
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

NATO RTO/IST RTG ON SDR: DEMONSTRATING PORTABILITY AND

INTEROPERABILITY OF SCA-BASED WAVEFORMS

Sarvpreet Singh, Marc Adrat, Markus Antweiler

Fraunhofer Institute for Communication, Information Processing & Ergonomics (FKIE),

Wachtberg, Germany

sarvpreet.singh@fkie.fraunhofer.de, marc.adrat@fkie.fraunhofer.de

ABSTRACT

Among various features offered by the SDR technology, two

important aspects related to it are portability of waveform

applications and interoperability between SDR platforms.

The NATO RTO/IST Research Task Group on Software

Defined Radio (RTG on SDR) is working on these aspects

in a Software Communications Architecture (SCA) based

environment on a mutually agreed test waveform of

STANAG 4285. This paper presents the steps taken in order

to port the STANAG 4285 waveform from one SCA

Operating Environment (OE) to another. This means,

moving from one Core Framework (CF), Object Request

Broker (ORB) etc to another using the processing element as

a General Purpose Processor (GPP). Finally, we present a

working demonstration of the STANAG 4285 waveform

interoperability between the different OE implementations.

1. INTRODUCTION

Established in the year 2007, the NATO RTO/IST Research

Task Group [1] on Software Defined Radio is working

towards gaining knowledge and experience in the SCA/SDR

domain. There are about 10 active participating nations

sharing their experiences in the development of SCA based

waveforms. As a three folded approach (shown in Fig 1) to

acquire such knowledge, the group aims at:

1. Implementation of an SCA based waveform

2. Demonstrating the porting of an SCA based

waveform on different SDR platforms

3. Demonstrating the interoperability between

different implementations of the same SCA based

waveform

 The group has jointly agreed on the waveform of

STANAG 4285 [2] for its development work. An example

implementation of the waveform in ANSI-C code has been

provided by Telefunken Racoms [3]. The different member

nations are using different commercial tools for

implementing the SCA version of the waveform. We (at

FKIE, Germany) decided to use the commercial Software

Communications Architecture Reference Implementation

(SCARI) Software Suite from Communications Research

Centre (CRC), Canada [4] for development purposes.

Various SCA based implementations of different granularity

level for the STANAG 4285 waveform have been developed

and analyzed by us with the CRC tools [5]. For testing

portability, we are also using the Open Source SCA

Implementation - Embedded (OSSIE) [6] tools from

Virginia Tech. This paper focuses on demonstrating the

portability and interoperability results achieved using the

SCARI and OSSIE tools at FKIE. In addition to these in-

house developments, various interoperability tests between

different member nations have been performed successfully

in the past.

Fig 1: Target Workflow

 Section 2 discusses the porting efforts required to move

an SCA based waveform from a machine running one OE

(OSSIE Tools) to a machine using another OE (SCARI

Tools) and vice versa. It also explores the various

approaches taken in order to achieve portability. Section 3

presents the results of interoperability between two machines

running the same waveform together under different

Operating Environments (OE). A live demonstration

displaying the interoperability results is presented at the

final conference.

This project was performed under contract with the Technical Center

for Information Technology and Electronics (WTD-81), Germany.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

2. PORTING WAVEFORMS

A formal definition of Porting can be given as the ease with

which a system or component can be transferred from one

hardware or software environment to another [7]. From the

point of view of the NATO group, porting is required in

order to exchange various SCA based waveforms/

components among partner nations. This means that an SCA

based component of a waveform working on the processing

element (e.g. GPP) of one nation should also be able to work

on the processing element of another nation. Thus, the

efforts taken to achieve such targets should be minimal. In

this paper we focus only on porting waveforms between

different Operating Environments (OEs) running on GPP.

Porting waveforms on different processors can have several

other issues. Table 1 shows the two different Operating

Environments discussed in this paper to port waveforms.

Table 1: OE Comparison

 Operating Environment (OE)

Core

Framework

OSSIE (v0.7.0),

Virginia Tech, USA

(OWD v1.0.16)

SCARI, CRC Canada

(SCA Architect v1.1.14)

Operating

System
Linux (Fedora 9) Linux (Ubuntu 8.04)

CORBA omniORB TAO ORB

2.1. Porting from OSSIE to SCARI

In order to achieve minimal porting efforts for moving an

SCA based waveform from a system with one OE to

another, various approaches are tested. This sub section

describes the issues faced and the proposed solution to port

a waveform from an OE using OSSIE to another using

SCARI.

