
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

THE WAVEFORM DASHBOARD: AN INTERACTIVELY CONFIGURABLE

GUI FOR PROTOTYPE SCA-BASED SDR WAVEFORMS

Deepan .N. Seeralan (Dept of Computer Science, Virginia Tech, Blacksburg, VA, USA;

deepanns@vt.edu); Stephen Edwards (Dept of Computer Science, Virginia Tech,

Blacksburg, VA, USA; edwards@cs.vt.edu); Carl Dietrich (Bradley Dept of Electrical

and Computer Engineering, Virginia Tech, Blacksburg, VA, USA;cdietric@vt.edu)

ABSTRACT

The Software Communications Architecture (SCA) is

prominent in development of software defined radio (SDR)

waveforms for wireless communication systems.

Prototyping of SDR waveforms is an interactive process that

benefits from user friendly tools. In this paper, we present

one such tool, the Waveform Dashboard. This tool was

developed to enable interactive configuration of component

properties of SDR waveforms, helping to streamline the

rapid prototyping and testing process. The SCA standards

define the Common Object Request Broker Architecture

(CORBA) interfaces to configure component properties and

a means to identify the component properties via the PRF

files that enables creation of a generic GUI to work with

SDR waveforms. The core framework and tools of the

Open-Source SCA Implementation Embedded (OSSIE)

developed by Wireless @ Virginia Tech provide a

convenient environment for rapid prototyping of SCA-based

waveforms. Our tool abstracts the OSSIE core framework

and presents an interactive and customizable interface to

configure the component properties of SDR waveforms.

This paper describes the design and implementation of the

Waveform Dashboard and its applications to SDR

waveforms.

1. INTRODUCTION

Interactive control of software defined radio (SDR)

waveform application parameters at run time enhances SDR

education, research, and rapid prototyping, and is essential

in many practical SDR implementations. Unlike end users,

however students, researchers, and developers may desire

the capability to control all or a large subset of parameters of

an SDR waveform application. Moreover, it may not be

efficient to invest significant time in developing custom user

interfaces for waveforms that will not be employed by end

users. Thus, there is a natural demand for rapid generation

of easily customizable graphical user interfaces that provide

control of such waveform applications. Such a capability

frees communication engineers and students from

developing GUIs, and frees user interface (UI) developers to

concentrate their efforts on UIs for production SDR

platforms.

 For SDR waveforms based on the Software

Communications Architecture (SCA) [1], methods and

profiles that are integral to the core framework and

application software can be leveraged to provide the desired

capability. This paper describes the Waveform Dashboard,

a flexible GUI tool that was developed and tested using

open-source SCA-based SDR software from the OSSIE

project [2] and is now distributed with OSSIE.

2. THE WAVEFORM DASHBOARD

The Waveform Dashboard (WaveDash) is an interactive and

configurable GUI tool that acts as a one point control panel

to work with multiple SDR waveforms and their

components. This tool abstracts the SCA interfaces and

implementation of OSSIE core framework and provides a

direct manipulation interface to control and configure SDR

waveforms interactively. Users can install, start, stop and

uninstall a waveform and also configure the components’

properties in real time. Further it allows the user to

customize the interface on a per-waveform per-component

basis. Users can choose the type of widget they prefer to

represent a particular property of a component and can also

hide/unhide the components and its properties they wish to.

 We developed this tool in Python to provide better

platform independence, and interoperability with other tools

in the Waveform Workshop (OSSIE Tools suite). Other

packages we used in developing WaveDash are:

• wxPython [3]– an open-source toolkit for GUI

programming in Python

• omniORB [4]– a free CORBA ORB for Python

• xml.dom.minidom [5] – an open-source

lightweight XML parser

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

3. DESIGN

WaveDash is based on a simple Model-View-Controller

(MVC) architecture. The model acts as a database of

waveforms and applications running on the node and the

user customizations of the GUI. The view simply renders a

graphic representation of the information contained in the

model.

