmitter, to achieve a high degree of reconfigurability. In
some practical designs this solution is not feasible or is very
expensive. In these cases an alternative can be making a
frequency translation of the signal to an intermediate
frequency. Other alternatives are also possible [1].
Therefore, we have worked in the digital domain from
baseband to the intermediate frequency of 70 MHz which is
also a standard in communications.

The main electronic devices we have used are: a fixed-
point DSP of Texas Instruments (TMS320C6416T), a
XC4VSX35 Virtex-4 FPGA of Xilinx, a Digital-to-Analog
Converter of Texas Instruments (DAC5687) and an Analog-
to-Digital Converter of Texas Instruments (ADS5500).

The processing capabilities of these chips exceed the
necessary amount for the implementation of the FSK
Modem, however we have selected them because other
more complex waveforms and signal processing algorithms
are under consideration.

In this work we present the design and implementation
of a “software based” 2-FSK continuous waveform. The
baseband processing is implemented in the DSP. This
processing includes functions such as: Scrambler /
Descrambler, convolutional encoder / decoder and 2-FSK
digital modulator / demodulator. Some remarkable
algorithms we have used in the baseband demodulator are
the sliding Goertzel algorithm, which works as a band-pass
filter, and an early-late timing recovery block. On the other
hand, the FPGA is used to implement the up and down
conversion. In this process we can distinguish three blocks:
the interpolation / decimation stages, mixers and local
oscillators.

We have implemented the interpolation / decimation
stages with CIC (Cascaded Integrator-Comb) filters. For
large rate changes, this kind of filter has a significant
advantage over a FIR filter with respect to architectural and
computational efficiency, because they don’t need to use
multipliers. Regarding to the mixer stage, both transmitter
and receiver, use a complex multiplier and a NCO
(Numerically Controlled Oscillator) as local oscillator. The
data conversion module is equipped with a 125MSPS 14-bit
single channel ADC and a 500 MSPS 16-bit dual channel
interpolating DAC. The DAC also includes programmable
gains at the input and output, which can be used to
implement a transmission power control.

In the paper we present the design and implementation
of each one of the blocks of the previously commented
architecture. Different considerations about reconfigurable
parameters, the computational burden and the FPGA
utilization are discussed.

Finally, some of the implementation results, both
simulation and real-time execution, are presented, and for
future work we describe some possibilities to achieve a
software defined radio with a higher degree of
reconfigurability.

2. ARCHITECTURE

In figures 1 and 2, block diagrams of the transmitter and

receiver of the 2-FSK modem are shown. As can be seen, it
was decided to use the FPGA to perform the stages of
channelization (interpolation in case of transmitter and
decimation in the receiver one), and frequency modulation

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

(from Baseband to Intermediate Frequency in transmitter
and the inverse operation in the receiver). Therefore, DSP is
responsible for implementing the blocks corresponding to
the binary processing and digital baseband modulator –
demodulator.

bits Binary
Processing

Baseband IQ
Modulator

CIC-Q

Interpolation /
DAC

NCO

Clock

DSP

IF signal

X

X

FPGA
Fig. 1. Transmitter diagram.

Fig. 2. Receiver diagram.

2.1. Binary Processing

This block would include operations such as source

coding, encryption, scrambling, channel coding… In the
case of this modem it has been selected an auto-
synchronized randomizer and a convolutional encoder (2,
1, 7), with 2 as the number of output bits, 1 as the number
of input bits and 7 as the number of cells in the shift
register (constraint length). The connection vectors in octal
code are 131 and 171.

To perform the convolutional decoder, the Viterbi
algorithm is implemented using the Viterbi Coprocessor
available in the DSP.

2.2. Digital Baseband Modulator

Digital 2-FSK modulator [2] consists of a module that

matches each bit with its corresponding digital waveform.
As this is a 2-FSK modulation, a two-symbol alphabet is
used and only one bit is needed to code each symbol. Bit
‘0’ is matched with waveform)(~

0 tg , and waveform)(~
1 tg is

assigned to bit ‘1’. Being)(~
0 tg ,)(~

1 tg , two windowed

sinusoids of frequencies 10 , ww respectively.
In this way, concatenating previous waveforms, the 2-

FSK Band Pass signal is formed. As the modulator is
implemented in digital, it is only necessary to store in
memory the samples corresponding to the waveforms of
each symbol, i.e.)(~

0 tg and)(~
1 tg . The problem of

generating the 2-FSK signal by this procedure is that the

number of samples to be stored may be quite huge if the
frequencies 10 , ww are very high.

Due to the mentioned problem, it was chosen to
implement a 2-FSK Baseband Modulator in the DSP and
then the FPGA will perform an interpolation and a
frequency translation from baseband to the frequency band
desired.