 In this paper, we avoid the use of term Base and Target

Waveform for demonstrating portability. As per the NATO

guidelines [8], a Base Waveform is defined as a software

which acts as a starting point to develop Target Waveform.

It should be the generic code independent of any particular

platform. The Target Waveform is defined as the complete

executable code (XML, source code, binaries etc) that will

run on a particular target platform. In our case we are

porting the Target Waveform from one OE to another. Thus,

we use the term Base OE and Target OE to avoid confusion.

2.1.1. Base OE (SCARI)

As a first step, the SCA based Transmitter component of the

STANAG 4285 waveform is implemented with the OSSIE

development tools on one machine. The tool generates

necessary SCA based domain profiles in XML and the SCA

based C++ source code for the component as shown by step

1 in Fig 2. This C++ source code takes care of the correct

CORBA interfaces for communications etc. The waveform

developer has to add additionally, the signal processing

code. The several generated domain profiles contain

information like Properties, OS, Processor etc used by the

component (e.g. Software Package Descriptor (SPD)). As

shown in step 2 in Fig 2, it is a good practice for the

developer to make a static library of the signal processing

code and call it from the generated C++ code. In this way,

the signal processing code remains separate and independent

of the generated code. The complete source code for SCA

and the signal processing is then compiled along with the

necessary shared libraries (for Core Framework, ORB etc)

to generate a binary. The next step is to port the waveform

XML and executables to a Target OE.

2.1.2. Porting to Target OE (OSSIE)

In an ideal case, to achieve portability, the developer must

only copy the XML files, the executable and the signal

processing library of the base waveform to another machine

to make it work. But in real case, at least two issues arise:

1. The generated XML files are not interpreted as

expected because it is stated in [6] that the domain

profiles of components/applications do not entirely

conform to the SCA specifications.

2. The generated executable does not run error free.

E.g.: it does not find the shared libraries linked

during the compilation.

 For instance, the SCARI tools do not interpret the XML

files directly because of different expectations in the

implementation of XML files. Certain modifications are

required in the XML files in order to make them readable

for the SCARI tools keeping the SCA specifications in mind.

2.1.3. Issues Faced

Following are the changes needed to be made in the

different domain profiles/XML files generated by OSSIE:

PRF (Properties Descriptor) File

1. The Properties Descriptor file details component and

device attribute settings [9 (Section D.4.1)]. Elements

like “simple”, “simplesequence”, “test2, “struct” or

“structsequence” are used to describe the attributes of a

component. It is observed that in case of defining a

component with a “simple” property by OSSIE, the

“description” element is created as one of the daughter

elements of the “simple” element even though no text is

entered while defining that component:

 <simple>

 <value>number</value>

<description>desc_name</description>

 …………

 </simple>

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Fig 2: Porting steps from OSSIE to SCARI

In the XML file generated by OSSIE, the “description”

element is placed after the “value” element. The

SCARI XML parser also checks for correct positioning

of the elements according to the SCA defined

Document Type Definition (DTD). The DTD defines

“description” as the first daughter element of “simple”.

 <simple>

<description>desc_name</description>

 <value>number</value>

 …………

 </simple>

 Therefore, in order to make the SCARI tools read

this file, the “description” element is moved before the

“value” element in the OSSIE XML file.

SCD (Software Component Descriptor) File

2. This descriptor file is based on the CORBA Component

Descriptor specification [9 (Section D.5)]. The root

element of this file is “softwarecomponent” which in

turn has “interfaces” as a daughter element. The

“interfaces” element must have one or more

“interface” elements. The “interface” element

describes an interface that the component, either

directly or through inheritance, provides, uses, or

supports [9 (Section D.5.1.5)]. The SCD file generated

by OSSIE contains several “interface” elements. As

per the SCA specifications, the “resource” interface

inherits from four other interfaces namely PortSupplier,

LifeCycle, TestableObject, PropertySet [10 (Section

3.1.3.1.6)]. In the OSSIE implementation, the inherited

interfaces are not declared additionally as “interface”

elements. The inherited “interface” elements have to be

added additionally in order to make the SCARI tools

accept this file without error.

An example of the additional “interface” elements

added to this file is:

 <interface name="LifeCycle"

 repid="IDL:CF/LifeCycle:1.0"/>

 <interface name="TestableObject"

repid="IDL:CF/TestableObject:1.0"/>

 <interface name="PropertySet"

 repid="IDL:CF/PropertySet:1.0"/>

 <interface name="PortSupplier"

 repid="IDL:CF/PortSupplier:1.0"/>

SPD (Software Package Descriptor) File

3. In the SPD file generated by OSSIE, again the

“description” element has to be moved at the right

place in the SCA defined XML file according to the

DTD, like in the case of prf file.