The main modules of WaveDash are:

• Wavedash Model – comprises three sub-models,

one each to represent Waveform, Component and

Properties

• Wavedash View – combines the view and controller

logic and renders the visual representation of the

model.

• Wavdash Utils – utility functions to access OSSIE

core framework, parse eXtensible Markup

Language (XML) files using xml.dom.minidom and

Widget Container which maps properties to GUI

widgets.

A simplified class diagram of the WaveDash model is shown

in Fig 1.

Fig. 1 Simplified class diagram of WaveDash Model

3.1. Use Cases

The lifecycle of an interaction in WaveDash comprises of

installing, starting and stopping, configuring and uninstalling

a waveform (shown in Fig 2.). It also includes several use

cases during this interaction lifecycle. The user can do any

of the following:

• Install and start a waveform or just install a

waveform from the SDR waveforms listed in the

Waveforms menu.

• Start and stop a waveform multiple times

• Work on the recently installed waveform or choose

another waveform from the list of installed

waveform instances. User can then start, configure,

stop or uninstall a waveform.

• Preview a waveform before installation.

• Reorder the layout of a waveform’s GUI by moving

a component panel up or down.

• Change the value of one or more property of one or

more component of the active waveform. An error

message should be shown if the value is not

compatible with the data type of the property being

modified. For e.g., entering a float value for a

property which takes only integer values.

• Change the GUI widget of a property using the

context menu of a property. For e.g., properties

with integer values are mapped to a Text Box by

default. User can change to a spin box or a slider

when required.

• Hide or unhide one or multiple properties of a

component and hide or unhide one or more

components of a waveform as well.

• Maintain changes to a waveform layout or

component properties when switching between

multiple waveforms.

• Uninstall a waveform.

Fig. 2 A typical interaction lifecycle in WaveDash

4. IMPLEMENTATION

4.1. Widget Container

The Widget Container addresses one of the main objectives

of WaveDash to directly manipulate the GUI widgets of

properties and customize the interface to their preferences.

The SCA standards specify the data type (e.g. float, char)

and XML type (e.g. simple, simplesequence) for properties

of each component. WaveDash maintains two set of widgets

for each of the XML type and data type tuple: one acts a

default widget and other acts as optional set of widgets.

Users can change the widget of a property to another widget

only from the list of optional widgets. This prevents the user

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

from choosing an incompatible widget for a property. The

mappings are maintained in a configuration file and are

loaded during WaveDash startup. Table 1 shows the

mapping for some of the property types.

Table 1. Property-Widget mappings

Property Type

(XML Type,DataType)

Default

Widget

Optional

Widgets

(simple, long) Text Box
Spin box,

Slider

(simple, integer) Spin Box
Text box,

Slider

(simple, double) Text Box Slider

(simple, float) Text Box Slider

(simple, short) Spin box
Text box,

Slider

(simple, char) Text Box None

(simplesequence, short) Text Box None

(simplesequence, string) Text Box None

(simplesequence, float) Text Box None

4.2. SCA Domain Profiles

On startup, WaveDash looks for waveforms in a

preconfigured directory (e.g./sdr/waveforms) and builds its

model structures. In the SCA, the Domain Profile includes a

set of XML files that describes the set of interfaces,

interdependencies and interconnections between

components, and component properties and their values, of

the waveforms in the domain [1]. These files are:

• Software Assembly Descriptor (SAD) – used to

describe a waveform. It includes the list of

components, their logical relationships and

connections. It is through this file WAVEDASH

explores the components of a waveform.

• Software Package Descriptor (SPD) – describe the

components and their implementations. The

location of SPD file is obtained from the SAD file

and the SPD file provides the location of the PRF

files.

• Properties Descriptor (PRF) – Specifies the data

type, value and description for each of the

properties of a component.