Baseband pulses for each symbol have now the
following expressions:

 ()()()2exp)()(00
π−−⋅⋅= twwjtWtg c (1)

 ()()()2exp)()(11
π−−⋅⋅= twwjtWtg c (2)

It should be kept in mind that the pulses)(),(10 tgtg are
complex signals, and therefore, two arrays for each
waveform are required to store their samples, one for the
real part and another one for the imaginary part. The main
advantage is that the number of samples of each
array BBsampN _ is much less than in the case of the band-
pass modulator. It was used 16 samples per symbol.

In Figure 3 seven symbols of a 2-FSK baseband signal
are shown.

Fig. 3. Baseband 2-FSK signal.

2.3. Up Conversion

2.3.1. CIC interpolator

Once generated the 2-FSK baseband signal, the next

stage is interpolating the signal to increase their sampling
rate. Interpolation is performed in the FPGA using two CIC
Filters (Cascaded Integrator and Comb) [3], one for the real
part of the signal and the other for the imaginary part.
Scheme of the used CIC Interpolator filter is shown in
Fig.4.

][ny][nx

Fig. 4. CIC Interpolator Filter.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

The main advantage of CIC filters is that they do not
use multipliers, so they are very efficient in terms of
computational cost.

Due to instability of the integrator filter, it is necessary
to increase the number of bits of the datapath. The
minimum number of bits required at the output of the
integrator stage is given by following expression [3]:

()⎡ ⎤RNBB INOUT 2log⋅+= (3)

being BIN, BOUT the number of input and output bits
respectively, N the number of integrator filters and R the
interpolation factor. In our case N=5 and R =24. In the
comb stage it is also required one additional bit per
differentiator. Consequently it has been chosen a 64 bits
width datapath.

As mentioned above, the system has been implemented
and developed in a XC4VSX35-10 Xilinx FPGA.

Synthesize and implementation results are shown in the
following Tables:

Device Utilization Summary

Slices 2293 out of 15360 14%
Flip Flops 2070 out of 30720 6%

4 Input LUTs 3140 out of 30720 10%
IOBs 140 out of 448 31%

GCLKs 1 out of 32 3%

Table 1. Device resource utilization summary.

Timing Summary
Minimum period 6.435 ns

Maximum frequency 155.412 MHz
Minimum input arrival time before clock 7.350 ns

Maximum output required time after clock 7.358 ns
Maximum combinational path delay 7.906 ns

Table 2. Timing summary and maximum operating frequency.

 In the next figure it is represented the output of the CIC
interpolator filter, obtained with the Real-Time platform,
using the Texas Instruments tool Code Composer Studio.

Fig. 5. CIC Interpolator Filter Output Signal (Real and Imaginary parts).

Finally, baseband signal is translated to the intermediate

frequency of 70 MHz, simply being multiplied by a
complex exponential and then the real part is taken.

2.3.2. Mixers and NCOs

Mixers are used to modulate or demodulate the signal
with the carrier frequency. In the transmitter, mixer
modulates the interpolated baseband signal with the carrier
generated by an NCO (Numerically Controlled Oscillator)
programmed with the value of the desired carrier frequency.

On the other hand, in the receiver, mixer demodulates
the signal provided by the ADC with the carrier provided by
another NCO configured with the specific value of
frequency.

The transmitter clock is not known exactly at the
receiver, in spite of that, we have enough precision (10-6
ppm) to do the bit synchronization with a first order PLL. In
our application the carrier frequency is considered to be low
enough that does not increase the error rate of the receiver.
Consequently a carrier frequency tracking loop was not
implemented.

The block denoted as MIXER is composed by two IP
cores, one of them implements a NCO based on DDS and
the other performs the complex multiplier.

Fig. 6. Block Diagram of the Mixers.

As mentioned above, NCOs have been implemented
with a core of a Direct Digital Synthesizer based on DDS
techniques. This core has been created and configured using
the Xilinx tool Coregen. Besides, the Complex Multipliers
have been performed with another core that implements a
multiplier of complex data. The block has been programmed
using Coregen. Synthesize and implementation results are
shown in the following Tables:

Device Utilization Summary
Slices 167 out of 15360 1%

Flip Flops 266 out of 30720 0%
4 Input LUTs 193 out of 30720 0%

IOBs 95 out of 448 21%
FIFO16 / RAMB16 8 out of 192 4%

GCLKs 1 out of 32 3%
DSP48s 4 out of 192 2%

Table 3. Device resource utilization summary.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Timing Summary
Minimum period 4.214 ns

Maximum frequency 237.290 MHz
Minimum input arrival time before clock 5.541 ns

Maximum output required time after clock 5.280 ns
Maximum combinational path delay No path found

Table 4. Timing summary and maximum operating frequency.