<description>desc_name</description>

 In the OSSIE implementation of the SPD, the

“description” element is placed before the “author”

element inside the “softpkg” element. But as per the

SCA defined DTD [9 (Section D.2.1)], SCARI parser

requires the “description” element after the “author”

element. Thus the element is moved to the right place.

4. As per the SCA specifications [9 (Section D.2.1.6)], the

“implementation” element needs at least one

declaration of either “os”, “processor” or

“dependency” element. The SPD file generated by

OSSIE contains only the “processor” element. But the

SCARI tools also need the operating system “os”

element inside the “implementation” element for its

internal functioning:

<os name=”Linux”/>

 Therefore, this element is added manually in the

SCA defined SPD file to run with SCARI tools. This

element gives information about the target OS being

used to run the particular component.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

SAD (Software Assembly Descriptor) File

5. The SAD file is used to describe the assembled

functional application and the interconnection

characteristics of SCA components within that

application. As per the SCA defined “connectinterface”

element of SAD DTD [9 (Section D.6.5.1)], it must

contain one “usesport” element and one of the

“providesport”, “componentsupportedinterface”, or

“findby” element. The DTD specifies that the

“usesport” element is written before any of the other

three elements. But the OSSIE implemented SAD file

writes “providesport” element before “usesport”.

Therefore, the order of the port description is changed

manually for correct interpretation by SCARI.

<usesport>……</usesport>

<providesport>……</providesport>

6. According to the SCA, the root element of SAD is

“softwareassembly” which has two attributes, “id” and

“name” [9 (Section D.6)]. The “name” is defined as

CDATA in the DTD. This means that name must be a

character data and that text will not be parsed. In case of

OSSIE, the SAD file writes the name of the application

in the “softwareassemblyid” element as OSSIE::saname

(saname is user defined text).

<softwareassembly id=".." name="OSSIE::saname">

 The double colons present between OSSIE and

saname is not accepted by SCARI tools. Thus, the

double colons have to be removed in order to make the

SCARI tools read this file.

<softwareassembly id=".." name="OSSIEsaname">

File Paths

7. The XML files generated by OSSIE contain hard coded

paths for the location of several other files. For

Example: In the SPD file of the component, the path for

the DTD file containing the schema and the path for

property and SCD files are hard coded. The paths are

specific to the folder location where they are generated.

Some examples are:

<!DOCTYPE softpkg SYSTEM “../dtd/softpkg.dtd”>

<localfile name=”xml/comp_folder/comp.scd.xml”>

 These paths have to be changed in order for the

SCARI tools to read the XML files from correct

location.

 Running the waveform after making all the XML

modifications still leaves the developer with the issue of

missing shared libraries. In order to overcome that issue, a

proposal process is shown in the following subsection.

2.1.4. Proposed Process

The solution to the above mentioned issues is shown step by

step in Fig 2. In addition to making modifications in the

XML files, they are collected and zipped for the SCARI

tools as shown in step 3 in Fig 2. Next, the XML files

generated by OSSIE on Base OE are read by the SCARI

tools to model the component again. In other words, the

SCA Architect tool of SCARI reads the XML files. This can

be seen from step 4. It allows the developer to use the same

specifications defined using the Base OE in the XML files

for the Target OE. The modeling tool allows the developer

to regenerate the SCA specific source code of the

component. As a next step, the source code is generated with

the new tools shown by step 5. Now, the signal processing

part is added to the source code. This is done by using the

static library depicted in step 6. This static library containing

the signal processing part of the waveform is called from the

new generated code. The source code along with the static

library is then recompiled with necessary dependencies. This

results in the generation of a new binary for the Target OE

as shown in step 7. The fresh compiled binary for the

particular component is now able to run without problems

on the new machine with new tools. Similar steps are carried

out on all the components of the waveform. Then as shown

in step 8, the complete waveform is able to run with the

Radio Manager tool of SCARI. With this approach, one can

also avoid problems with different ORBs etc.

 The drawback of this approach is that the developer

needs to know the signal processing part at his end. The

advantage which he has with this approach is that he does

not need the component specifications and this frees him of

any associated code dependencies.