4.3. Initialization

During initialization, the SAD file of each of the waveform

is parsed to learn its components and the location of their

SPD files. The SPD file of a component is then parsed to

find the properties and their PRF files. The PRF provides

the details of every property of a component. The property

type which is a tuple of (xml type, data type) for each

property is looked up in the Widget Container to find the

right GUI widget for it. This procedure is repeated for all the

SAD files found in the configured directory. The waveform

names will be populated in the Waveforms menu of

WaveDash. The system found waveforms are listed under

Waveforms menu (Figure 3) and the waveform applications

are shown in a tabbed fashion. The Components menu will

be refreshed with the names of the components of the

currently selected waveform application (Figure 4) as

determined by the active tab.

 The initialization process also looks for currently

installed waveform applications in the domain through the

Application Factory interfaces. It also looks for single

components installed as a waveform application through

ALF. If any waveform application is found running, the

Application Factory returns an instance of the application

with which the properties of a component can be queried or

configured. The property values are queried and model is

then updated with the new waveform application. Hence a

waveform which installed from command line or ALF can

also be controlled from WaveDash.

Fig. 3 Waveform Menu Listing

4.4. Operation

The WaveDash GUI represents a waveform application as

one single panel which in turn consists of multiple panels,

one for each component. Tabs are added as and when a new

waveform application is installed. Each component panel

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

contains a label and a default widget for each of its

properties. A context menu is pinned to each of the property

widget and the component panel to directly manipulate

them. The component context menu is used to move a

component panel up or down and hide/unhide the properties

(Figure 5).

Fig. 4 Component Menu Listing

The property context menu lists the default widget and the

optional widgets as obtained from the Widget Container for

the user to change from one widget to another (Figure 6).

Certain widgets like Spin Box and Slider have minimum and

maximum values that can also be configured from the

options in the context menu.

Fig. 5 Component Context Menu

 When the user changes the value of a property in the

GUI, the value is read and validated for type compatibility

before configuring the component. If the value is valid, the

configure() [1] method is invoked on the application

instance obtained from the Application Factory. On success,

the GUI is refreshed with the new value and on failure the

old value of the property is retained.

Fig. 6 Property Context Menu

5. ENHANCEMENTS

The current implementation of the Waveform Dashboard

allows users to configure the component properties of a

waveform and customize the GUI to their preferences.

While changes to waveforms will persist as long as the

waveform is running on the device, changes to GUI will not.

In the future, WaveDash will be extended to allow the users

to save their GUI preferences on a per-waveform and per-

component basis. On startup, the saved preferences will then

be applied to the matching waveforms. The GUI will also be

updated to incorporate the components’ ports and interfaces

and the connection information as well. Integrating

WaveDash with ALF (visualization and debugging

environment for OSSIE waveforms) will significantly

improve the debugging experience.

6. CONCLUSION

The Waveform Dashboard (WaveDash) provides an

interactive and configurable interface to configure

component properties of waveforms that makes the SDR

prototyping in OSSIE more efficient than before, and is

expected to prove useful for SDR education and research as

well. Using WaveDash, component properties of a

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

waveform can be queried and configured in real time, which

facilitates rapid development and debugging of SDR

waveforms. Moreover, WaveDash demonstrates a

capability that can be achieved using the SCA or similar

SDR architectures.

7. REFERENCES

[1] Software Communications Architecture, Available at
http://sca.jpeojtrs.mil/

[2] Open-Source SCA Implementation Embedded, Available at
http://ossie.wireless.vt.edu/

[3] wxPython - a GUI Toolkit for Python, Available at
http://wxpython.org/

[4] omniORB – a CORBA ORB for Python, Available at
http://omniorb.sourceforge.net/

[5] xml.dom.minidom, a light-weight implementation of
Document Object Model Interface, Available at
http://docs.python.org/library/xml.dom.minidom.html

[6] N.Rapping and R.Dunn, wxPython in Action, Manning
Publications, March 2006

	Home
	Papers by Author
	Papers by Session