Figure 7 shows the 2-FSK signal that would result after
the whole process discussed above. It can be observed that
band pass signal has continuous phase despite of 2-FSK
baseband signal having phase jumps of 180º in the real
part. The FFT magnitude of 2-FSK modulated signal is
represented in figure 8.

Fig. 7. 2-FSK modulated signal.

Fig. 8. FFT magnitude of 2-FSK modulated signal.

2.4. Down Conversion

The first stage of 2-FSK demodulator consists of
translating the 2-FSK signal from intermediate frequency to
baseband. For achieving this, the digital band pass signal is
multiplied by a complex exponential of the same frequency
(but opposite sign) as the one used in the transmitter for the
frequency modulation.

This process is implemented in the FPGA in the same
way as the Up Conversion.

Afterwards, it would be necessary to low pass filter the
resulting signal, but it would be taken advantage of the fact
that CIC filter is a low pass filter to avoid that filtering
stage. Therefore, decimation CIC filter will perform the
low pass filtering, while reducing the sampling rate of the
signal to get only L=16 samples per symbol. The CIC filter
designed is shown in Figure 9:

][ny][nx

Fig. 9. CIC Decimator Filter.

According to the expression (3), it has been used a 64 bits
width datapath for the whole CIC Decimator filter.
Synthesize and implementation results for this specific
FPGA are shown in Tables 5 and 6:

Device Utilization Summary

Slices 2988 out of 15360 19%
Flip Flops 3198 out of 30720 10%

4 Input LUTs 3552 out of 30720 11%
IOBs 140 out of 448 31%

GCLKs 2 out of 32 6%

Table 5. Device resource utilization summary.

Timing Summary
Minimum period 6.393 ns

Maximum frequency 156.431 MHz
Minimum input arrival time before clock 5.769 ns

Maximum output required time after clock 7.653 ns
Maximum combinational path delay 7.906 ns

Table 6. Timing summary and maximum operating frequency.

In the next figure it is represented the output of the CIC
decimator filter, obtained with the Real-Time platform,
using the Texas Instruments tool Code Composer Studio.

Fig. 10. CIC Decimator Filter Output Signal (Real and Imaginary parts).

2.5. Digital Baseband Demodulator

The first block of the digital baseband demodulator is

the Goertzel algorithm module [4] [5] [6]. This algorithm is
used to calculate efficiently the Discrete Fourier Transform
(DFT) at one specific frequency.

It basically helps us to detect the tones corresponding to
the symbols of the 2-FSK signal, i.e. it performs a band
pass filtering.

Figure 11 presents a scheme to describe the Goertzel
algorithm [4]. N is the number of samples of the DFT and

N
j

N eW
π2−

= .

][][nuWnh kn
Nk ⋅= −

Fig. 11. Scheme corresponding to Goertzel Algorithm.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 We have implemented the Sliding Goertzel Algorithm,
which is a variant of the Goertzel Algorithm that allows
computing efficiently the DFT of a signal at a specific
frequency while samples arrive at the block. Instead of
calculating the Goertzel algorithm of Figure 11 to blocks
of N samples, which differ only in one sample from one
block to the next, new algorithm calculates the Goertzel
algorithm of a group of a N samples using the Goertzel
value obtained in the previous block.

 Figure 12 displays two consecutive time windows of
the signal x[n], which will be the input of the Goertzel
module.

The sequence St-1[n] corresponds to the window that
includes the samples n=0,1,…N-1 of the signal x[n].
Sequence St[n] corresponds to the window which includes
the samples n=1,2,…N of the original signal x[n], i.e. it
represents the situation when a new sample of x[n] has just
arrived for processing.

Fig. 12. Sequence x[n] with two consecutive time windows.

The relationship between the DFT of a window and the
next one is given by equation 4, which is finally
programmed in the DSP.

 ()]0[][][][1

2

xNxKSeKS t

K
N

j

t −+⋅= −

π

 (4)

In figure 13 the programmed flow graph is shown:

k
N

j
e

π2
][][kXny =][nx

Fig. 13. Flow graph corresponding to Sliding Goertzel Algorithm.

A filter as the one represented in Figure 13 has been
implemented to compute the Discrete Fourier Transform
(DFT) at frequency f0 corresponding to symbol defined as
‘0’, and another analogous filter, to calculate the DFT at
frequency f1 corresponding to symbol defined as ‘1’ was
also implemented.