2.2. Porting from SCARI to OSSIE

Investigation into the porting from the OE using SCARI to

OSSIE led to some similar issues as described in the

previous sub section.

2.2.1. Base OE (SCARI)

Similar to the process mentioned in Section 2.1, again the

Transmitter part of STANAG 4285 waveform is

implemented. This time, the SCARI tools are used to model

the waveform. The SCA Architect tool of SCARI generates

the domain profiles (XML files) and the SCA based source

code for the waveform. As mentioned in Section 2.1, the

signal processing code is compiled into a static library. This

library is then called from the SCA source code. These steps

are similar to the ones described in Section 2.1.

2.2.2. Porting to Target OE (OSSIE)

Directly porting the waveform developed by SCARI to

OSSIE gives up similar issues as discussed before in the

previous section. Thus, changes have to be incorporated in

order to run the waveform on Target OE.

 It is observed that once OSSIE is installed on a system,

it creates specific default folders in the file system where

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

different files related to all the waveforms are kept. The

“xml” folder under “sdr” is used to collect all the XML files.

This means that for each component build by OSSIE, a

separate folder with the component name is created under

the “xml” folder. The three domain profiles namely, the

SPD, SCD and PRF for each component are kept in

corresponding folders. Another folder called “waveforms” is

also created under “sdr”. This location is used to keep the

domain profiles for the different assemblies. Thus, the SAD

for each assembly is placed under a separate folder under

“waveforms”. An important point to note here is that this

folder also contains a DAS file for the assembly. This file is

implemented and used internally by OSSIE and is not SCA

specific. This DAS file defines the connection between each

component of the assembly to the GPP used with OSSIE. An

example DAS file from an original OSSIE application is

used as a reference to build the DAS file for the application

which is ported. In order to port the waveform from Base

OE, careful steps have to be carried out to place the SCARI

XML files at correct places in the OSSIE file system.

2.2.3. Issues Faced

After placing the XML files generated by SCARI at correct

places within the OSSIE file system, we try to read them

with OSSIE. Like in the case of SCARI, modifications are

needed this time in the SCARI generated XML files to make

them readable for OSSIE. Following are the changes to be

made:

File Paths

1. The file paths in the XML files generated by SCARI do

not match the paths expected by OSSIE. Since the XML

files are kept according to the OSSIE file structure

explained in Subsection 2.2.2, their defined paths are

therefore changed. For Example, in the SPD file of a

component, the file path:

<localfile name=”comp_name.scd.xml”>

 is changed to:

 <localfile name=”xml/comp_folder/comp.scd.xml”>

 OSSIE does not validate the XML files with the

SCA DTD. Thus, no DTD dependent errors are

encountered. But again we observe that even after

making the XML files readable by OSSIE, we face the

same issues of missing shared libraries used by SCARI.

2.2.4. Proposed Process

In order to successfully port the waveform to OSSIE, a

similar solution is proposed as stated in Section 2.1. The

modified XML files are used to remodel and regenerate the

SCA source code with OSSIE. The source code is then

compiled with the signal processing static library. The new

generated binary runs without any problem with OSSIE.

Similar steps are carried out on each component of the

waveform in order to successfully achieve waveform

portability.

2.3. Other Experiences

Similar trials to determine the porting efforts between other

OEs are also explored by different NATO nations. In a

similar experimental setup as explained in the previous

section, tests were performed to port a waveform from

OSSIE tools to the development tools from Zeligsoft [11].

The results show that similar XML file modifications are

also required in the case of Zeligsoft as presented in the

previous section. The point numbers 4, 5, 7 from Section

2.1.3 are also observed in the case of Zeligsoft tests. In

addition to that it is also seen while porting the waveform

from OSSIE to Zeligsoft that the connections between the

components defined by the SAD file have to be modified.

OSSIE declare the connections between components using

the “findby” element (in case of “usesport” and

“providesport”).

<findby>……</findby>

 It is observed that after porting the waveform to

Zeligsoft tools, the port connection between components is

freestanding. The connections between ports are made

statically in order to run the waveform successfully on

Zeligsoft tools.

3. INTEROPERABILITY

A formal definition of interoperability defines it as the

ability of two or more systems or components to exchange

information and to use the information that has been

changed [7]. A real life example of interoperability is the

communication between different systems like SDR to SDR,

SDR to legacy equipments. For the NATO Group, it is

important to know whether the partner nations working on

different hardware and software are able to interoperate the

STANAG 4285 waveform with each other.

 The interoperability between the partner nations is

tested in 3 steps:

1. Exchanging data files

2. Transmission through cable

3. Transmission over the air

The three approaches are shown in Fig 3. In the case of “File

Exchange” approach, interoperability is achieved by the

Receiver decoding either baseband I/Q samples (inphase/

quadrature) or IF (intermediate frequency) values written by

the Transmitter into a file. In case of the “Cable” and “Over-

the-air” approach, the transmission is performed using the IF

values. It is possible to use IF values because STANAG

4285 operates in the bandwidth range of 3 kHz with the

intermediate frequency of 1.8 kHz. Since these values are in

the audible range, we can use “cable” and “over-the-air”

transmission with a standard PC sound card as transceiver.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Fig 3: Different Interoperability Approaches

 Using all the above mentioned modes for testing, the

results were positive between the partner nations. For

Example: the encoded data sent by the SCA based

Transmitter implementation of the waveform by one nation

was successfully decoded by the SCA based Receiver of

another nation. Similar results were also achieved after

performing tests between all the other partner nations.

 This paper however focus on the interoperability

between the SCA based OSSIE implementation of

STANAG 4285 with the SCARI implementation.

3.1. Test Setup

The idea behind the test setup is to run the SCA based

STANAG 4285 Transmitter functionality on one machine

and the Receiver on the other. Instead of writing the IF

values given by the Transmitter in an external file, the

encoded data is given to the sound card through additional

code. The loud speaker jack of the Transmitter machine is

connected to the microphone jack of the Receiver machine

via an external audio cable. In case of “over-the-air”

transmission, a speaker is connected to the Transmitter side

and a microphone is connected to the Receiver side. In this

way, the sound card of the Receiver machine receives the

data coming from the Transmitter machine without the

cable. In order to successfully test interoperability, the SCA

based Receiver must read this data and decode it. In our

implementation the decoded result is then printed out on the

console. The live demonstration of the interoperability tests

will be presented at the conference.

 The STANAG 4285 waveform offers different modes

operating at different speeds between the ranges of 75

bits/sec to 2400 bits/sec. All the modes of operation are

tested between the Transmitter and Receiver side. Some

problems occur while testing the highest mode. The highest

mode is also the least robust mode. The problems can be

contributed to the noise level in air and also to the level of

sound at which the sound card of the machine is working.

4. CONCLUSION

Some important conclusions can be drawn from the porting

and interoperability experiences described in the above

sections. In the case of portability, we can see that the

modified SCA defined XML files help us in modeling the

target waveform without the necessity of separate details of

the base waveform. Similarly, the approach of making a

separate library for the signal processing code helps in

protecting the proprietary rights of the vendor. In addition, it

frees the waveform developer of going into the details of the

signal processing code thus reducing the development time.

The interoperability results are proposed to be shown as a

live demonstration at the final conference.

10. REFERENCES

[1] “RTO Group” http://www.rta.nato.int/
[2] NATO, Military Agency for Standardization (MAS),

“STANAG 4285: Characteristics of 1200/2400/3600 Bits Per
Second Single Tone Modulators/Demodulators for HF Radio
Links”.

[3] “Telefunken Racoms” http://www.tfk-racoms.com/
[4] “Communications Research Centre (CRC), Canada”

http://www.crc.gc.ca/
[5] S.Singh, M.Adrat, S.Couturier, M.Antweiler, “SCA Based

Implementation of STANAG 4285 In a Joint Effort Under the
NATO RTO/IST Panel”, Software Defined Radio Technical
Conference (SDR’08), Washington D.C, USA, November
2008.

[6] Open Source SCA Implementation - Embedded, “OSSIE”,
http://ossie.wireless.vt.edu/

[7] Standards Coordinating Committee of the IEEE Computer
Society, “IEEE Standard Computer Dictionary: A compilation
of IEEE Standard Computer Glossaries”, 1990.

[8] NATO, Software Defined Radio Users Group, “Policy and
Framework for Sharing Common Waveforms”, 2009.

[9] Modular Software-programmable Radio Consortium for
JTRS, “Software Communication Architecture Specification,
Appendix D. Domain Profile”, Version 2.2,
http://sca.jpeojtrs.mil/

[10] Modular Software-programmable Radio Consortium for
JTRS, “Software Communication Architecture Specification,
Version 2.2”, http://sca.jpeojtrs.mil/

[11] Leif Hanssen, NATO RTO/IST RTG on SDR Meeting,
Budapest, June 2008.

	Home
	Papers by Author
	Papers by Session