Figure 14 presents the output provided by the sliding
Goertzel algorithm for the case of f0. At the bottom of the
figure appears the 2-FSK signal after having been

converted to baseband and decimated, i.e. the signal the
sliding Goertzel algorithm is applied to. Notice that the
output of the Goertzel Algorithm is maximum when the
input symbol is ‘0’, as it corresponds to the case when the
algorithm seeks the frequency f0, and minimum when the
input symbol is‘1’.

Fig. 14. Digital 2-FSK Demodulator.

In Figure 15 the outputs provided by the sliding

Goertzel algorithm for the case of f0 and f1 are displayed.
Those are complementary curves, namely when one is
maximum the other is minimum and vice versa.

Fig. 15. Comparative time diagram of Goertzel at frequencies f0 y f1.

Then, after the Goertzel algorithm, a timing recovery
algorithm or symbol synchronism is implemented to select
only one sample per symbol and also to look for the best
sampling instant. To achieve this, the timing recovery
algorithm is based on an Early – Late mechanism.

Sampling phase instant correction is done dynamically,
as samples reach the receiver. The target would be
sampling at the top of the curve generated by the Goertzel
algorithm, where outputs of the filters tuned at f0 and f1
differ more, and so it will be easier to take a correct
decision. The decision process simply compares the output
samples of the Goertzel module at f0 with output samples at
f1 and decides the received symbol based on whichever is
greater.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

2.6. FIFOs

Two FIFOs, one for the transmitter and another for the

receiver, have been implemented in the FPGA using a block
RAM IP Core. These FIFOs interface between the DSP and
the FPGA. The parameters of the FIFOs are: 2048 positions
depth, 32 bits width.

2.7. Clock Domains

The clock signal is generated in the FPGA with a DCM

(Digital Clock Manager) from a crystal oscillator of 16.384
MHz. The value of the synthesized frequency is 98.304
MHz. This signal is used in the following blocks: DAC, AD
Mixers, and CIC filters.

FIFOs previously commented work with a lower sample
rate clocks which are generated in the CIC filters and
depend on the interpolation / decimation factors.

2.8. Data Converters

The real-time platform used, provides two data
converters of Texas Instruments, the Digital to Analog
Converter DAC5687 and the Analog to Digital Converter
ADS5500.

Fig. 16. Functional Block Diagram of the DAC5687.

The chip DAC5687 is a 16-bit, 500 MSPS (2x-8x)

interpolating dual-channel DAC. Besides, it includes a
complex mixer with 32-Bit NCO. This DAC provides two
digital data channels of 16 bits and two analog output
channels. The highest data rate is 500 MSPS. It includes a
digital quadrature modulation correction (QMC), sinc
correction and gain control. It has several memory registers
inside for configuring the different operation modes. The
interface for programming the registers is the serial
interface SPI. The ADS5500 is a 14-bit, 125MSPS single-
channel ADC. It can work in two data formats (Straight
Binary and 2’s Complement), and with two active edges

(rising and falling). The interface for programming the
registers is the serial interface SPI.

Fig. 17. Functional Block Diagram of the ADS5500.

3. CONCLUSIONS

In this paper we present the design and implementation
of a 2-FSK continuous waveform based on what nowadays
is known as Software Defined Radio design philosophy.
We explain the chosen architecture, firstly mentioning the
main electronics devices we have used and afterwards
describing the different blocks that have been implemented.
Apart from the description of each block we also discuss
about the computational burden of the algorithm and we
present some results that we have obtained, mainly using
the Code-Composer Tool for the DSP device.

4. ACKNOWLEDGEMENTS

Authors would like to thank Signal Processing on
Communications Group (GTSC) team members for their
valuable help and feedback.

5. REFERENCES

[1] J. H. Reed, Software Radio: a modern approach to radio
 engineering.Prentice Hall. Communications

Engineering and Emerging Technologies Series. 2002.
[2] Edward A. Lee, David G. Messerschmitt, Digital

Communication 2ª Ed. Kluwer Academic Publishers
1994.

[3] Frederic Harris, Multirate Signal Processing for
communication systems, Prentice Hall 2004.

[4] A. V. Oppenheim and R. W. Schafer, Discrete-Time
Signal Processing, Prentice Hall Signal Processing
Series, Einglew ood Cliffs, New Jersey: Prentice Hall,
1983.

[5] K. Banks, “The Goertzel algorithm” , Embedded Syst.
Programming Mag., pp. 34-42, Sept. 2002.

[6] Jacobsen, E.Lyons, Signal Processing Magazine, IEEE
Volume 20, Issue 2, Mar 2003 Pages 74 – 80.

[7] J.García, J.Bermejo, “Design and Implementation of a
2-FSK Software Radio Modem”, URSI Madrid 2008

	Home
	Papers by Session
	Papers by Author

